Real analysis, Optional problems and projects

If you’re interested in further exploring some of the topics in the course, here are some problems you could think about. They are a little meatier than the problems on the recent problem sets, but they are also approachable. I would be happy to talk about them, and if you write up a solution or discussion, I would be happy to read it.

1. (Exploring linear operators) Let T be a linear operator. Define $E(T)$ to be the set of pairs $(p,q) \in [1,\infty]^2$ so that $\|Tf\|_q \lesssim \|f\|_p$. Define $IE(T)$ to be the inverses, the set of pairs $(1/p,1/q)$ so that $\|Tf\|_q \lesssim \|f\|_p$. The interpolation theorem implies that $IE(T)$ is a convex subset of $[0,1]^2$. Which convex subsets could it be?

 a.) Given a pair (p,q), can you find a linear operator T so that $E(T)$ is exactly the point (p,q)?

 b.) Given (p_0,q_0) and (p_1,q_1), can you find a linear operator T so that $IE(T)$ is exactly the
 closed line segment from $(1/p_0,1/q_0)$ to $(1/p_1,1/q_1)$?

 c.) Given a convex set $K \subset [0,1]^2$, can you find a linear operator T so that $IE(T) = K$?

2. (Using the Calderon-Zygmund theorem) The Calderon-Zygmund inequality has important applications in elliptic PDE. Here is one example. The proof involves CZ and some ideas from the elliptic section of our course.

 Theorem 1. For any dimension n, there is a constant $\epsilon(n) > 0$ so that the following holds. Suppose that $|a_{ij} - \delta_{ij}| < \epsilon(n)$, and let $Lu = \sum_{ij} a_{ij} \partial_i \partial_j u$. Suppose that $Lu = 0$ on B_1. Then for any $\alpha < 1$, the following estimate holds:

 $$\|u\|_{C^{1,\alpha}(B_1/2)} \leq C(\alpha,n)\|u\|_{C^{0}(B_1)}.$$

3. (Decay of solutions to the wave equation) Suppose that u is a solution of the wave equation on $\mathbb{R}^n \times \mathbb{R}$ with initial data $u[0] = (f,g)$. Suppose that f,g are supported in the unit ball with $\|f,g\|_{C^{n+1}} \leq 1$. Prove the following decay estimate for u:

 $$|u(x,t)| \leq C_n(1 + |t|)^{-\frac{n+1}{2}}.$$

 We discussed how to approach this problem in class, using the Fourier transform and some difficult integration by parts. (You might also want to look up ‘stationary phase’ for a description of how this works.) To keep the computations simpler, you may want to assume $g = 0.$