QUASI-ISOGENIES OF *p*-DIVISIBLE GROUPS VIJAY SRINIVASAN

Mostly I will follow the section from [RZ] §2.1-§2.12 but there are several added details. The talk will have three technical goals:

- develop background on formal schemes,
- collect properties of quasi-isogenies of *p*-divisible groups, and
- define the moduli functor of quasi-isogenies.

Next week's talk will cover the *representability* of the moduli functor.

1. Review of formal schemes

Definition 1.1. Let $(A, \{I_{\alpha}\})$ be a topological ring together with a set of ideals that form a fundamental system of neighborhoods of 0. We say that A is:

- pre-admissible if there is an open ideal I of A (called an *ideal of definition*) such that each I_{α} contains some power of I,
- *pre-adic* if it is pre-admissible and the ideal I can be chosen so that $\{I^n\}$ forms a fundamental system of neighborhoods of 0,
- *admissible* if it is pre-admissible and complete,
- *adic* if it is pre-adic and complete.

Example 1.2. If k is a perfect field, then W(k) is adic with ideal of definition (p). If k is not perfect, then W(k) is admissible but not adic (it is no longer true that $W_n(k) \cong W(k)/(p^n)$).

Proposition 1.3. Let A be a preadmissible ring with fundamental system of ideal neighborhoods $\mathcal{I}_1 \supseteq \mathcal{I}_2 \supseteq \cdots$ and ideal of definition **I**. Suppose the following hold:

- For every r, $\mathbf{I}/(\mathbf{I}^2 + \mathcal{I}_r)$ is of finite type, and
- For every m, the descending chain

$$\mathcal{I}_1 + \mathbf{I}^m \supseteq \mathcal{I}_2 + \mathbf{I}^m \supseteq \cdots$$

stabilizes.

Then the completion of A is adic.

The above proposition may seem random, but it will be important in describing the formal scheme representing the moduli functor.

Definition 1.4. Let $(A, \{I_{\alpha}\})$ be a preadmissible ring. Define the functor Spf $A : \operatorname{Sch}^{\operatorname{opp}} \to$ Set via

$$\operatorname{Spf} A(Z) \coloneqq \varinjlim_{\alpha} \operatorname{Hom}(Z, \operatorname{Spec} A/I_{\alpha})$$

This is a Zariski sheaf when restricted to the qcqs schemes (but not for all schemes since colimit doesn't commute with arbitrary products). If A is adic, we say Spf A is an *affine* formal scheme. If \mathscr{F} is a Zariski sheaf on the qcqs schemes, we call \mathscr{F} a formal scheme if it has an open covering by affine formal schemes.

Lemma 1.5. Suppose A is pre-adic. Then

• *it is equivalent to write*

$$\operatorname{Spf} A(Z) = \varinjlim_n \operatorname{Hom}(Z, \operatorname{Spec} A/I^n)$$

• Spf A defines the same functor on Sch^{opp} as the locally ringed space

 $(|\operatorname{Spec} A/I|, \varprojlim_n \mathscr{O}_{\operatorname{Spec} A}/\mathscr{I}^n).$

Definition 1.6. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of formal schemes. We say that f is of finite type (resp. étale, resp. smooth) if for any scheme Z and morphism $Z \to \mathcal{Y}$, we have $\mathcal{X} \times_{\mathcal{Y}} Z$ is representable by a scheme and $\mathcal{X} \times_{\mathcal{Y}} Z \to Z$ is of finite type (resp. étale, resp. smooth).

Lemma 1.7. For any formal scheme \mathcal{X} , there is a reduced scheme \mathcal{X}_{red} with a morphism $\mathcal{X}_{red} \to \mathcal{X}$ such that the natural map

 $\operatorname{Hom}(Z, \mathcal{X}_{\operatorname{red}}) \to \operatorname{Hom}(Z, \mathcal{X})$

is bijective for any reduced scheme Z.

Proof. If $\mathcal{X} = \operatorname{Spf} A$ where I is a radical ideal of definition, set $\mathcal{X}_{red} \coloneqq \operatorname{Spec} A/I$. Globally, patch these together.

Definition 1.8. A formal scheme \mathcal{X} is called *locally Noetherian* if it is locally isomorphic to Spf A where A is an adic noetherian ring. A morphism $\mathcal{X} \to \mathcal{Y}$ of locally noetherian schemes is called *formally (locally) of finite type* if $\mathcal{X}_{red} \to \mathcal{Y}_{red}$ is (locally) of finite type.

Remark. The condition "of finite type" is very strict, because it requires all pullbacks by schemes to be representable. The condition "formally of finite type" is more relaxed; for example Spf $k[[x]] \rightarrow$ Spec k is formally of finite type but not of finite type.

2. Isogenies and quasi-isogenies

Definition 2.1. An *isogeny* $f : X \to Y$ of *p*-divisible groups over a scheme *S* is an epimorphism in the category of *S*-groups such that ker *f* is a finite locally free *S*-group scheme.

Proposition 2.2. Let X be a p-divisible group over a connected scheme S. Then every finite locally free S-subgroup scheme of X is the kernel of an isogeny out of X.

Proof. Let H be a finite locally free S-group representable by a scheme and $H \hookrightarrow X$ a monomorphism in the category of S-groups. We want to show that X/H is a p-divisible group. It is automatic that p is an epimorphism, so it is enough to check that (X/H)[k] is finite locally free for every k.

Let *H* have order p^n . Then an argument of Deligne shows that *H* is killed by p^n , so $H \hookrightarrow X[n]$. For any $m \ge n$ we have an exact sequence

$$0 \longrightarrow X[m]/H \longrightarrow (X/H)[m] \longrightarrow H \longrightarrow 0$$

where the last map is multiplication by p^m . Observe that X[m]/H is finite locally free since it is a quotient of finite locally free groups. Then (X/H)[m] is finite locally free, being an extension of finite locally free groups. Finally for any k, we write

$$0 \longrightarrow (X/H)[n] \longrightarrow (X/H)[n+k] \longrightarrow (X/H)[k] \longrightarrow 0$$

which implies that (X/H)[k] is finite locally free.

Let X and Y be p-divisible groups over a base scheme S. Consider the Zariski sheaf $\underline{\text{Hom}}_{S-\text{grp}}(X,Y)$. Observe that this is a \mathbb{Z}_p -module (either by precomposition or by post-composition; these are the same since we are considering homomorphisms of groups). It is torsion-free as a \mathbb{Z}_p -module because [p] is an epimorphism on either X or Y.

Definition 2.3. A quasi-isogeny between X and Y is an element

$$\alpha \in \Gamma(S, \underline{\operatorname{Hom}}_{S-\operatorname{grp}}(X, Y) \otimes \mathbb{Q})$$

such that for every point $s \in S$, there is a Zariski neighborhood $U \ni s$ and an integer n for which $(p^n \alpha)|_U$ is an isogeny. We write $\text{Qisg}_S(X, Y)$ for the set of quasi-isogenies.

Lemma 2.4. Quasi-isogenies admit quasi-inverses, that is, for any $\alpha \in \text{Qisg}_S(X, Y)$, there is $\beta \in \text{Qisg}(Y, X)$ such that $\beta \circ \alpha = \text{id}_X$.

Proof sketch. We give an informal argument on the level of points. It's enough to show that if $f: X \to Y$ is an isogeny, there is an isogeny $g: Y \to X$ such that $f \circ g = [p^n]$ for some n. We can choose n such that ker $f \subseteq X[n]$. Then define $g: Y \to X$ via $g(y) = [p^n]f^{-1}(y)$, which is well-defined since elements of $f^{-1}(y)$ differ by elements of X[n]. Finally, ker g fits into the exact sequence

$$0 \longrightarrow \ker f \longrightarrow X[n] \longrightarrow \ker g \longrightarrow 0$$

and so ker g is finite locally free.

Corollary 2.5. Suppose $\alpha \in \text{Qisg}_S(X, Y)$ and $p^n \alpha$ is an isogeny. Then α itself is an isogeny iff $(p^n \alpha)|_{X[n]} = 0$.

Proposition 2.6 (Drinfeld rigidity property). Assume p is locally nilpotent on S. Let \overline{S} be a closed subscheme of S cut out by locally nilpotent sheaf of ideals \mathcal{I} . Then the natural map $\operatorname{Qisg}_{S}(X,Y) \to \operatorname{Qisg}_{\overline{S}}(X_{\overline{S}},Y_{\overline{S}})$ is a bijection.

I won't prove this here; for a full proof see Andrè's book "Period mappings and differential equations" Theorem 2.2.3 and for the needed background on formal Lie groups see Katz's article "Serre-Tate local moduli." To show this map is a bijection, one must make use of the fact that p-divisible groups are automatically formally smooth when p is locally nilpotent on the base scheme S.

Lemma 2.7. Let $\alpha : X \to Y$ be a quasi-isogeny. Then the functor $F : \operatorname{Sch}^{\operatorname{opp}} \to \operatorname{Set}$ given by

 $F(T) = \{ \phi \in \operatorname{Hom}(T, S) \mid \phi^* \alpha \text{ is an isogeny} \}$

is representable by a closed subscheme of S.

Proof. The condition that a homomorphism be an isogeny can be checked Zariski locally. So it suffices to consider the case where $p^n \alpha$ is an isogeny for a fixed n. Now

 $\phi^* \alpha$ is an isogeny $\iff \phi^*(p^n \alpha)$ kills $\phi^* X(n)$

as a consequence of Corollary 2.5. Now view $p^n \alpha$ as a global section of $\underline{\text{Hom}}_{\mathcal{O}_S}(X(n), Y(n))$, with zero locus Z. Then $\phi^*(p^n \alpha|_{X(n)}) = 0$ iff ϕ factors through Z.

VIJAY SRINIVASAN

3. Defining the moduli functor

We will digress a bit and discuss isocrystals. Throughout, let L be a perfect field, W := W(L) its Witt vectors, and $K_0 := W[\frac{1}{p}]$ the fraction field.

Definition 3.1. An isocrystal (N, \mathbf{F}) is called *decent* if it is spanned as a K_0 -vector space by elements n satisfying $\mathbf{F}^s n = p^r n$ for some r, s > 0 (allowed to vary over different n).

We say a p-divisible group \mathbb{X} over L is *decent* if its associated isocrystal is decent.

Observe that as a consequence of the slope decomposition, every isocrystal over an algebraically closed field is decent. Apparently, we will care most about the case $L = \overline{\mathbb{F}}_p$; when we specialize to this case we will not have to worry about decency.

Recall that an object $S \in \text{Nilp}_W$ is a formal scheme over Spf W. We write \overline{S} for the subscheme cut out by the ideal sheaf $p\mathcal{O}_S$.

Definition 3.2. Fix a decent *p*-divisible X over *L*. We define the functor \mathcal{M} : Nilp_W \rightarrow Set via so that $\mathcal{M}(S)$ consists of the set of pairs $\{(X, \rho)\}/\sim$, where X is a *p*-divisible group over S and $\rho \in \text{Qisg}_{\overline{S}}(X_{\overline{S}}, X_{\overline{S}})$, where $(X, \rho) \sim (X', \rho')$ iff there is an isomorphism $f : X \to X'$ making the following diagram commute

Remark. Drinfeld rigidity implies that a pair (X, ρ) does not have any automorphisms; indeed if X = X' and $\rho = \rho'$ in the diagram above, then $f_{\overline{S}}$ is the identity map and so must lift to the identity map on X. A *p*-divisible group X without the extra data of ρ , however, possesses many nontrivial automorphisms (e.g. any element of \mathbb{Z}_p^{\times}).

We can give an alternative description of this moduli functor. By G–M deformation theory, we can choose a lift \widetilde{X} over Spf W such that the special fiber of \widetilde{X} is X. Then by Drinfeld rigidity, $\mathcal{M}(S)$ is given by the set of pairs $\{(X, \tilde{\rho})\}/\sim$ where X is a p-divisible group over S and $\tilde{\rho} \in \operatorname{Qisg}_{S}(\widetilde{X}_{S}, X)$.

Theorem 3.3. The functor \mathcal{M} is representable by a formal scheme, locally formally of finite type over Spf W.

This is the result that will be the focus of the next talk. The last thing I will justify is why we can reduce to the case of L being a finite field.

Proposition 3.4. Any decent isocrystal N over L is base changed from a finite field.

Proof. It suffices to consider the case where N has a single slope λ and is generated by elements n with $\mathbf{F}^s n = p^r n$ for some fixed r, s > 0, so we assume this. Let V be a \mathbb{Q}_p -rational subspace of N such that $N = V \otimes_{\mathbb{Q}_p} K_0$. Let $G = \operatorname{GL}(V)$, so that there is some $b \in B(G)$ for which N is the isocrystal associated to b. Now we claim that since N is decent, b is decent. Indeed, $s\nu(p)$ acts as p^r on N for some suitable s, r with $r/s = \lambda$. It follows that b is decent (with $(b\sigma)^s = s\nu(p)\sigma^s$).

Since b is decent, it is defined over $W(\mathbb{F}_{p^s})[\frac{1}{p}]$, and so N is defined over $L \cap \mathbb{F}_{p^s}$.

This is convenient, because over a finite field, an isocrystal N is decent iff $\mathbf{F}^s = p^r$ on each slope component N_{λ} for some sufficiently large s, r > 0 with $r/s = \lambda$. Indeed, just pick s large enough so that σ^s fixes the ground field.