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1 Overview

We discuss local models Mloc for the Rapoport-Zink spaces M̆ of [RZ96, §3], discussed in
Murilo’s talk. Each local model Mloc will be a closed subscheme of a product of Grassmanians
over OE (notation reviewed in Section 2), defined by “linear algebraic” conditions suitable
for explicit computation. We give several example computations of local models in Section
3.2.

Following [RZ96, §3.26-3.35], we will see in Section 4 that the structure of M̆ is controlled,

formally étale locally, by its associated local model Mloc. More precisely, let M̂loc denote
the p-adic completion of Mloc ×OE

OĔ . We will show that M̆ may be covered by étale

neighborhoods, each of which is formally locally of finite type and formally étale over M̂loc

(conventions for terminology regarding formal schemes are reviewed in Appendix A). Here

are some example consequences of this comparison between M̆ and M̂loc.

• If Mloc is flat over SpecOE then M̆ is flat over Spf OĔ .

• If Mloc is smooth over SpecOE , then M̆ is formally smooth over Spf OĔ (see Proposi-
tion A.5).

• Suppose the formal scheme M̆ is p-adic, i.e. p is the ideal of definition of M̆ (e.g. in
the Drinfeld example [RZ96, Corollary 3.63]). Let T be any locally Noetherian scheme
over Spf OĔ (i.e. a locally Noetherian OĔ-scheme on which p is locally nilpotent). Let

M̆T = M̆ ×Spf OĔ
T and let M̂loc

T = M̂loc ×Spf OĔ
T . Then M̆T and M̂loc

T are locally

of finite type T -schemes, and M̆T may be covered by étale neighborhoods which are
étale over M̂loc

T . Thus, for every point on M̆T , there exists a point on M̂loc
T with

isomorphic local ring for the étale topology (strict Henselization of the usual local

ring). In particular, if M̂loc
T has property P then M̆T also has property P, where P

can be any of the properties: regular, reduced, normal, Cohen-Macaulay (see [Stacks,
Section 025L] or [Stacks, Section 07QL]).

2 Review of Rapoport-Zink spaces and other notation

I first fix some notation and review the setup introduced in the previous talk (Murilo’s),
with some small modifications. The material in this section may be found in [RZ96, Section
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3], in greater generality. For an adic ring O, we write Sch/ Spf O for the category of locally
Noetherian schemes over Spf O. Previously, for a complete discrete valuation ring O of mixed
characteristic (0, p), we wrote NilO for the category of schemes on which p is locally nilpotent.
Then NilO is the same as Sch/ Spf O. Given S ∈ Obj(Sch/Spf O) for O a complete discrete
valuation ring of mixed characteristic (0, p), we write S := S ×SpecO SpecO/(p).

Rapoport-Zink data of type EL and PEL are summarized below. Unlabeled items corre-
spond to both the EL and PEL case. Items labeled (EL) or (PEL) apply only for (EL) or
(PEL) cases respectively.
Rapoport-Zink data:
Fix data (EL) (F,B,OB , V,L, µ, b) or (PEL) (F,B,OB , V,L, µ, b, ∗, ( , )) with

• F/Qp a finite extension of fields

• B a finite-dimensional central simple algebra over F

• OB a maximal Zp-order in B

◦ There necessarily exists a central division algebra D over F , such that B ∼= Mn(D)
and OB = Mn(OD), where OD is the unique maximal order of D. Fix such
identifications, and let $ ∈ OD be a uniformizer. Embed D in Mn(OD) as
diagonal matrices.

◦ (PEL) ∗ an anti-involution b 7→ b∗ on B which sends OB to itself

• V a finite-dimensional B-module

◦ (PEL) ( , ) a non-degenerate alternating Qp-bilinear pairing, such that (bv, w) =
(vb∗w) for all b ∈ B and v, w ∈ V

• L = (Λi)i∈Z a chain (· · · ( Λ−1 ( Λ0 ( Λ1 ( · · · ) of OB-stable Zp-lattices Λi ⊆ V ,
such that Λ ∈ L implies aΛ ∈ L for a ∈ B× normalizing OB; view L as a category
with objects Λi and arrows given by inclusions

◦ Under the identification OB ∼= Mn(OD), the normalizer of OB is D× · O×B .

◦ A possible chain is (· · · ( $Λ ( Λ ( $−1Λ ( · · · ) for a fixed OB-stable Zp-lattice
Λ, which is equivalent to the “simple Rapoport-Zink data” of Murilo’s talk with
one lattice; in this case the functor M̆ below does not depend on the choice of Λ
(see [RZ96, pg. 78]).

◦ Note: Suppose a ∈ B× normalizes OB. Given a OB-module M , write Ma for
the OB-module with underlying abelian group M , and with action of x ∈ OB
on Ma given by a−1xa acting on M . Multiplication by a induces a periodicity
isomorphism θa : Λa → aΛ.

◦ (PEL) The chain L is required to be self-dual, in the sense that Λ ∈ L implies
Λ∨ ∈ L, where Λ∨ = {v ∈ V : (v, w) ∈ Zp for w ∈ Λ}.

• (EL) G := GLB(V ), which is an algebraic group over Qp

• (PEL) G := GSpB(V ), which is an algebraic group over Qp

• µ : Gm,Qp
→ GQp

a co-character

• b ∈ G(K0) for K0 = Q̆p

2



• E the field of definition of the conjugacy class of µ (also called the “Shimura field” or
“reflex field”), with ring of integers OE ; here E/Qp is a finite extension of fields

• Ĕ the completion of the maximal unramified algebraic extension of E, with ring of
integers OĔ ; the residue field is k = Fp

satisfying the conditions

• the isocrystal (V ⊗Qp
Q̆p, b(id ⊗ σ)) has slopes in the interval [0, 1]; here σ is the

Frobenius automorphism of Q̆p

• (µ, b) is admissible

• there is a weight decomposition V ⊗Qp
Qp = V0 ⊕ V1 for the action of µ, where V0 has

weight 0 and V1 has weight 1

• the composition Gm,Qp

µ−→ GQp

c−→ Gm,Qp
where c is the similitude factor for G acting

on V with respect to the pairing ( , ), i.e. c(g)(v, w) = (gv, gw) for g ∈ G(R),
v, w ∈ V ⊗Qp

R for Qp-algebras R.

Rapoport-Zink spaces: Fix Rapoport-Zink data of either PEL or EL type. Suppose there
exists a p-divisible group X over SpecFp whose isocrystal is identified with the isocrystal

(V ⊗Qp
Q̆p, b(id ⊗ σ)). Fix such an X and such an identification of isocrystals; this is a

“framing object”. Last time, we discussed a functor

M̆ : (Sch/ Spf OĔ)op → Set

such that, for S ∈ Obj(Sch/Spf OĔ), an element of M̆(S) consists of tuples (XΛ, ρΛ)Λ∈L
(in both the EL and PEL cases) up to a suitable notion of isomorphism; with

• Λ 7→ XΛ a functorial map from lattices Λ ∈ L to p-divisible groups XΛ over S (i.e.
Λ ↪→ Λ′ gives a morphism XΛ → XΛ′)

• ρΛ : XS 99K XΛ,S a quasi-isogeny.

We required several conditions in the definition of M̆.

• The induced action of OB on XΛ (by Drinfeld rigidity, as in Vijay’s talk), a priori by
quasi-isogenies, is given by isogenies.

• (Kottwitz condition) We have an identity of polynomial functions

detOS
(a; LieXΛ) = detQp

(a;V0)

for all a ∈ OB and all Λ ∈ L (see [RZ96, §3.23(a)]).

• There exist polarizations XΛ → X∨Λ suitably compatible with the polarized isocrystal

(V ⊗Qp
Q̆p, b(id⊗ σ)).

• Certain compatibility relations between data (XΛ, ρΛ) for varying Λ ∈ L are satisfied.

See [RZ96, Definition 3.21] and [RZ96, §3.23(c),(d)] for further details.
We saw that M̆ is representable by a formal scheme, which is formally locally of finite

type over Spf OĔ . We call M̆ a Rapoport-Zink space, of type EL or PEL.
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3 Local models

Fix a Rapoport-Zink space M̆ as in Section 2, of type EL or PEL. In this section, we
construct the associated local model Mloc. We give several explicit examples of local models
in Section 3.2.

3.1 Definition

We define the local models Mloc functorially first, and treat the representability afterwards.

Definition 3.1 ([RZ96, Definition 3.27]). The local model associated to M̆ is the functor

Mloc : (Sch/SpecOE)op → Set

such that, for an OE-scheme S, an element of Mloc(S) is a set of surjections

(ϕΛ : Λ⊗Zp
OS � tΛ)Λ∈L

with each tΛ a finite locally free OS-module, satisfying the following conditions.

(i) The OB-action on each Λ⊗Zp
OS descends (necessarily uniquely) to tΛ along ϕΛ.

(ii) The surjections ϕΛ are functorial in Λ; i.e. if Λ ⊆ Λ′ is an inclusion of lattices in L, the
map of OB ⊗Zp OS-modules Λ ⊗Zp OS → Λ′ ⊗Zp OS descends (necessarily uniquely)
to a map tΛ → tΛ′ along ϕΛ and ϕΛ′ . Moreover, if a ∈ B× normalizes OB, the
periodicity isomorphism θa ⊗ id : Λ⊗Zp

OS → aΛ⊗Zp
OS descends to an isomorphism

of OB ⊗Zp
OS-modules taΛ

∼−→ taΛ (necessarily uniquely) along ϕΛ and ϕaΛ.1

(iii) (Kottwitz condition) We have an identity of polynomial functions

detOS
(a; tΛ) = detQp

(a;V0)

for all a ∈ OB and all Λ ∈ L (see [RZ96, §3.23(a)]).

(iv) (PEL) For each Λ, the composition

t∨Λ
ϕ∨Λ−−→ (Λ⊗Zp OS)∨

( , )−−−→
∼

Λ∨ ⊗Zp OS
ϕΛ∨−−−→ tΛ∨

is zero.

Remark 3.2. It may be more precise to view Mloc as being associated to the Rapoport-Zink
data underlying M̆, rather than M̆ itself. Furthermore, the definition of Mloc does not
depend on the element b ∈ G(K0) in the Rapoport-Zink data.

Remark 3.3. The flatness conjecture of Rapoport-Zink for local models [RZ96, pg. 95] has
turned out to be false. This led Pappas and Rapoport to introduce a modified notion of local
model. The local models of Definition 3.1 are the original ones defined by Rapoport-Zink,
and are sometimes called “naive local models”. See the survey [PRS13].

1This periodicity condition appears in the definition of local models given in [SW20, Definition 21.6.8].
They remark that the condition seems to have been overlooked by Rapoport and Zink in [RZ96, Definition
3.27].
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Remark 3.4. Condition (iii) of Definition 3.1, i.e. the Kottwitz condition, implies that
rank tΛ = dimV0 for all Λ. Indeed, for any a ∈ Z×p , the Kottwitz condition implies

arank tΛ = adimV0

for all Λ. In fact, if OB = Zp, we see that the rank condition rank tΛ = dimV0 for all Λ is
equivalent to the Kottwitz condition.

I claim that the local model Mloc is represented by a projective OE-scheme. Indeed,
recall the Grassmanian functor Gr(d, n) : Schop → Set; an S-point of Gr(d, n) is a surjection
O⊕nS � E for a locally free OS-module of rank d (up to isomorphisms in the variable E). In
the situation of Definition 3.1, each ϕΛ is an S-point of Gr(dimV0,dimV ).

Suppose Λ0 ( Λ1 ( · · · ( Λr = $−1Λ0 is a “period” of the chain Λ (as in [RZ96, pg.
70]). The map

Mloc
∏r
i=0 Gr(dimV0,dimV )

(ϕΛ)Λ∈L (ϕΛ0
, . . . , ϕΛr−1

)

exhibits Mloc as a subfunctor of a product of Grassmanians (upon choosing a basis for each
Λi). Since each Gr(dimV0,dimV ) is a projective OE-scheme, it suffices to check that each
of the conditions (i) - (iv) in Definition 3.1 is a closed condition in

∏r
i=0 Gr(dimV0,dimV ).

Each of the conditions is “linear algebraic”, e.g. condition (i) is the statement that each
kerϕΛ is stable under the action of OB. I omit the explicit check (as do Rapoport-Zink)
that each of (i) - (iv) is a closed condition. However, we will see how conditions (i) - (iv)
work in concrete examples in the next section.

3.2 Examples

In this section, we calculate a few concrete examples of local models Mloc. As in Remark
3.2, the local models Mloc do not depend on the choice of b ∈ G(K0) in the formulation of
Rapoport-Zink data. We thus do not describe b in this section. Some of the examples below
generalize under the same name beyond the situations considered.

Example 3.5 (Lubin-Tate example). See [PRS13, §2.1].
This is an example of EL type. For this Rapoport-Zink data, we take F = B = Qp, so

OB = Zp. Let n ≥ 1, V = Qnp , Λ = Znp , and L = (pmΛ)m∈Z. Take µ(t) = (t, . . . , t, 1), so
that the 0 weight-space V0 ⊆ V has dimension 1. The reflex field is E = Qp. As described
in Section 3.1, we view Mloc as a subfunctor

Mloc ↪→ Gr(1, n) ∼= Pn−1.

We need to describe each of the conditions (i) - (iv) of Definition 3.1 on Pn−1. Since OB = Zp,
condition (i) in Definition 3.1 is automatic. Condition (ii) is then also automatic in this
situation, since L consists of only one lattice up to scalar. Condition (iv) does not apply,
since the data is of EL type. Since OB = Zp, condition (iii) (the Kottwitz condition) is
equivalent to the rank condition of Remark 3.4. This is again automatic on Pn−1. So the
above map Mloc → Pn−1 is an isomorphism.

More generally, if we consider a co-character µ(t) = (t, . . . , t, 1, . . . , 1) such that the
0 weight-space V0 has dimension d ≥ 1, we find Mloc ∼−→ Gr(d, n) by a nearly identical
argument.
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In this case, the local model Mloc is smooth, so Proposition A.5 below will imply that the
Rapoport-Zink spaces M̆ associated to this Rapoport-Zink data (for any choice of b ∈ G(K0))
are formally smooth over Spf OĔ .

Example 3.6 (A PEL example). See [PRS13, §2.4].
This is an example of PEL type. For this Rapoport-Zink data, we set F = B = Qp, so

OB = Zp. Let n ≥ 1, V = Q2n
p , Λ = Z2n

p , and L = (pmΛ)m∈Z. Take µ(t) = (t, . . . , t, 1, . . . , 1),
so that the 0 weight-space V0 ⊆ V has dimension n. Let ( , ) be the standard symplectic
form on V . The anti-involution ∗ on B is necessarily trivial. The reflex field is E = Qp. As
described in Section 3.1, we view Mloc as a subfunctor

Mloc ↪→ Gr(n, 2n)

We need to describe each of the conditions (i) - (iv) of Definition 3.1 on Gr(n, 2n). Since
OB = Zp, condition (i) in Definition 3.1 is automatic. Condition (ii) is then also automatic
in this situation, since L consists of only one lattice up to scalar. Since OB = Zp, condition
(iii) (the Kottwitz condition) is equivalent to the rank condition of Remark 3.4. This
is again automatic on Gr(n, 2n). We observe that condition (iv) is precisely the closed
condition defining the Lagrangian Grassmanian LGr(n, 2n) inside Gr(n, 2n). Hence we have
Mloc ∼−→ LGr(n, 2n).

In this case, the local model Mloc is smooth, so Proposition A.5 below will imply that the
Rapoport-Zink spaces M̆ associated to this Rapoport-Zink data (for any choice of b ∈ G(K0))
are formally smooth over Spf OĔ .

Example 3.7 (Iwahori example). See [PRS13, Example 2.4] or [Hai05, §4.4].
This is an example of EL type. For this Rapoport-Zink data, we set F = B = Qp, so

OB = Zp. Let n ≥ 2, and set V = Qnp . Let µ(t) = (t, . . . , t, 1) so that the 0 weight-space
V0 ⊆ V has dimension 1. The reflex field is E = Qp. We impose a nontrivial level structure.
Consider a chain L which has a period of length n, given by

Λ0 ( Λ1 ( · · · ( Λn = p−1Λ0

where the inclusions are index p. It may be helpful to think of index p inclusions of lattices
arising from degree p-isogenies of p-divisible groups.

We compute Mloc for n = 2. In this case, we view Mloc as a subfunctor

Mloc P1 × P1

(ϕΛ)Λ∈L (ϕΛ0 , ϕΛ1).

Since OB = Zp, condition (i) in Definition 3.1 is automatic (in the sense that no additional
equations are imposed on P1 × P1, for defining Mloc). Similarly, the Kottwitz condition
(condition (iii)) is equivalent to the rank condition of Remark 3.4 because OB = Zp, so no
additional equations are imposed from condition (iii) either. So Mloc

We need to describe each of the conditions (i) - (iv) of Definition 3.1 on Gr(d, 2d). Since
OB = Zp, condition (i) in Definition 3.1 is automatic. Condition (ii) is then also automatic
in this situation, since L consists of only one lattice up to scalar. Since OB = Zp, condition
(iii) (the Kottwitz condition) is equivalent to the rank condition of Remark 3.4. Writing the
inclusion Λ0 ↪→ Λ1 in Smith normal form, we see that the conditions defining Mloc inside
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P1 × P1 are the conditions.

ϕΛ1 ◦
(
p 0
0 1

)
(kerϕΛ0) = 0

ϕΛ0
◦
(

1 0
0 p

)
(kerϕΛ1

) = 0.

Equivalently, Mloc(S) consists of commutative diagrams

O⊕2
S O⊕2

S O⊕2
S

tΛ0 tΛ1 tΛ0

p 0

0 1



ϕΛ0

1 0

0 p



ϕΛ1
ϕΛ0

(up to isomorphisms, in the variables tΛ0
and tΛ1

), for tΛ0
and tΛ1

locally free OS-modules
of rank 1.

If (x0, x1) and (y0, y1) are homogeneous coordinates on the first and second copies of P1

in P1×P1 respectively, we compute that Mloc is defined by the equation px1y0 = x0y1 inside
P1 × P1. Thus Mloc is not smooth over Zp = OE . The generic fiber is isomorphic to P1

Qp
,

but the special fiber consists of two copies of P1
Fp

meeting at a point. The neighborhood

x1 6= 0 and y0 6= 0 of the singularity in special fiber is of the form SpecFp[x, y]/(xy).
In this case, the local model Mloc is not smooth.

Example 3.8 (Drinfeld example). See [RZ96, 3.76].
This is an example of EL type. Let d ≥ 2. Let F = Qp. Let F̃ = Qpd be the unique

degree d unramified extension of Qp. The corresponding ring of integers is OF̃ = Zpd . Let
B = D be the division algebra

D = F̃ 〈$〉/($ − p,$x− σx$ for all x ∈ Qpd) with

OD = OF̃ 〈$〉/($ − p,$x−
σx$ for all x ∈ Qpd)

where x 7→ σx is Frobenius on F̃ . Set V = D, with action by D via left multiplication. Set
Λ = OD and L = ($mΛ)m∈Z.

We know D is split by Qpd , i.e. Qpd⊗QpB
∼= Md(Qpd). In this case, G×QpQpd = GLop

n,Q
pd

,

acting on VQ
pd

by right multiplication. Let µ : Gm,Q
pd
→ GLop

n,Q
pd

be the co-character

µ(t) = (t, . . . , t, 1). Here V0 ⊆ VQ
pd

has dimension d.

We compute Mloc ×OE
Zpd .2 For S ∈ Obj(Sch/Zpd), we know Mloc(S) consists of a

surjection ϕΛ : Λ⊗Zp
OS � tΛ, where tΛ is locally free of rank d = dimV0 (by condition (iii)

and Remark 3.4), satisfying the conditions imposed by Definition 3.1.
If condition (i) holds for ϕΛ, the condition (ii) is then automatic, since L consists of

only one lattice Λ up to scalar. Moreover, if condition (i) holds (so that the statement of
condition (iii) makes sense), we saw in the previous lecture (Remark 4.3 in Murilo’s notes,

2Note Zpd is contained in OĔ , so we are still able to compute Mloc ×OE
OĔ . In Section 4 below, the

comparison to Rapoport-Zink spaces M̆ is through Mloc ×OE
OĔ .
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or [RZ96, 3.23(b)]), that the Kottwitz condition (condition (iii)) in this situation is then
equivalent to the requirement that

tΛ =
⊕

i∈Z/dZ

tiΛ

where each tΛi is a locally free OS-module of rank 1, on which OF̃ acts as

OF̃ Zpd

x σ−ixσi

where the right-hand side acts as scalars on each tiΛ.
Putting this together, we see that an S-point of Mloc is a set of OF̃ ⊗Zp

OS-linear
surjections

(ϕi : Λ⊗Zp OS � ti)i∈Z/dZ

where

(a) Each ti is a locally free OS-module of rank 1

(b) OF̃ acts on ti by the scalar OF̃ → Zpd given by x 7→ σ−ixσi as above

(c) For each solid diagram

Λ⊗Zp
OS Λ⊗Zp

OS

ti ti+1

×$

ϕi ϕi+1

there is a dotted arrow (necessarily unique) which makes the diagram commute.

The original data ϕΛ and tΛ may be recovered by setting ϕΛ =
⊕
ϕi and tΛ =

⊕
ti.

Moreover, we know Λ⊗Zp OS is a free OF̃ ⊗Zp OS-module with basis 1, $, . . . ,$d−1. Let
Γ ⊆ Λ be the free Zp-module with basis 1, $, . . . ,$d−1. We see that specifying (ϕi)i∈Z/dZ
as above is the same as specifying a set of surjections of locally free OS-modules

(ϕ′i : Γ⊗Zp
OS → ti)i∈Z/dZ

where ti is locally free of rank 1, such that

(c’) For each solid diagram

Γ⊗Zp OS Γ⊗Zp OS

ti ti+1

×$

ϕ′i ϕ′i+1

there is a dotted arrow (necessarily unique) which makes the diagram commute.

So we may view Mloc ×OE
Zpd as the subfunctor

Mloc ⊗OE
Zpd

∏
i∈Z/dZ Pd−1

ϕΛ (ϕ′i)i∈Z/dZ

8



subject to the condition imposed by (c’) above, i.e.

ϕ′i+1($ · kerϕ′o) = 0 for i ∈ Z/dZ.

The basis 1, $, . . . ,$d−1 of Γ gives homogeneous coordinates (x
(i)
0 , . . . , x

(i)
d−1) on the i-th

copy of Pd−1 in the product
∏
i∈Z/dZ Pd−1. Condition (c’) may be expressed as a closed

condition in terms of these coordinates. For example, when d = 2, we find that Mloc×OE
Zpd

is the closed subscheme of P1 × P1 defined by the equation

px
(0)
0 x

(1)
0 = x

(0)
1 x

(1)
1 .

In this case, Mloc is not smooth. Moreover, we see that Mloc ×OE
Zpd is isomorphic (over

Zpd) to the local model for the n = 2 Iwahori case from Example 3.7.

3.3 Unramified Rapoport-Zink data

Definition 3.9 (Unramified Rapoport-Zink data). See [RZ96, 3.82].
Consider EL type Rapoport-Zink data (F,B,OB , V,L, µ, b) as in Section 2. We say the

data is unramified if F is an unramified extension of Qp, we have B = Mn(F ), and L =
($mΛ)m∈Z for some fixed lattice Λ. For PEL Rapoport-Zink data (F,B,OB , V,L, µ, b, ∗, ( , ))
as in Section 2 we say the data is unramified if it satisfies the conditions for unramified EL
data in addition to the requirement Λ = Λ∨.

Remark 3.10. In the more general setup of [RZ96, §3], the definition of unramified expands
to include the situation where F is a product of unramified field extensions Fi of Qp, B is
a product of matrix algebras Mni(Fi), and L is a product of lattice chains as appearing in
the preceding definition.

For the following theorem, see [RZ96, 3.82].

Theorem 3.11 (Kottwitz). For unramified Rapoport-Zink data, the Rapoport-Zink space
M̆ is formally smooth over Spf OĔ.

Example 3.12. The Lubin-Tate example (Example 3.5) and the PEL example (Example
3.6) of the preceding section arose from unramified Rapoport-Zink data. We saw explicitly
in these cases that M̆ must be formally smooth over Spf OĔ . On the other hand, the
Iwahori example (Example 3.7) and the Drinfeld example (Example 3.8) arose from ramified
Rapoport-Zink data. For n = 2 (Iwahori) and d = 2 (Drinfeld) respectively, we saw that the
associated local models Mloc are not smooth.

4 Relating local models and Rapoport-Zink spaces

In this section, we primarily follow the exposition of [RZ96, Section 3.26-3.35]. Terminology
regarding formal schemes is reviewed in Appendix A.

We write M̆loc := Mloc ×SpecOE
SpecOĔ . We also write M̂loc for the p-adic completion

of M̆loc. Since Mloc is a projective OE-scheme, we know that M̂loc is formally locally of
finite type over Spf OĔ .
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In this section, we will compare M̆ and M̂loc as mentioned in the introduction, Section
1. This will be accomplished via the local model diagram

N

M̆ M̂loc

π ϕ̃

s

which will have the following properties

• Each of N , M̆, and M̂loc are locally Noetherian formal schemes, formally of finite type
over Spf OĔ , and each of s, π, ϕ̃ are formally locally of finite type

• The map π is smooth, and the map ϕ̃ is formally smooth.

• The map s is a section of π, defined on a suitable étale neighborhood of of M̆

• For a suitable smooth affine group scheme G over Zp, π is a GSpf OĔ
-torsor and ϕ̃ is

GSpf OĔ
-equivariant.

• We may cover M̆ by étale neighborhoods admitting sections s, so that each map ϕ̃ ◦ s
is formally étale.

These properties imply the consequences claimed in Section 1. The rest of this section
describes how to set up the local model diagram, and how to establish the described properties
above. Suppose S ∈ Obj(Sch/ Spf OĔ). In the Danielle’s talk, we discussed the crystal
D(X) associated to a p-divisible group X over S. This is sheaf on the crystalline site over S,
and we write D(X)S′ for its value on an object (S → S′) of the crystalline site over S (with
S → S′ understood). See also [Mes72] or [Wan09, §1].

Definition 4.1. Define a functor N : (Sch/ Spf OĔ)op → Set such that an element of N (S)

is set of triples (XΛ, ρΛ, γΛ)Λ∈L, where (XΛ, ρΛ)Λ∈L ∈ M̆(S) and γΛ is an isomorphism of
OB ⊗Zp

OS-modules

γΛ : MΛ
∼−→ Λ⊗Zp OS

where MΛ := D(XΛ)S . There are further compatibility conditions on the trivializations
γΛ which I omit (e.g. functoriality in Λ, compatibility with periodicity isomorphisms, and
compatibility with polarizations in the PEL case); see [RZ96, Definition 3.28].

We will see shortly that N is represented by a locally Noetherian formal scheme. There
is a forgetful map

N M̆

(XΛ, ρΛ, γΛ)Λ∈L (XΛ, ρΛ)Λ∈L.

π

Lifting an element (XΛ, ρΛ) ∈ M̆(S) to an element of N (S) is the same as giving a trivial-
ization γΛ : MΛ

∼−→ Λ ⊗Zp OS (of (polarized) multi-chains). By [RZ96, Theorem 3.11] and

[RZ96, Theorem 3.16], such trivializations exist étale locally on M̆ (in fact, Zariski locally
in the EL case). This implies that π admits sections s étale locally.

Next, consider the functor Sch/Zp → Set given by

S 7→ Aut({Λ⊗Zp
OS})
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where the automorphisms are as chains (polarized, in the PEL case) in the sense of [RZ96,
Definition 3.6] or [RZ96, Corollary 3.7]. This functor is representable by a smooth affine
group scheme G over Zp, by [RZ96, Theorem 3.11] and [RZ96, Theorem 3.16].

Example 4.2. For EL Rapoport-Zink data with L = ($mL)m∈Z, we have G = GLOB
(Λ).

Observe that G acts simply transitively on the fibers of N π−→ M̆. Since π admits sections
étale locally, we conclude that N is a G-torsor. Using affine-ness of G, we see that N is
representable by a locally Noetherian formal scheme. Indeed, over a scheme, fpqc torsors for
affine group schemes are representable by schemes, essentially by descent for affine morphisms
[Stacks, Section 0244]. See also [Mil80, Theorem III.4.3]. A small (omitted) argument shows
that, over a locally Noetherian formal scheme, an étale torsor for a finite type affine group
scheme must be representable by a locally Noetherian formal scheme. Since G is smooth, we
also find that π is a smooth morphism of locally Noetherian formal schemes (in particular,
formally locally of finite type).

Next, we define

N M̆loc

(XΛ, ρΛ, γΛ) (Λ⊗Zp
OS

γ−1
Λ−−→
∼

MΛ � LieXΛ)

ϕ̃

where LieXΛ is tΛ in the local model definition (Definition 3.1), and where the surjection
MΛ � LieXΛ arises from the canonical exact sequence

0→ (LieX∨Λ )∨ →MΛ → LieXΛ → 0

(see [Wan09, §1]). Since N is a formal scheme over Spf OĔ , we see that ϕ̃ factors through

the p-adic completion M̂loc of M̆loc. Since N and M̂loc are both formally locally of finite
type over the locally Noetherian formal scheme Spf OĔ , we know that ϕ̃ is also formally

locally of finite type. Moreover, the group G acts on M̆ loc as (ϕΛ)Λ∈L 7→ (ϕΛ ◦ g−1)Λ∈L for
g ∈ G.

The key-input for further study of ϕ̃ is Grothendieck-Messing theory, e.g. as in [Wan09,
§1].

Theorem 4.3 (Grothendieck-Messing). Let S be a scheme on which p is locally nilpotent.
Let S ↪→ S′ be nilpotent thickening, with locally nilpotent divided powers. Let X be a p-
divisible group over S. Giving a p-divisible group X ′ over S′ which lifts X is equivalent to
giving a surjection of finite locally free O′S-modules

ϕ′ : D(X)S′ → t′

which recovers the canonical surjection D(X)S → LieX upon restricting to S, using the
canonical isomorphism

D(X)S′ ⊗OS′ OS ∼= D(X)S

from the crystalline site. Moreover, we may identify ϕ′ with the canonical surjection
D(X ′)S′ → LieX ′.

Proof. See e.g. [Mes72, §V].

Lemma 4.4. The map ϕ̃ : N → M̂loc is formally smooth.
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Proof. See [RZ96, pg. 90]. The key input is Grothendieck-Messing theory. We wish to show
that, for every solid commutative diagram

S N

S′ M̂loc

α

ϕ̃

β

α′

with S → S′ a first order thickening, there exists a dotted arrow to that the preceding diagram
commutes. Write α = (XΛ, ρΛ, γΛ)Λ∈L ∈ N (S) and β = (ϕ′Λ : Λ ⊗Zp OS′ → t′Λ)Λ∈L ∈
M̂loc(S′). By Grothendieck-Messing theory, lifting α to α′ = (X ′Λ, ρ

′
Λ, γ

′
Λ)Λ∈L ∈ N (S′) over

β is the same as finding a system of arrows γ′Λ which are isomorphisms of (polarized, if PEL)
chains and which make the following diagrams commute for all Λ:

D(XΛ)S′ Λ⊗Zp
OS′

D(XΛ)S Λ⊗Zp OS .

γ′Λ
∼

γΛ

∼

Note that the quasi-isogenies ρΛ lifts uniquely to a quasi-isognies ρ′Λ by Drinfeld rigidity,
as in Vijay’s talk or [RZ96, pg. 52]. When L consists of a single lattice Λ up to scalar, we
may lift γ−1

Λ to γ′−1
Λ (non-uniquely) by free-ness of Λ ⊗Zp OS′ (any such lift is surjective

by Nakayama’s lemma, and hence an isomorphism because D(XΛ)S′ is locally free). In the
general case, one should also ensure compatibility of the maps γ′Λ with functoriality in Λ
and compatibility with periodicity isomorphisms, for the chain L. I omit this.

It remains only to see that there exist étale local sections s of N π−→ M̆ with ϕ̃◦s formally
étale. The content of [RZ96, Proposition 3.33] is precisely that such sections of π exist étale
locally near any point of M̆. Below, I sketch the broad ideas of the proof.

It is enough to show that every closed point x ∈ M̆ admits an etale neighborhood U
and a section s : U → NU (where NU = N ×M̆ U) such ϕ̃ ◦ s formally étale (with abuse of
notataion, we consider ϕ̃ as a map from NU as well). Suppose s is some section as above;
we will later give a condition on s that ensures ϕ̃ ◦ s is formally étale.

The first part of the proof of [RZ96, Proposition 3.33] reduces étaleness of ϕ̃ ◦ s in a
Zariski neighborhood of x to the requirement that every solid commutative diagram

Spec k U

NU

Spec k[x]/(x2) M̂loc

x

s

ϕ̃◦s

ϕ̃

(4.1)

admits a unique dotted arrow which makes the diagram commute. Roughly speaking, this
is the condition that ϕ̃ ◦ s is a “bijection on tangent vectors” (and certainly this condition
must be satisfied if ϕ̃ ◦ s is to be formally étale).

Next, I introduce some non-standard terminology. Consider α = (XΛ, ρΛ, γΛ)Λ∈L ∈ N (k).
Let α′ = (X ′Λ, ρ

′
Λ, γ

′
Λ)Λ∈L ∈ N (k[x]/(x2)) be a tangent vector at α (i.e. α′ recovers α under
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the map k[x]/(x2)→ k). We say that α′ is distinguished if the diagram

D(X ′Λ)k[x]/(x2) Λ⊗Zp
k[x]/(x2)

D(XΛ)k Λ⊗Zp
k

γ′Λ

γΛ

commutes. The right-hand vertical arrow is induced by the inclusion k → k[x]/(x2), and the
left-hand vertical arrow is induced by the canonical isomorphism D(XΛ)k ⊗k k[x]/(x2)

∼−→
D(X ′Λ)k[x]/(x2) arising from the crystalline nature of D(XΛ).

Suppose α has image β and ξ in M̂loc and M̆ respectively. We find that any tangent
vector at β lifts uniquely to a distinguished tangent vector at α (by Grothendieck-Messing
theory), and also that any tangent vector at ξ lifts uniquely to a distinguished tangent vector
at α. The requirement of Diagram (4.1) is thus satisfied if s : U → NU takes any tangent
vector at x to a distinguished tangent vector. The existence of such an étale local section s
near x is given by [RZ96, 3.32]

A Formal schemes and formal smoothness

A.1 Review of terminology

Suppose f : X → Y is a morphism of locally Noetherian formal schemes.
We say f : X → Y is formally locally of finite type ([RZ96, Definition 2.3]) ifXred → Yred is

a locally finite type morphism of schemes. This property is local on the base, and if Y = Spf A,
is equivalent to the statement that X is locally of the form Spf A〈T1, . . . , Tn〉[[x1, . . . , xm]]/I
for some ideal I (where A〈T1, . . . , Tn〉 denotes the restricted power series ring). See also
[AJP07, §1].

In [RZ96, 2.2], Rapoport-Zink require that étale morphisms and smooth morphisms of
formal schemes are representable by schemes. Here f : X → Y is representable by schemes
if for every map T → Y with T a scheme, the space X ×Y T is a scheme. This is equivalent
to the requirement that f is adic, i.e. some (equivalently, any) ideal of definition for Y
generates an ideal of idefinition for X , i.e. X ×Y Yred is a scheme. We say that f is smooth
(resp. étale) if for any morphism T → Y with T a scheme, the map X ×Y T → T is a smooth
(resp. étale) morphism of schemes. If f is smooth or étale, then f is necessarily formally
locally of finite type.

Note that the usage of étale and smooth described in the previous paragraph is different
from the usage in [AJP07; AJP09], which I will cite below.3 For example, if k is a field
(with the discrete topology), the map Spf k[[x]] → Spec k is not smooth in the sense of the
preceding paragraph (but the map is formally smooth, as defined below).

Giving an étale map U → Y is equivalent to giving an étale map of schemes U → Yred,
essentially by topological invariance of the small étale site [Stacks, Section 04DY] or [EGAIV4,
Théorème 18.1.2].

Formal smoothness and formal étaleness is defined as for schemes: we say that f : X → Y
3For [AJP07; AJP09], a morphism f of locally Noetherian formal schemes is said to be smooth (resp.

étale) if and only if f is formally locally of finite type and formally smooth (resp. étale).
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is formally smooth (resp. formally étale) if for every solid commutative diagram

X T

Y T ′

f

with T → T ′ a first order thickening of schemes, there exists at least one (resp. exists exactly
one) dotted arrow making the diagram commute. Smooth morphisms for formal schemes as
described above are formally smooth, and similarly étale morphisms for formal schemes as
described above are formally étale (follows from the analogous statements for schemes).

We say f : X → Y is flat if for every point x ∈ X with y = f(x), the induced map of
local rings OY,y → OX ,x is flat. If f is formally locally of finite type and formally smooth
then f is flat [AJP07, Proposition 4.8]. The morphism f is faithfully flat if it is flat and
surjective as a map of topological spaces.

A.2 Formal smoothness

The purpose of this section is to give a proof of Proposition A.5 below, which allows one to
relate smoothness of Mloc to formal smoothness of M̆. The analogous result for schemes is
[Stacks, Lemma 02K5], but I did not find a reference for the version for formal schemes.

The proof below proceeds by using differentials for formal schemes, and mimicking the
proof for schemes. Consider a formally locally finite type morphism of locally Noetherian
formal schemes f : X → Y. Suppose first that X = Spf B and Y = Spf A. We may
form the usual module of differentials ΩB/A, forgetting the topologies on A and B. Then

we let ΩSpf B/ Spf A the coherent sheaf on Spf B corresponding to Ω̂B/A, which denotes the
completion of ΩB/A with respect to any ideal of definition for B. This construction globalizes:
for general locally Noetherian formal schemes X ,Y, we obtain the sheaf of differentials ΩX/Y .
This is a coherent OX -module, and behaves similarly to the usual sheaf of differentials for
schemes. See [AJP07] and also [EGAIV1, §0.20]. I general, I found [AJP05; AJP07; AJP09]
to be helpful references.

Lemma A.1. Let k be an algebraically closed field and let f : X → Spec k be a formally
locally finite type morphism of formal schemes. Let x ∈ X be a closed point. Then we have
dim ΩX/k ⊗ k(x) = dimOX ,x if and only if OX ,x is regular.

Proof. We have ΩX/k ⊗ k(x) = ΩSpf OX ,x/k ⊗ k(x) = ΩOX ,x/k ⊗ k(x). Since OX ,x is a
Noetherian local ring which contains a copy of its residue field k, we have

dimk ΩOX ,x/k ⊗ k(x) = dimk mx/m
2
x

where mx is the maximal ideal of OX ,x.

Lemma A.2. Let f : X → Y be a formally locally finite type morphism of locally Noetherian
formal schemes. If f is formally smooth, then ΩX/Y is finite locally free on X .

Proof. See [AJP07, Proposition 4.8].

Lemma A.3. Let f : X → Y be a formally locally finite type morphism of locally Noetherian
formal schemes. Suppose Z → Y is a formally locally finite type faithfully flat morphism of
locally Noetherian formal schemes. Then f is formally smooth if and only if fZ : XZ → YZ
is formally smooth.
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Proof. Being formally smooth is preserved under base-change, so if f is formally smooth
then fZ is also formally smooth.

Conversely, suppose that fZ is formally smooth. Since XZ → X is faithfully flat,
Lemma A.2 implies that ΩX/Y is finite locally free. The lemma claim is local on X
and Y, so assume Y = Spf A and X = Spf A〈T1, . . . , Tn〉[[x1, . . . , xm]]/I. Write W =
Spf A〈T1, . . . , Tn〉[[x1, . . . , xm]]/I, which is formally smooth over Spf A. Let i : X → W
be the given closed immersion, and let I be the ideal sheaf of X on W. There is an exact
sequence

I /I 2 → i∗ΩW/Y → ΩX/Y → 0.

In our situation, this is left exact if and only if X → Y is formally smooth (see [AJP07, Corol-
lary 4.15]). This exactness may be checked after faithfully flat base-change, and formation
of the preceding exact sequence also commutes with flat base-change.

Lemma A.4. Let k be an algebraically closed field, and let f : X → Spec k be a formally
locally finite type morphism of formal schemes. Then f is formally smooth if and only if
ΩX/k is finite locally free on X , with rank dimOX ,x at each closed point x ∈ X .

Proof. First assume ΩX/k is locally free on X with rank dimOX ,x at each closed point
of x ∈ X . This question is local on X [AJP05, Proposition 2.4.18], so we may assume
X = Spf k[T1, . . . , Tn][[x1, . . . , xm]]/I. Write W = Spf k[T1, . . . , Tn][[x1, . . . , xm]], and let
i : X → W be the given closed immersion. Let I be the ideal sheaf of X on W. There is
an exact sequence

I /I 2 → i∗ΩW/k → ΩX/k → 0.

In our situation, X → Spec k is formally smooth if and only if the preceding exact sequence
is also exact on the left [AJP07, Corollary 4.15]. It is enough to check exactness at the stalk
of every closed point x ∈ X . Since ΩX/k and i∗ΩW/k are locally free on X , with ranks at x
given by n+m and dimOX ,x respectively, it is enough to show that I /I 2 is free of rank
n+m− dimOX ,x in the stalk at x.

By Lemma A.1, we know that OX ,x is regular. By [Stacks, Lemma 00NR], we know that
the stalk Ix ⊆ OW,x is generated by a regular sequence of length n+m− dimOX ,x, which
gives the claim.

Conversely, if f is formally smooth then ΩX/k is finite locally free on X by Lemma A.2,
and the rank claim follows from [AJP09, Proposition 5.9].

Proposition A.5. Let

X Y

S

f

h g

be a commutative diagram of locally Noetherian formal schemes, where all arrows are formally
locally of finite type. Suppose moreover that f is formally smooth, and that the underlying
map of topological spaces is surjective. Then g is formally smooth if and only if h is formally
smooth.

Proof. The property of being formally smooth is preserved under composition, so if g is
formally smooth then h is formally smooth. Suppose h is formally smooth. Since f is
faithfully flat and h is flat, we know that g is flat. Combining [AJP09, Corollary 5.5] and
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Lemma A.3, we reduce to the case where S = Spec k for an algebraically closed field k. We
have a short exact sequence

0→ f∗ΩY/k → ΩX/k → ΩX/Y → 0

since f is formally smooth and formally locally finite type [AJP07, Proposition 4.9]. We
know also that ΩX/k and ΩX/Y are finite locally free by Lemma A.2. Hence f∗ΩY/k is also
finite locally free. Since f is faithfully flat, we conclude that ΩY/k is finite locally free as
well. Let y ∈ Y be any closed point and let x ∈ X be a closed point with f(x) = y. Lemma
A.4 and the preceding short-exact sequence shows that

dim ΩY/k ⊗ k(y) = dim ΩX/k ⊗ k(x)− dim ΩX/Y ⊗ k(x)

= dimOX ,x − (dimOXy,x)

where Xy is the fiber of X over y. Flatness of f implies that dimOXy,x = dimOX ,x−dimOY,y,
so the proposition follows from Lemma A.4.
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