Deteminants. Cross Product.

February 5

Reading Material: From Simmons: 18.3. From Course Notes D.

Last time: Vectors. Vector arithmetic. Dot product.
Today: Cross product. Determinant.

2 Cross Product

Yesterday in your recitation you learned that the dot product of two vectors can be also expressed using the coordinates of the vectors, that is if \(\vec{A} = (a_1, a_2, a_3), \vec{B} = (b_1, b_2, b_3) \), are two vectors in 3D forming an angle \(\theta \), then

\[
\vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}| \cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3.
\]

Observe that there is an equivalent formula in 2D.

We now introduce a different kind of product of vectors. This one can only be defined for 3D vectors.

Definition 1. The Cross Product of two vectors \(\vec{A} \) and \(\vec{B} \) (only for 3D) is defined as

\[
\vec{A} \times \vec{B} = (|\vec{A}||\vec{B}| \sin \theta) \hat{n}
\]

where \(\hat{n} \) is the unit vector \(\perp \) to both \(\vec{A} \) and \(\vec{B} \) that satisfies the Right Hand Rule (RHR)\(^1\)

\(^1\)Think about a screw!
Handy Facts

1. $|\vec{A} \times \vec{B}| = |\vec{A}||\vec{B}||\sin \theta| = \text{area of parallelogram spanned by the vectors } \vec{A} \text{ and } \vec{B}$.

2. $\vec{A} \times \vec{B}$ by construction gives a vector orthogonal both to \vec{A} and \vec{B}. This will be very important in the future!

To compute $\vec{A} \times \vec{B}$ with coordinates we need a new mathematical tool: determinant.

3 Determinants

Definition 2. A $m \times n$ (m x n) matrix A is a table of scalars

$$
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & \cdots \\
 \vdots & \ddots \\
 a_{m1} & \cdots & a_{mn}
\end{pmatrix}
$$

This matrix has n columns and m rows. If $n = m$ we say that the matrix is square. If the matrix is square ($m = n$) then it has a magic # called determinant. We denote this number by

$$\det A \text{ or } |A|.$$

In the 1 x 1 case $A = (a)$ for some scalar a and we simply have

$$\det A = a.$$

In the 2 x 2 case

$$A = \begin{pmatrix}
 a_1 & a_2 \\
 b_1 & b_2
\end{pmatrix}$$

we define $\det A$ as

$$\det A = a_1b_2 - a_2b_1.$$

Exercise 1.

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} =$$

In the 3 x 3 case

$$A = \begin{pmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
\end{pmatrix}$$

then

$$\det A = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1 - a_2b_1c_3 - a_1b_3c_2$$

Exercise 2.

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 7 & 1 \\ 1 & 9 & 4 \end{vmatrix} =$$
Handy Facts

To calculate determinants the following facts are quite useful:

1. Exchanging 2 rows \rightarrow det flips sign
2. 2 (or more) identical rows in the matrix \rightarrow det $= 0$
3. add/subtract a row from another \rightarrow no change in det

Same considerations for columns.

Remark. You will see in recitation that determinants are useful in order to calculate volumes. In fact you will see that if

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

$\vec{A} = (a_1, a_2, a_3), \vec{B} = (b_1, b_2, b_3) \text{ and } \vec{C} = (c_1, c_2, c_3)$, then

$$|\det A| = \text{Volume of parallelogram spanned by } \vec{A}, \vec{B} \text{ and } \vec{C}.$$

Another calculation method: cofactor expansion method

Here I am going to compute the determinant of a 3×3 matrix by a cofactor expansion relative to the first row:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$= a_{11}m_{11} - a_{12}m_{12} + a_{13}m_{13} = a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}.$$

where

$m_{ij} = i, j \text{ minor } = \text{det after remove row } i \text{ col } j$

$c_{ij} = i, j \text{ cofactor } = (-1)^{i+j}m_{ij}$
Once the minors with respect to a certain row have been found then to compute the cofactors one just needs to remember the following distribution of signs on a 3×3 matrix:

\[
\begin{pmatrix}
 + & - & + \\
 - & + & - \\
 + & - & +
\end{pmatrix}
\]

Theorem 1. Computing $\vec{A} \times \vec{B}$

If $\vec{A} = (a_1, a_2, a_3)$ and $\vec{B} = (b_1, b_2, b_3)$ then

\[
\vec{A} \times \vec{B} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
 a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{vmatrix}.
\]

Exercise 3. Given two vectors $\vec{A} = (3, -2, 4)$ and $\vec{B} = (2, 1, -2)$ find a vector $\vec{N} \perp$ to both \vec{A} and \vec{B}.

Study Guide 1. The questions for this lecture are:

• What is the geometric meaning of the cross product?

• Is the determinant defined for rectangular matrices?

• How do you compute the volume of a parallelepiped spanned by three vectors?

• Two vectors are said to be parallel if one is a scalar (non zero) multiple of the other one. Are the two vectors in Ex. 3 parallel? If I had given two parallel vectors in Ex. 3, for example \(\vec{A} = (0, -2, 4) \) and \(\vec{C} = (0, -1, 2) \), what would have happened? Think about this question both in a geometric way (using a picture) and in an analytic way by computing the determinant.