Formulation of moduli functors of quasi-isogenies, representability

Weixiao Lu

July 28, 2021

Today, I will focus on the remaining part of Chapter 2 of [1]. We begin by recall our moduli problem

1 Statement of Moduli Problem

Theorem 1.1. Let X be a decent *p*-divisible group over a perfect field L, W = W(L), consider the moduli functor $\mathcal{M} : \operatorname{Nilp}_W \to \operatorname{Sets}$, where

$$\mathcal{M}(S) = \{(X,\rho) | \rho : \mathbb{X} \times_L \bar{S} \dashrightarrow X \times_S \bar{S} \} / \cong$$

Where $(X_1, \rho_1) \cong (X_2, \rho_2)$ if and only if $\rho_1 \circ \rho_2^{-1}$ lifts to an isomorphism $X_2 \to X_1$.

Then \mathcal{M} is representable by a formal scheme over Spf W, which is formally of locally of finite type, and each irreducible component of \mathcal{M}_{red} is projective over L.

- **Remark.** Let $J(\mathbb{Q}_p)$ be the group of quasi-isogeny on X, acts on the right on \mathcal{M} , by $(X, \rho) \cdot \gamma = (X, \rho \circ \gamma)$. Hence acts on geometric spaces and their cohomology groups constructed from \mathcal{M} .
 - Drinfeld rigidity lemma implies $Aut(X, \rho) = {id}$
 - The moduli functor $\mathcal{M} = \mathcal{M}_{\mathbb{X}}$ only depends on isogeny class of \mathbb{X} .

In order to understand the "discrete part" of \mathcal{M} , we introduce

- **Definition 1.2.** (1) If $f: X \to Y$ is an isogeny of *p*-divisible groups over *S*. Then the order of ker *f* is p^h , for some $\mathbb{Z}_{\geq 0}$ valued, locally constant function *h*. If *h* is constant, we call it the **height** of *f*.
- (2) $f: X \to Y$ be a quasi-isogeny. Assume $p^n f$ is an isogeny, we define the **height** of f by

$$\operatorname{ht}(f) = \operatorname{ht}(p^n f) - \operatorname{ht}(p^n)$$

For example, the height of multiplication by p is the height of X.

Remark. For isogenies, one has $ht(f_1 \circ f_2) = ht(f_1) + ht(f_2)$. Thus the height of a quasi-isogeny is well-defined, and the above relation also holds for quasi-isogenies.

Height is a discrete invariant of a quasi isogeny. Define $\mathcal{M}(h)(S) = \{(X, \rho) | \operatorname{ht}(\rho) = h\}$. Then $\mathcal{M}(h)$ is an open and closed functor of $\mathcal{M}(h)$ is an open and closed subfunctor of \mathcal{M} . And $\mathcal{M} = \bigsqcup \mathcal{M}(h)$. Thus, it suffices to show each $\mathcal{M}(h)$ is representable. Or one can define $\widetilde{\mathcal{M}} = \bigsqcup_{h=0}^{\operatorname{ht} \mathbb{X}-1} \mathcal{M}(h)$, and it suffices to show $\widetilde{\mathcal{M}}$ is representable.

2 Some examples

We focus on $L = \overline{L}$ and X is a height 2, dim 1 p divisible group. We study the corresponding functor.

Up to isogeny, they are classified by associated isocrystal, by Dieudonné-Manin classification, they are classified by Newton polygons from (0,0) to (2,1).

Remark. We have the following facts: for a *p*-divisible group G over a perfect field k of characteristic p

- G is étale $\iff D(G)_{\mathbb{Q}}$ is isoclinic of slope 0
- G is formal(defined later) $\iff D(G)_{\mathbb{Q}}$ has no zero slope.

Now we consider associated \mathcal{M} for these \mathbb{X} .

Example 2.1. When $\mathbb{X} = E[p^{\infty}]$, where *E* supersingular ellipitic curve over *L*. We will show that as a formal scheme

$$\mathcal{M} = \bigsqcup_{h \in \mathbb{Z}} \operatorname{Spf}(W[[x]])$$

Remark. $\mathcal{M}_{red} = \mathcal{M}(L)$ is disjoint union of points

We will show a more general result:

Proposition 2.2. If X comes from a formal group of dim 1, height n over $L = \overline{L}$, then

$$\mathcal{M}_{\mathbb{X}} = \bigsqcup_{h \in \mathbb{Z}} \operatorname{Spf}(W(L)[[x_1, \cdots, x_n]])$$

Some background:

Definition 2.3. An *n*-dimensional commutative formal group law over ring A = a power series $F \in A[[X_1, \dots, X_n, Y_1, \dots, Y_n]]$ which satisfies some formal group axioms.

For example, we have $\widehat{\mathbb{G}_a} = X + Y$, $\widehat{\mathbb{G}_m} = X + Y + XY$, or completion of abelian scheme over A along zero section, or Lubin-Tate formal group appeared in local class field theory.

Definition 2.4. We say F is p-divisible if $[p] : A[[X]] \to A[[X]]$ is finite locally free. The rank of [p] is p^h for some h. h is called height.

One has the following result of Tate and Messing

Theorem 2.5 (Tate-Messing). The category of *p*-divisible formal group fully faithfully embeds in to category of *p*-divisible groups, which preserve height and dimension.

The essential image above is called **formal***p*-divisible groups.

We will mainly focus on 1-dim formal group law. When F is a 1-dim formal group law over a field of characteristic p, the notions above can be characterized in an easier way:

Proposition 2.6. For 1-dim formal group law F over a field of characteristic p, then F is p-divisible if and only if $[p] \neq 0$. In this case, $[p] = g(X^{p^h})$ for some g with $g'(0) \neq 0$. Such h is the height of F.

We [p] = 0, we also say F has height ∞ .

Theorem 2.7. If $L = \overline{L}$, then for each height $h \in \{1, 2, \dots, \infty\}$, there exists a unique (up to isomorphism) 1-dim formal group F_0 of height h over L.

Fact: End(F) = $\mathbb{Z}_{p^h}[\Pi], \Pi^h = p, \Pi a = \sigma(a)\Pi.$

We can consider the following Lubin-Tate deformation functor: Fix F above. Define C_L , the category of local Artin rings with a fixed surjection $A \rightarrow L$

Consider the following deformation functor:

$$\mathcal{D}: \mathcal{C}_L \to \text{Sets}$$

which sends $A \to L$ to isomorphism classes of $\{F, \iota\}$, where F is a formal group law over A and ι is an isomorphism $F \otimes_A L \cong F_0$.

One has the following theorem of Lubin and Tate

Theorem 2.8. \mathcal{D} is representable by $\operatorname{Spf}(W(k)[[x_1, \cdots, x_{n-1}]])$

Now we find its relationship with R-Z moduli problem

Lemma 2.9. For 1-dim p divisible formal group, quasi-isogeny of height 0 is equivalent to an isomorphism

Proof. Self quasi-isogeny is D^{\times} , and both morphisms above corresponds to \mathcal{O}_D^{\times} .

Now if R is artinian local ring, $\operatorname{Spec} R \in \operatorname{Nil}_W$.

Proposition 2.10. $\mathcal{D}(R) \cong \mathcal{M}(0)(R)$ canonically.

Proof. $\mathcal{M}(0)(R)$ consists of quasi-isogeny of height 0 on R/p, which is equivalent to quasi-isogeny of height 0 on L, by Drinfeld rigidity, thus by the lemma, which is equivalent to an isomorphism. And by a result of Tate, X is p-divisible over $R \in \mathcal{C}_L$, then X is connected if and only if X is formal. Thus, $\mathcal{M}(0)(R)$ is equivalent to $\mathcal{D}(R)$

- **Remark.** We didn't prove $\mathcal{M}(0)$ is representable by $\sqcup \operatorname{Spf} W(k)[[x_1, \cdots, x_{n-1}]]$ above. (Since we need to compare to other $S \in \operatorname{Nil}_W \setminus \mathcal{C}_L$. But once we know \mathcal{M} representable and is formally of locally of finite type, and \mathcal{M} is a point, then we can conclude $\mathcal{M}(0) = \mathcal{D}$.
 - Since Π is an isogeny of height 1, thus for each height, we have isogeny of height 1, thus \mathcal{M} is disjoint union of Spf $W(k)[[x_1, \cdots, x_{n-1}]]$, parametrized by height.

Example 2.11. Let's briefly talk about another example, where $\mathbb{X} = E[p^{\infty}]$, for an ordinary elliptic curve E. In this case, $\mathcal{M} = \bigsqcup_{\mathbb{Z}^2} \widehat{\mathbb{G}_m}$, which is a restatement of theory of Serre-Tate coordinates.

3 Proof strategy

Recall that, in the previous week, we have reduced to the case where L is a finite field, and X lifts to \widetilde{X} on Spf W(L).

The proof strategy is

- (1) Approximate \mathcal{M} by "controllable" subfunctors \mathcal{M}_n of \mathcal{M}
- (2) Show that each \mathcal{M}_n is representable by a formal scheme, and underlying reduced schemes are eventually the same.
- (3) Take \mathcal{M} as same space + "limit of sheaves", then show it is a formal scheme, which really represents \mathcal{M} .

Here are some definitions related to "controllable" ones,

Definition 3.1. (1) Define $\mathcal{M}^n(S) = \{(X, \rho) \in \mathcal{M}(S) | p^n \rho \text{ is an isogeny} \}.$

(2) For quasi-isogeny $\alpha : X \dashrightarrow Y$, define $q(\alpha) = \operatorname{ht}(p^n \alpha)$, where n is smallest integer such that $p^n \alpha$ is an isogeny,

(3) Define
$$d(\alpha) = q(\alpha) + q(\alpha^{-1})$$
.

(4) Define $\mathcal{M}_c(S) = \{ (X, \rho) \in \mathcal{M}(S) | d(\rho_s) \le c \text{ for any } s \in S \}.$

d is like kind of a metric:

Lemma 3.2. $d(\alpha) + d(\beta) \ge d(\alpha + \beta)$

Proof. Easy, reduced to additivity of height function.

Now we can state our strategy more clearly:

- (1) Each \mathcal{M}_n is representable.
- (2) \mathcal{M}_c^n is representable.
- (3) Underlying reduced scheme of \mathcal{M}_{c}^{n} are eventually the same
- (4) \mathcal{M}_c is representable.
- (5) \mathcal{M} is representable.

4 Some details of the proof

Proposition 4.1. \mathcal{M}^n is representable

Proof. Define $\mathcal{M}^{n,m} = \{(X,\rho) | p^n \rho \text{ is an isogeny of height} m\}$, which is an open and closed subfunctor of \mathcal{M} . Suffices to show each $\mathcal{M}^{n,m}$ is representable.

But give such ρ is equivalent to give an isogeny of height m, which corresponds to locally free subgroup of $\widetilde{X}[m]_S$ of order p^n . Thus it is representable by a closed subscheme of Grassmanian (consists of Hopf ideals, which is defined by a polynomial relation). And, we can also take p-adic completion of this scheme, since p is locally nilpotent, thus after taking completion, it represents the same functor.

Proposition 4.2. \mathcal{M}_c^n is representable.

Lemma 4.3. For $\alpha: X \to Y$ an isogeny, $\{s \in S | d(\alpha_s) \le c\}$ is closed.

Proof. Not hard, it follows from the subsets of S where a given quasi-isogeny is an isogeny, which is a proposition proved last time.

Proof of 4.2:Consider the universal *p*-divisible group on \mathcal{M}^n , since the sets of points where $d(\alpha_s) \leq c$ is closed, taking completion of it suffices.

The last three steps are more complicated, which is based on the key lemma Prop 2.17 in [1].

References

[1] Rapoport-Zink. Period Spaces of p-divisible Groups.