1. Outline of the proof of Thue’s theorem

Theorem 1.1. (Thue) If \(\beta \) is an irrational algebraic number, and \(\gamma > \frac{\deg(\beta)+2}{2} \), then there are only finitely many integer solutions to the inequality

\[
|\beta - \frac{p}{q}| \leq |q|^{-\gamma}.
\]

By using parameter counting, we constructed polynomials \(P \) with integer coefficients that vanish to high order at \((\beta, \beta)\). The degree of \(P \) and the size of \(P \) are controlled.

If \(r_1, r_2 \) are rational numbers with large height, then we proved that \(P \) cannot vanish to such a high order at \(r = (r_1, r_2) \). For some \(j \) of controlled size, we have \(\partial_j^P(r) \neq 0 \). Since \(P \) has integer coefficients, and \(r \) is rational, \(|\partial_j^P(r)| \) is bounded below.

Since \(P \) vanishes to high order at \((\beta, \beta)\), we can use Taylor’s theorem to bound \(|\partial_j^P(r)| \) from above in terms of \(|\beta - r_1|\) and \(|\beta - r_2|\). So we see that \(|\beta - r_1|\) or \(|\beta - r_2|\) needs to be large.

Here is the framework of the proof. We suppose that there are infinitely many rational solutions to the inequality \(|\beta - r| \leq \|r\|^{-\gamma} \). Let \(\epsilon > 0 \) be a small parameter we will play with. We let \(r_1 \) be a solution with very large height, and we let \(r_2 \) be a solution with much larger height. Using these, we will prove that \(\gamma \leq \frac{\deg(\beta)+2}{2} + C(\beta)\epsilon \).

2. The polynomials

For each integer \(m \geq 1 \), we proved that there exists a polynomial \(P = P_m \in \mathbb{Z}[x_1, x_2] \) with the following properties:

1. We have \(\partial_j^P(\beta, \beta) = 0 \) for \(j = 0, ..., m - 1 \).
2. We have \(\deg_2 P \leq 1 \) and \(\deg_1 P \leq (1 + \epsilon)\frac{\deg(\beta)}{2}m \).
3. We have \(|P| \leq C(\beta, \epsilon)^m \).

3. The rational point

Suppose that \(r_1, r_2 \) are good rational approximations to \(\beta \) in the sense that

\[
\|\beta - r_i\| \leq \|r_1\|^{-\gamma}.
\]
Also, we will suppose that \(\| r_1 \| \) is sufficiently large in terms of \(\beta, \epsilon \), and that \(\| r_2 \| \) is sufficiently large in terms of \(\beta, \epsilon \), and \(\| r_1 \| \).

If \(l \geq 2 \) and \(\partial_1^j P(r) = 0 \) for \(j = 0, \ldots, l - 1 \), then we proved the following estimate:

\[
|P| \geq \min((2 \deg P)^{-1} \| r_1 \|^{\frac{l-1}{2}}, \| r_2 \|).
\]

Given our bound for \(|P| \), we get

\[
C(\beta, \epsilon)^m \geq \min(\| r_1 \|^{\frac{l-1}{2}}, \| r_2 \|).
\]

From now on, we only work with \(m \) small enough so that

\[
C(\beta, \epsilon)^m < \| r_2 \|.
\]

Therefore, \(\| r_1 \|^{\frac{l-1}{2}} \leq C(\beta, \epsilon)^m \). We assume that \(\| r_1 \| \) is large enough so that \(\| r_1 \|^\epsilon > C(\beta, \epsilon) \), and this implies that \(l \leq \epsilon m \). Therefore, there exists some \(j \leq \epsilon m \) so that \(\partial_1^j P(r) \neq 0 \).

Let \(\tilde{P} = (1/j!)(\partial_1^j P) \). The polynomial \(\tilde{P} \) has integer coefficients, and \(|\tilde{P}| \leq 2^{\deg P} |P| \).

Therefore, \(\tilde{P} \) obeys essentially all the good properties of \(P \) above:

1. We have \(\partial_1^j \tilde{P}(\beta, \beta) = 0 \) for \(j = 0, \ldots, (1-\epsilon)\epsilon m - 1 \).
2. We have \(\deg_2 \tilde{P} \leq 1 \) and \(\deg_1 \tilde{P} \leq (1+\epsilon)\frac{\deg(\beta)}{2} m \).
3. We have \(|\tilde{P}| \leq C(\beta, \epsilon)^m \).
4. We also have \(\tilde{P}(r) \neq 0 \).

Since \(\tilde{P} \) has integer coefficients, we can write \(\tilde{P}(r) \) as a fraction with a known denominator: \(q_1^{\deg_1 \tilde{P}} q_2^{\deg_2 \tilde{P}} \). Therefore,

\[
|\tilde{P}(r)| \geq \| r_1 \|^{-\deg_1 \tilde{P}} \| r_2 \|^{-\deg_2 \tilde{P}} \geq \| r_1 \|^{-\deg_1 \tilde{P} - (1+\epsilon)\frac{\deg(\beta)}{2} m \| r_2 \|^{-1}}.
\]

We make some notation to help us focus on what’s important. In our problem, terms like \(\| r_1 \|^m \) or \(\| r_2 \| \) are substantial, but terms like \(\| r_1 \|^{\epsilon m} \) or \(\| r_1 \| \) are minor in comparison. Therefore, we write \(A \lesssim B \) to mean \(A \leq \| r_1 \|^{am} \| r_1 \|^{b} \), for some constants \(a, b \) depending only on \(\beta \).

Recall that \(\| r_1 \|^\epsilon \) is bigger than \(C(\beta, \epsilon) \), so \(C(\beta, \epsilon)^m \lesssim 1 \). Our main inequality for this section is

\[
|\tilde{P}(r)| \gtrsim \| r_1 \|^{-\frac{\deg(\beta)}{2} m \| r_2 \|^{-1}}.
\]

4. Taylor’s theorem estimates

We recall Taylor’s theorem.
Theorem 4.1. If \(f \) is a smooth function on an interval, then \(f(x + h) \) can be approximated by its Taylor expansion around \(x \):
\[
f(x + h) = \sum_{j=0}^{m-1} \frac{1}{j!} \partial_j f(x) h^j + E,
\]
where the error term \(E \) is bounded by
\[
|E| \leq \left(\frac{1}{m!} \right) \sup_{y \in [x,x+h]} |\partial_m f(y)|.
\]

In particular, if \(f \) vanishes to high order at \(x \), then \(f(x + h) \) will be very close to \(f(x) \).

Corollary 4.2. If \(Q \) is a polynomial, and \(Q \) vanishes at \(x \) to order \(m \geq 1 \), and if \(|h| \leq 1 \), then
\[
|Q(x + h)| \leq C(x)^{\deg Q} |Q|h^m.
\]

Proof. We see that \((1/m!) \partial^m Q \) is a polynomial with coefficients of size \(\leq 2^{\deg Q} |Q| \).
We evaluate it at a point \(y \) with \(|y| \leq |x| + 1 \). Each monomial has norm \(\leq 2^{\deg Q} |Q|(|x| + 1)^{\deg Q} \), and there are \(\deg Q \) monomials. \(\square \)

Let \(Q(x) = \tilde{P}(x, \beta) \). The polynomial \(Q \) vanishes to high order \((1 - \epsilon)m \) at \(x = \beta \), and \(|Q| \leq C(\beta, \epsilon)^m \).

From the corollary we see that
\[
|\tilde{P}(r_1, \beta)| \leq C(\beta, \epsilon)^m |\beta - r_1|^{(1-\epsilon)m}.
\]

On the other hand, \(\partial_2 \tilde{P} \) is bounded by \(C(\beta, \epsilon)^m \) in a unit disk around \((\beta, \beta)\), and so
\[
|\tilde{P}(r_1, r_2) - \tilde{P}(r_1, \beta)| \leq C(\beta, \epsilon)^m |\beta - r_2|.
\]

Combining these, we see that
\[
|\tilde{P}(r)| \lesssim |\beta - r_1|^{(1-\epsilon)m} + |\beta - r_2| \lesssim \|r_1\|^{-\gamma m} + \|r_2\|^{-\gamma}.
\]

5. **Putting it together**

As long as \(\|r_1\|^\epsilon > C(\beta, \epsilon) \) and \(\|r_2\| > C(\beta, \epsilon)^m \), we have proven the following inequality:
\[
\|r_1\|^{-\deg Q m} \|r_2\|^{-1} \lesssim \|r_1\|^{-\gamma m} + \|r_2\|^{-\gamma}
\]

Now we can choose \(m \). As \(m \) increases, the right-hand side decreases until \(\|r_1\|^m \sim \|r_2\| \), and then the \(\|r_2\|^{-\gamma} \) term becomes dominant. Therefore, we choose \(m \) so that
\[
\|r_1\|^m \leq \|r_2\| \leq \|r_1\|^{m+1}.
\]
We see that \(\|r_2\| \geq \|r_1\|^m > C(\beta, \epsilon)^m \), so the assumption about \(r_2 \) and \(m \) above is satisfied. The inequality becomes
\[
\|r_1\|^{-\frac{\deg(\beta) - \gamma m}{2}} \lesssim \|r_1\|^{-\gamma m}.
\]
Multiplying through to make everything positive, we get
\[
\|r_1\|^{\gamma m} \lesssim \|r_1\|^\frac{\deg(\beta) + 2}{2} m.
\]
Unwinding the \(\lesssim \), this actually means
\[
\|r_1\|^\gamma m \leq \|r_1\|^\frac{b + a \epsilon + \deg(\beta) + 2}{2} m.
\]
(If we had been more explicit, we could have gotten specific values for \(a, b \), but it doesn’t matter much.)

Taking the logarithm to base \(\|r_1\| \) and dividing by \(m \), we get
\[
\gamma \leq \frac{(b/m) + a \epsilon + \deg(\beta) + 2}{2}.
\]

If \(\|r_2\| \) is large enough compared to \(\|r_1\| \), then \((1/m) \leq \epsilon \), and we have \(\gamma \leq \frac{(a + b)\epsilon + \deg(\beta) + 2}{2} \). Taking \(\epsilon \to 0 \) finishes the proof.