1. $A^T A$ is at least positive semidefinite.
 - If A has independent columns, $A^T A$ is positive definite.
 - This means that $A x = 0$ has only the solution $x = 0$ (zero vector).
 - Reasoning: Use the energy test for positive semidefiniteness.
 - $x^T A^T A x \geq 0$ why?
 - $(A x)^T (A x) = \text{length squared of vector } A x$.
 - Automatically ≥ 0.
 - Zero energy when $A x = 0$. If A has independent columns then $x = 0$. Energy test passed.

2. Four big points of linear algebra
 A. Solve $K u = f$ by elimination.
 B. From independent vectors v_1, \ldots, v_r compute orthonormal vectors b_1, \ldots, b_r.
 C. $K x = A v$ - The eigenvectors diagonalize K.
 D. $A v = \Sigma u$ - The singular vectors v and u diagonalize any A.
 Singular vectors v's and u's diagonalize any A.
 We can choose v's = eigenvectors of $A A^T$ orthonormal
 u's = eigenvectors of $A^T A$ orthonormal
 $A = U \Sigma V^T$
If \(A \) was symmetric, then \(v^s = u^s = \text{eigenvectors of } A^t A \).

If \(A \) is rectangular we must go for \(A^t A \) instead. The same eigenvalues \(\lambda \geq 0 \).

Section 18.8: Applications of the SVD

This is not an official part of 18.085! Optional!

Applications to data matrices (rectangular)

samples \(x \) to

\[
A = \begin{bmatrix}
82 & 71 & 93 & 77 & 42 & 100 \\
\end{bmatrix}
\]

columns = students, each row gives each row gives

undergraduate grades in 1 course

Principal Component Analysis = \(\text{PCA} \)

Physics grades on row \(1 \), all students in \(1 \) course

smart choice

So that the

\[y \text{ times } A = \text{most important part of } A \]

\[A \times A = \text{most information} \]

\[\text{compressed into just 2 vectors } v \text{ and } u \]