Problem Set 2
Due: October 1, 2015

- Include a printed copy of this document with your solutions.
- Organize your work, in a neat and coherent way. Work without a clear ordering will receive very little credit.
- A correct answer, unsupported by calculations, explanation, or algebraic work will receive very little credit; an incorrect answer supported by substantially correct calculations and explanations will still receive partial credit.
- Box your final answer to each problem.

Name (Print):

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Problem 1 (S.C.): Let A be an invertible symmetric $n \times n$ matrix which admits a LU factorization. Recall that L is lower triangular, U is upper triangular and that $A = LU$. In other words, one can find n pivots for A without exchanging rows.
(1) Prove that there exists a diagonal matrix D such that $U = DL^T$
(2) Prove that A is definite positive if and only if $X^TAX > 0$ for all column vectors X

Problem 2 (S.C.): Let

$$M = \begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix}$$

where a is a real number. Find out for which values of a M is LU factorizable, PLU factorizable or non invertible. In the two first cases, give the LU (resp. PLU) factorization.

Problem 3 (T.F.): [Section 1.4 Problem 4]
(1) Solve the equation $-d^2u/dx^2 = \delta(x-a)$ analytically with fixed-free boundary conditions $u(0) = 0$ and $u'(1) = 0$.
(2) Draw the graphs of $u(x)$ and $u'(x)$.
(3) Solve the discrete problem with Matlab for $n = 2, 3, 4, \text{ and } 5$ (n is the number of interior points) and compare in one plot the results with the analytical solution when the load is located at $x = 1/3$. In the discrete problem, locate the load in the nearest node in each case.

Problem 4 (T.F.):
(1) Rigourously speaking, the delta function is not a function but a distribution (generalized
function): δ should be thought of as a linear functional on the space of smooth functions. That is, for any smooth function $f : \mathbb{R} \to \mathbb{R}$ vanishing at infinity, we assign the number $\delta(f) := f(0)$ to it. Formally, we can express this assignment by an integral

$$
\delta(f) = f(0) = \int_{-\infty}^{\infty} f(x) \delta(x) dx.
$$

(2) The delta function has a derivative δ' which is also a distribution. Find $\delta'(f)$ for any smooth function f vanishing at infinity by a formal integration by part argument (cf. Section 1.4 Problem 15).

(2) We may also define δ' by the following procedure. Let

$$
\rho_n(x) = \frac{n}{\sqrt{2\pi}} e^{-n^2 x^2 / 2}
$$

be the normal distribution $N(0, 1/n)$. Assuming that we can use ρ_n to approximate the delta function:

$$
\delta(x) = \lim_{n \to \infty} \rho_n(x)
$$

in the sense that

$$
\delta(f) = f(0) = \int_{-\infty}^{\infty} \delta(x) f(x) dx = \lim_{n \to \infty} \int_{-\infty}^{\infty} \rho_n(x) f(x) dx
$$

for any smooth function f vanishing at infinity. Then we can define δ' by setting

$$
\delta'(f) = \int_{-\infty}^{\infty} f(x) \delta'(x) dx := \lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \rho_n'(x) dx.
$$

Show that this definition agrees with the one in (1).

(3) Use MATLAB to check

$$
\delta(x) = \lim_{n \to \infty} \rho_n(x)
$$

by verifying

$$
f(0) = \lim_{n \to \infty} \int_{-\infty}^{\infty} \rho_n(x) f(x) dx
$$

numerically, for $f(x) = \sin(\cos(x))$ and for $n = 1, 2, \ldots, 100$.

Problem 5 (A.L.): [Section 1.5 Problem 27]. Explain why A and A^T have the same eigenvalues. Show that $\lambda = 1$ is always an eigenvalue when A is a Markov matrix, because each row of A^T adds to 1 and the vector (?) is an eigenvector of A^T.

Problem 6 (A.L.): Let Q be the following $n \times n$ matrix:

$$
\frac{1}{3} \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0 & 0 & 1 & 1
\end{bmatrix} = \frac{1}{3} \text{toeplitz}([1, 1, \text{zeros}(1, n - 3), 1]).
$$
This matrix is a Markov matrix (pardon, but here we use the convention that the row sum of Q is one, rather than the row sum of Q^T but in this case there is no difference). If μ is a vector on \mathbb{R}^n with positive components such that $\sum_{i=1}^n \mu_i = 1$, then μ represents a probability distribution on the set $\{1, \ldots, n\}$ (μ_i is the probability of picking i).

1. Show that the vector $Q\mu$ is also a probability distribution in the same way that μ is (check each component $(Q\mu)_i$ is non-negative and the sum of all the components is 1). Remark: In the theory of Markov chains Q is a transition matrix and μ is an initial distribution of the chain. $Q\mu$ represents the new probability distribution after one step of time.

2. Show that $Q^t\mu \to 1/n$ as $t \to \infty$ where 1 is the vector of ones. Remark: this means that if you run the Markov chain for large time, t, the chain converges to the uniform distribution on $\{1, \ldots, n\}$ i.e. each $1, \ldots, n$ is equally likely no matter what your initial distribution μ is (!). Hint: recall that Q symmetric implies $Q = \sum_{i=1}^N \lambda_i v_i v_i^T$, where λ_i are the eigenvalues of Q and v_i are the orthonormal basis of eigenvectors $Qv_i = \lambda_i v_i$. Problem 5 and part (1) should be useful.

3. Write some Matlab code to compute $\|Q^t\mu - 1/n\|$ for large t, where $\mu = e_1$ (i.e. the initial state of the Markov chain is deterministically at state 1). Recall that for a vector v, $\|v\| = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{v^T v}$. Please graph t on the x-axis and $\|Q^t\mu - 1/n\|$ on the y-axis. Let $n = 100$ in this case, and let t go from 1 to 100.