Problem Set 3

Unless otherwise specified, you may use MATLAB to assist with computations. Please provide a print-out of the code used and its output with your assignment.

1. Suppose that $Au = b$ has a solution u. Show that $\hat{u} = u$ is a solution to the normal equations. What must be true about A for \hat{u} to be unique?

2. Projections.
 (a) Find the point on the plane $x + y + z = 0$ nearest to the point $(x = 1, y = 2, z = 3)$.
 (b) Point a has coordinates $(x = 5, y = 0, z = 1)$ and point b has coordinates $(x = 3, y = 3, z = 3)$. Which of these points is closer to the line defined by $\{x = 2y, y = 2z\}$?

3. Least squares. This problem is to be done by hand. Consider the system of equations $Au = b$ where $A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$.
 (a) Show that there are no exact solutions for u.
 (b) Setup and find the solution \hat{u} to the normal equations that minimizes the length of the vector $b - A\hat{u}$.
 (c) Find the QR factorization, $A = QR$ using the Gram-Schmidt procedure. Use it to solve for \hat{u}.
 (d) What best-fit problem does this least squares problem correspond to? Sketch the data points and the best-fit curve.

4. Linear transformations.
 (a) Consider a Householder matrix of form $H = I - 2uu^T$ where u is a $n \times 1$ unit vector.
 i. Show that H is symmetric ($H^T = H$), orthogonal ($H^TH = I$), and that it is its own inverse ($H = H^{-1}$). Is H full rank?
 ii. Find all eigenvalues of H.
 (b) Consider the matrix $D = I - uu^T$ where u is a $n \times 1$ unit vector.
 i. Describe the transformation of a vector v when multiplied on the left by the matrix D. Similarly, describe the transformation D^2v.
 ii. Is D full rank? If not, find an orthonormal basis for the null space of D.
 iii. Does D have a zero eigenvalue? If so, how many? Find the associated eigenvector.
5. Population dynamics. **This problem is to be done by hand.** A rabbit population (r) and wolf population (w) satisfy the following pair of coupled differential equations:

\[
\frac{dr}{dt} = 6r - 2w, \quad (1)
\]

\[
\frac{dw}{dt} = 2r + w. \quad (2)
\]

If the initial number of rabbits is 30 and the initial number of wolves is 30, what are the populations at time t? After a long time, what is the ratio of rabbits to wolves?