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Today, I will focus on the remaining part of Chapter 2 of [1].
We begin by recall our moduli problem

1 Statement of Moduli Problem
Theorem 1.1. Let X be a decent p-divisible group over a perfect field L, W = W (L), consider the
moduli functor M : NilpW → Sets, where

M(S) = {(X, ρ)|ρ : X×L S̄ 99K X ×S S̄}/ ∼=

Where (X1, ρ1) ∼= (X2, ρ2) if and only if ρ1 ◦ ρ−1
2 lifts to an isomorphism X2 → X1.

Then M is representable by a formal scheme over SpfW , which is formally of locally of finite
type, and each irreducible component of Mred is projective over L.

Remark. • Let J(Qp) be the group of quasi-isogeny on X, acts on the right on M, by (X, ρ) ·
γ = (X, ρ ◦ γ). Hence acts on geometric spaces and their cohomology groups constructed
from M.

• Drinfeld rigidity lemma implies Aut(X, ρ) = {id}

• The moduli functor M = MX only depends on isogeny class of X.

In order to understand the “discrete part” of M, we introduce

Definition 1.2. (1) If f : X → Y is an isogeny of p-divisible groups over S. Then the order of
ker f is ph, for some Z≥0 valued, locally constant function h. If h is constant, we call it the
height of f .

(2) f : X 99K Y be a quasi-isogeny. Assume pnf is an isogeny, we define the height of f by

ht(f) = ht(pnf)− ht(pn)

For example, the height of multiplication by p is the height of X.

Remark. For isogenies, one has ht(f1 ◦ f2) = ht(f1) + ht(f2). Thus the height of a quasi-isogeny
is well-defined, and the above relation also holds for quasi-isogenies.
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Height is a discrete invariant of a quasi isogeny. Define M(h)(S) = {(X, ρ)|ht(ρ) = h}.
Then M(h) is an open and closed functor of M(h) is an open and closed subfunctor of M.
And M =

⊔
M(h). Thus, it suffices to show each M(h) is representatble. Or one can define

M̃ =
⊔htX−1

h=0 M(h), and it suffices to show M̃ is representable.

2 Some examples
We focus on L = L̄ and X is a height 2, dim 1 p divisible group. We study the correponding functor.

Up to isogeny, they are classified by associated isocrystal, by Dieudonné-Manin classification,
they are classified by Newton polygons from (0, 0) to (2, 1).

Remark. We have the following facts: for a p-divisible group G over a perfect field k of character-
istic p

• G is étale ⇐⇒ D(G)Q is isoclinic of slope 0

• G is formal(defined later) ⇐⇒ D(G)Q has no zero slope.

Now we consider associated M for these X.

Example 2.1. When X = E[p∞], where E supersingular ellipitic curve over L. We will show that
as a formal scheme

M =
⊔
h∈Z

Spf(W [[x]])

Remark. Mred = M(L) is disjoint union of points

We will show a more general result:

Proposition 2.2. If X comes from a formal group of dim 1, height n over L = L̄, then

MX =
⊔
h∈Z

Spf(W (L)[[x1, · · · , xn]]

Some background:

Definition 2.3. An n -dimensional commutative formal group law over ring A = a power
series F ∈ A[[X1, · · · , Xn, Y1, · · · , Yn]] which satisfies some formal group axioms.

For example, we have Ĝa = X + Y, Ĝm = X + Y +XY , or completion of abelian scheme over
A along zero section, or Lubin-Tate formal group appeared in local class field theory.

Definition 2.4. We say F is p-divisible if [p] : A[[X]] → A[[X]] is finite locally free. The rank of
[p] is ph for some h. h is called height.

One has the following result of Tate and Messing

Theorem 2.5 (Tate-Messing). The category of p-divisible formal group fully faithfully embeds in
to category of p-divisible groups, which preserve height and dimension.
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The essential image above is called formalp-divisible groups.
We will mainly focus on 1-dim formal group law. When F is a 1-dim formal group law over a

field of characteristic p, the notions above can be characterized in an easier way:

Proposition 2.6. For 1-dim formal group law F over a field of characteristic p, then F is p-divisible
if and only if [p] ̸= 0. In this case, [p] = g(Xph

) for some g with g′(0) ̸= 0. Such h is the height of
F .

We [p] = 0, we also say F has height ∞.

Theorem 2.7. If L = L̄, then for each height h ∈ {1, 2, · · · ∞}, there exists a unique (up to
isomorphism) 1-dim formal group F0 of height h over L.

Fact: End(F ) = Zph [Π],Πh = p,Πa = σ(a)Π.
We can consider the following Lubin-Tate deformation functor: Fix F above. Define CL, the

category of local Artin rings with a fixed surjection A � L
Consider the following deformation functor:

D : CL → Sets

which sends A � L to isomorphism classes of {F, ι}, where F is a formal group law over A and ι
is an isomorphism F ⊗A L ∼= F0.

One has the following theorem of Lubin and Tate

Theorem 2.8. D is representable by Spf(W (k)[[x1, · · · , xn−1]]

Now we find its relationship with R-Z moduli problem

Lemma 2.9. For 1-dim p divisible formal group, quasi-isogeny of height 0 is equivalent to an
isomorphism

Proof. Self quasi-isogeny is D×, and both morphisms above corresponds to O×
D.

Now if R is artinian local ring, SpecR ∈ NilW .

Proposition 2.10. D(R) ∼= M(0)(R) canonically.

Proof. M(0)(R) consists of quasi-isogeny of height 0 on R/p, which is equivalent to quasi-isogeny
of height 0 on L, by Drinfeld rigidity, thus by the lemma, which is equivalent to an isomorphism.
And by a result of Tate, X is p-divisible over R ∈ CL, then X is connected if and only if X is
formal. Thus, M(0)(R) is equivalent to D(R)

Remark. • We didn’t prove M(0) is representable by ⊔ SpfW (k)[[x1, · · · , xn−1]] above. (Since
we need to compare to other S ∈ NilW \CL. But once we know M representable and is formally
of locally of finite type, and M is a point, then we can conclude M(0) = D.

• Since Π is an isogeny of height 1, thus for each height, we have isogeny of height 1, thus M
is disjoint union of SpfW (k)[[x1, · · · , xn−1]], parametrized by height.

Example 2.11. Let’s briefly talk about another example, where X = E[p∞], for an ordinary elliptic
curve E. In this case, M =

⊔
Z2 Ĝm, which is a restatement of theory of Serre-Tate coordinates.
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3 Proof strategy
Recall that, in the previous week, we have reduced to the case where L is a finite field, and X lifts
to X̃ on SpfW (L).

The proof strategy is

(1) Approximate M by “controllable” subfunctors Mn of M

(2) Show that each Mn is representable by a formal scheme, and underlying reduced schemes are
eventually the same.

(3) Take M as same space + “limit of sheaves”, then show it is a formal scheme, which really
represents M.

Here are some definitions related to “controllable” ones,

Definition 3.1. (1) Define Mn(S) = {(X, ρ) ∈ M(S)|pnρis an isogeny}.

(2) For quasi-isogeny α : X 99K Y , define q(α) = ht(pnα), where n is smallest integer such that
pnα is an isogeny,

(3) Define d(α) = q(α) + q(α−1).

(4) Define Mc(S) = {(X.ρ) ∈ M(S)|d(ρs) ≤ cfor any s ∈ S}.

d is like kind of a metric:

Lemma 3.2. d(α) + d(β) ≥ d(α+ β)

Proof. Easy, reduced to additivity of height function.

Now we can state our strategy more clearly:

(1) Each Mn is representable.

(2) Mn
c is representable.

(3) Underlying reduced scheme of Mn
c are eventually the same

(4) Mc is representable.

(5) M is representable.

4 Some details of the proof
Proposition 4.1. Mn is representable

Proof. Define Mn,m = {(X, ρ)|pnρis an isogeny of heightm}, which is an open and closed subfunc-
tor of M. Suffices to show each Mn,m is representable.

But give such ρ is equivalent to give an isogeny of height m, which corresponds to locally free
subgroup of X̃[m]S of order pn. Thus it is representable by a closed subscheme of Grassmanian
(consists of Hopf ideals, which is defined by a polynomial relation). And, we can also take p-adic
completion of this scheme, since p is locally nilpotent, thus after taking completion, it represents
the same functor.
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Proposition 4.2. Mn
c is representable.

Lemma 4.3. For α : X → Y an isogeny, {s ∈ S|d(αs) ≤ c} is closed.

Proof. Not hard, it follows from the subsets of S where a given quasi-isogeny is an isogeny, which
is a proposition proved last time.

Proof of 4.2:Consider the universal p-divisible group on Mn, since the sets of points where
d(αs) ≤ c is closed, taking completion of it suffices.

The last three steps are more complicated, which is based on the key lemma Prop 2.17 in [1].
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