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1 Isocrystals

Def. (.1.1.1) (φ-module). Let M be a A-module and σ : A → A is a ring map. Then an additive
map φ : M → M is called σ-semi-linear iff φ(am) = σ(a)φ(m) for a ∈ A. A φ-module over
(A, σ) is just an A-module M with a σ-semi-linear φ.

If we define a ring Aσ[φ] as the free group A[X] modulo the relation Xa = σ(a)X and ring
relations in A, then it is a ring. Then a φ-module over (A, σ) is equivalent to a left Aσ[φ]-module.

Thus we know that the category of φ-modules is a Grothendieck Abelian category ΦM with
tensor products, and moreover, the kernel as Aσ[φ]-module is the same as the kernel as a A-module.

Def. (.1.1.2) (Isocrystals). We consider a perfect field k and K = W (k)[1/p], K is equipped
with the natural σ lifting the Frobenius. Define an isocrystal over K as a f.d. φ-modules V over
K with σ = σa(.1.1.1), where a ∈ Z\{0}. We don’t care about this a much. dimK V is called the
height of this isocrystal. The fact that k is perfect implies that the kernel and image of φ are
K-vector subspaces.

Def. (.1.1.3) (Isotypical φ-Modules). A φ-module is called pure(isotypical) of slope λ =
s/r ∈ Q if D admits a lattice M on which p−sφr is a bijection. This is independent of M because
λ is independent of M .

Prop. (.1.1.4) (Dieudonné-Manin). If M is a φ-module over W (k)[1
p ] where k is a perfect field,

then M is a finite sum of modules pure of slopes λi. This is called the isocrystal decomposition
of M .

Proof: We use the φ̃ as in the proof of??, we see that M has a decomposition M0 ⊕ M>0 by??,
and M0 ̸= 0 by definition. Then we use induction to get the result. □

Def. (.1.1.5). When k is alg.closed, for λ = s/r, we define a φ-module over K = W (k)[1/p]
Eλ = ⊕r−1

i+0Kei that φ(ei) = ei+1, and φ(er+1) = pse0. In this case, Eλ is irreducible.

Prop. (.1.1.6) (Dieudonné-Manin). If k is alg.closed, then any φ-module over K has a unique
decomposition as sums of Eλi

(.1.1.5).

Def. (.1.1.7) (Tate Twist). The Tate object 1(n), n ∈ Z is the 1-dimensional isocrystal over K0
that φ = pnσ, so it is of slope n. And the Tate twist isocrystal is tensoring by 1(n).

2 Filtered Isocrystals and HN-Formalism

Def. (.1.2.1) (Filtered (φ,N)-Modules). A filtered φ-module(isocrystals) (D,φD, F il) over
K is a (φ,N)-module (D,φD) ∈ φ−ModK0 together with a finite filtration Fil on DK = D⊗K0 K
in the category of vector spaces over K. The category of filtered φ-modules over K is denoted by
φ− FilModK/K0 .
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Harder-Narasimhan Formalism

Main references are https://arxiv.org/abs/2003.11950.

Def. (.1.2.2) (Harder-Narasimhan Formalism). A Harder-Narasimhan formalism con-
sists of

• An exact category C??.
• A function deg : Ob(C) → Z that is additive w.r.t short exact sequences.
• An exact faithful generic fiber functor to an Abelian category F : C → A that induces for

each object F : E ∈ C a bijection

{strict objects of E} ∼= {subobjects of F (E)}

where a strict subobject is an object that can be prolonged to an exact sequence.
• An additive function rank: A → N on A that rank(L) = 0 ⇐⇒ L = 0, and its composition

with F is also called rank.
• If u : E → E ′ is a morphism in C that F (u) is an isomorphism, then deg(E) ≤ deg(E ′) with

equality iff u is an isomorphism.

Cor. (.1.2.3).
• We are free to choose the ”kernel” for u that F (u) is surjection.
• The subobjects of subobjects are subobjects, by axiom3.

Prop. (.1.2.4) (HN-Formalism on the Category of Filtered Vector Spaces). If L/K is a
field extension, there is a category V ectF ilL/K consisting of (V, F il) where V is a K-vector space
and Fil is a finite filtration on V ⊗K L. It is an exact category by declaring exact sequences be
those induce exact sequences on the gradeds.

The generic fiber functor is V ectF ilL/K → V ectK : (V, F il) 7→ V , and rank is as usual, the
Hodge-Tate degree is defined to be tH((V, F il)) =

∑
i dimK gri(V ⊗KL). This is a HN-filtration.

Proof: The axioms can be directly checked, notice a filtration Wn of a filtration Vn is a strict
object iff Wk = Wn ∩ Vk. □

Def. (.1.2.5) (Slope). In a HN-formalism, the slope is defined to be slope(E) = deg(E)
rank(E) .

E is called semistable of slope λ iff slope(E) = λ, and slope(E ′) ≤ λ for any nonzero strict
subobject E ′ ⊂ E .

Prop. (.1.2.6) (Semistable Objects). If f : E → F be a map of objects of the same slope λ,
then ker(f) and Coker(f) are all semistable vector bundles of slope λ, and if 0 → E ′ → E → E ′′ → 0
is exact and E ′, E ′′ are semistable of slope λ, then so does E .

Def. (.1.2.7) (Harder-Narasimhan Filtration). Let E ∈ C, a chain of objects 0 ⊂ E0 ⊊ E1 ⊊
. . . ⊊ Em = E is called a Harder-Narasimhan filtration iff each quotient Ei/Ei−1 is semistable of
slope λi and λ1 > λ2 > . . . > λm.

Prop. (.1.2.8). Every object E ∈ C has a unique functorial Harder-Narasimhan filtration.

https://arxiv.org/abs/2003.11950
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Prop. (.1.2.9) (HN-Formalism for Filtered φ-Modules). The category φ−FilModK/K0(.1.2.1)
is a HN-formalism where A is the Abelian category of φ-modules??, the rank is defined as usual
and

deg((D,φD, F il)) = tH(DK , F il) − tN (D,φD)

where tH is the Hodge-Tate degree(.1.2.4) and tN = vp(det(φD;D)). This is a HN-formalism.

Proof: The proof is clear, the same as that of(.1.2.4). □

Fontaine’s Rings

Def. (.1.2.10) (Fontaine’s Rings). There is a ring BdR which is a complete discrete valued field
of residue field characteristic 0 with a GK-action, it has a natural filtration structure given by the
valuation Fili = tiB+

dR, and Bcrys is a subring of PD-structures of BdR, and Bcrys is equipped with
a Frobenius morphism φ that commutes with the GK-action.

BGK
dR = K, BGK

crys = K0, and there is an embedding (Bcrys)K0K → BdR.

Def. (.1.2.11) (Admissible Representations). A p-adic representation V of GK over Qp of
dimension d is called de Rham iff the BdR-semilinear representation BdR ⊗Qp V is trivial.

Similarly, it is called crystalline iff the Bcrys-semilinear representaion Bcrys ⊗Qp V is trivial.
By the conditions above, if V is crystalline, then it is de Rham.
And for B = BdR or Bcrys satisfying GK-regularity, define DB(V ) = (B ⊗Qp V )GK which is a

vector space over F = BGK , Fontaine proved that B-admissibility is equivalent to dimF DB(V ) =
dimQp(V ), equivalently,

DB(V ) ⊗F B → V ⊗Qp B

is an isomorphism.
Notice in this way DB(V ) contains filtration structures or φ-action structures inherited from

that of B. In particular, if V is crystalline, then Dcrys(V ) is equipped with a φ-module structure
and Dcrys(V ) ⊗K0 K ⊂ DdR(V ) equipped with a filtration. Thus this is a filtered isocrystal, and
any filtered isocrystal of this form is called admissible.

Def. (.1.2.12) (Weakly Admissible is Admissible). If K is a finite field extension of K0, then
weakly admissibility is equivalent to admissibility.

3 Isocrystals with Additional Structures
Main references are [Period Spaces for p-Divisible Groups, Rapoport/Zink] and [Isocrystals with

Additional Structures, Kottwitz].

Def. (.1.3.1) (Isocrystals with G-structures over K0). An Isocrystal with G-structures
over K0 is an exact faithful ⊗-functor RepQp

(G) → φ− ModK0 .

Prop. (.1.3.2) (Associated Isocrystals). Let L be a perfect field of char p and K0 = W (L)[1
p ]

and let b ∈ G(K0), then to every Qp-linear representation V of G, we can associate an isocrystal

RepQp
(G) → φ− ModK0 : V 7→ (V ⊗Qp K0, b ◦ (id ⊗σ)).

this is an isocrystal with G-structures over K0 associated to b.
If g ∈ G(K0) and b′ = gbσ(g)−1, then multiplying by g implies a natural isomorphism between

Tb and Tb′ .
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Prop. (.1.3.3) (Associated Filtered Isocrystals). Let K be a field extension of K0, G be
an algebraic group over Qp, and µ : Gm,K → GK be a cocharacter over K, then the associated
isocrystal over K0 upgrades to a filtered isocrystal over K(.1.2.1),

RepQp
(G) → φ− FilModKI : V 7→ (V ⊗Qp K0, b ◦ (id ⊗σ),Fil•µ),

where the filtration comes from µ by weight-filtrations(Gm is diagonalizable??).

Def. (.1.3.4) (Admissible Pair). Let G be a reductive group, then a pair (µ, b) in(.1.3.3) is
called a (weakly)admissible pair if for any Qp-representation of G, the filtered isocrystal I(V )
is (weakly)admissible??(.1.2.11).

It suffices to check this condition for any faithful representation V .

Proof: This is because for a faithful representation V , any Qp-representation appears as a direct
summand of V ⊗n ⊗ V̂ ⊗m??. Then the assertion follows from the fact direct summands and tensor
products of (weakly)admissible filtered isocrystals is (weakly)admissible. □

Prop. (.1.3.5) (Slope Morphism). Let D = SpecQp[{T 1/k}k∈Z] = D(Q)Qp be the pro-algebraic
torus over Qp with character group Q, and b ∈ G(K0), then there is a morphism ν : DK0 → GK0 ,
called the slope morphism associated to b, which is defined as follows:

For any f.d. representation ρ : G → GL(V ), there is an associated isocrystal defined in(.1.3.2),
then there is a morphism νρ ∈ HomL(D, GL(V )) that D acts on the isotypical component Vλ of V by
the character λ ∈ Q = X∗(D). Then for any x ∈ G(R), the mapping ρ → µρ gives an automorphism
of the standard fiber functor on Rep(G), so by Tannakian duality corresponds to a unique element
y ∈ G(R) that ρ(y) = νρ(x) for any ρ. The homomorphism x 7→ y is functorial in R and thus
defines an element ν ∈ HomL(D, G).

Notice the group Q∗ acts on D, and for s ∈ Q∗ and v ∈ Hom(D, G), denote by sv the composite
D s−→ D v−→ G, and D → Gm the natural morphism, then for any v, there is a suitable s that sv
factors through a morphism also denoted by sν : Gm,K0 → GK0 , as G is algebraic.

Prop. (.1.3.6) (Characterizing Slope Morphism). The slope morphism can be characterized
intrinsically to be the unique morphism ν ∈ HomL(D, G) that there exists some s > 0, c ∈ G(L)
that

• sµ ∈ HomL(Gm, G),
• c(sµ)c−1 is defined over Qps .
• c(bσ)nc−1 = c(nν)(p)c−1σn.

Proof: Cf.[Kottwitz, P13]. □

Cor. (.1.3.7) (Conjugate of Slope Morphism). Now we can define the σ-conjugate of the
slope morphism ν, and we have the identity

bνσb−1 = ν

To check this, replace ν by some sν to assume ν factors through Gm, then it suffices to show for
any a ∈ K∗

0 ,
bσ(sν(σ−1(a))) = sν(a)bσ

It suffices to check for any G-representation Q, and it is true as (V ⊗Qp K0, bσ) is a φ-module for
σ and sν(a) acts on the isotypical part of slope r by ar.
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More generally enerally, any g ∈ G(L) commuting with bσ also commutes with φ(a), a ∈ K∗
0 ,

as it preserves the isotypical decomposition for any isocrystal, and on the isotypical component Vλ,
the a acts by ar.

Def. (.1.3.8) (Descent Conditions). A σ-conjugacy class b in G(K) is called a descent if there
is some s ≥ 0 and some b ∈ b that sν factors through D → Gm and

(bσ)s = sν(p)σs

as an identity in G(K0) ⋊ ⟨σ⟩.

Prop. (.1.3.9). If G is connected and L is alg.closed, then any σ-conjugacy class is descent(.1.3.8).

Proof: Cf.[Kottwitz]. □

Prop. (.1.3.10). Let b be a descent and b satisfies the descent condition for s in(.1.3.8), then if
Qps = W (Fps)[1

p ], b ∈ G(Qps) and ν is defined over Qps .

Proof: Set bs = bσ(b) . . . σs−1(b), then iterating(.1.3.7), bsν
σs
b−1

s = ν. And we have bs = sν(p),
so νσs = ν, so ν is defined over Qps .

To show the first assertion, notice (bσ)(bσ)s = (bσ)s(bσ) shows

sν(p)σsbσ = bσsν(p)σs = sν(p)bσs+1(.1.3.7).

and then bσs = σsb. □

Cor. (.1.3.11). If b1, b2 ∈ b are descent w.r.t the same s, then they are conjugate w.r.t. G(K0∩Qps).
In particular, for any descent b ∈ G(Qps) and any Qp-representation V of G, the induced

isocrystal is defined over the field Ks = W (Fps ∩L)[1
p ], and it only depends on b up to isomorphism.

Proof: Suppose b2 = gb1σ(g)−1, then ν2 = gν1g
−1, and the descent equations are

(b1σ)2 = sν1(p)σs, g(b1σ)sg−1 = gsν1(p)g−1σs.

Comparing these two, g commutes with σs, so g ∈ G(K0 ∩ Qps). □

Prop. (.1.3.12). Let b ∈ G(K0), then the following functor on the category of Qp-algebras is
representable by a smooth affine group scheme:

J(R) = {g ∈ G(R⊗Qp K0)|g(bσ) = (bσ)g}.

Moreover, if b ∈ G(W (L′)[1
p ]) where L′ is an alg.closed subfield of L, and J ′ be the corresponding

functor defined with L′, then the canonical morphism J ′ → J is an isomorphism.

Proof: Choose an embedding G ⊂ GL(V,Qp), consider the functor:

F (R) = {g ∈ End(VK0) ⊗R|g = bσ(g)b−1},

then it is representable by an affine space by the lemma(.1.3.13) applied to the σ-linear map g 7→
bσ(g)b−1.

More precisely, there is a f.d. Qp-vector space W ⊂ End(VK0) that F (R) = W ⊗Qp R. Choose a
basis Ai of W , then J(R) is just the subfunctor of ri ∈ R that fk(

∑
riAi) = 0, and det(

∑
riAi) ̸= 0.

Taking a basis of K0 over Qp, then these are polynomials with coefficients in Qp. It is automatically
smooth by Cartier’s theorem??.

The last assertion follows from the proof of(.1.3.13). □
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Lemma (.1.3.13). Let N be a f.d. isocrystal over K0 = W (L)[1
p ] w.r.t. σs for some s ̸= 0, then

the following functor on the category of Qp-algebras

F (R) = {n ∈ N ⊗Qp R|φ(n) = n}

is representable by an affine space over Qp.
Proof: F (R) is just Nφ ⊗Qp R, so it suffices to show dimQp N

φ < ∞. Firstly assume that L
is alg.closed, then this is a consequence of Dieudonné-Manin classification(.1.1.6). This functor F
doesn’t depend on L once L reaches its alg.closure: if L is alg.closed and L′ is a field extension,
then the corresponding functor F ′ defined by N ⊗W (L)[ 1

p
] W (L′)[1

p ] coincide with F .(This is also by
Dieudonné-Manin classification.) □
Cor. (.1.3.14). Assume b satisfies a descent condition for s(.1.3.8), then J is a Qps/Qp-inner form
of the centralizer Gsν(p)(.1.3.10).
Proof: The descent equation shows bs = sν(p), so the adjoint bad : g 7→ (bσ)g(bσ)−1 = bσ(g)b−1

defines an element in H1(G(Qps/Qp),Aut(Gsν(p)(Qps))), because

σkbad : g 7→ σ(bσ−1(g))b−1)) = σk(b)σ(g)σk(b)−1.

so
bad ◦ σ(bad) ◦ . . . ◦ σs−1(bad) : g 7→ bsgb

−1
s = sν(p)g(sν(p))−1 = g.

So it defines an inner form, which is just

J ′(R) = Gsν(p)(Qps))badσ = {g ∈ Gsν(p)(R⊗Qp Qps)|g(bσ) = (bσ)g}

Now it suffices to show J ′(R) is just J(R) defined in(.1.3.12). For this, notice any g ∈ J(R)
commutes with bσ thus commutes with sν(p) by(.1.3.7), and the descent condition (bσ)n = sν(p)σn

shows it commutes with σn, so g ∈ J ′(R). □
Prop. (.1.3.15). Let G be a connected reductive group and L be alg.closed, then the following
are equivalent for b ∈ G(K0):

• The slope morphism ν factors through the center of G.
• b is σ-conjugate to an element in T (K0) where T is an elliptic maximal torus of G.
• The algebraic group J of(.1.3.12) is an inner form on G.

In this case, b and its conjugacy class b are called basic.
Proof: Cf.[Kottwitz]. □
Prop. (.1.3.16) (Conjugacy Classes and Base Change). Let b1, b2 be two elements of
G(W (L)[1

p ]), then the functor

J(R) = {g ∈ G(R⊗Qp W (L)[1
p

])|g(b1σ) = (b2σ)g}

is representable by a smooth affine scheme over Qp.
Assume b1, b2 ∈ G(W (L′)[1

p ]) where L′ where L′ is an alg.closed field of L, and J ′ the correspond-
ing functor, then J ′ → J is an isomorphism. In particular, the map from the set of σ-conjugacy
classes in G(W (L′)[1

p ] to the set of σ-conjugacy classes in G(W (L)[1
p ]) is injective, and it is surjective

iff L is also alg.closed and G is connected.
Proof: The surjectivity follows from the fact that every conjugacy class is descent(.1.3.9), and
those descent elements are in G(Qs) for some s ≥ 0(.1.3.10), so in G(W (L′)[1

p ]). □
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4 Period Domain
Def. (.1.4.1) (Associated Partial Flag Variety). Let G be an algebraic group over Qp and
µ : Gm → G is a conjugacy class of cocharacters defined over a finite extension field E/Qp??, then
there is associated a faithful ⊗-functor

RepQp
→ Z-graded R-vector spaces → filtered E-spaces

Now call two cocharacters equivalent if their associated functor are isomorphic. Consider the
functor

R 7→ {the equivalence classes in the conjugacy class of µR under G(R)}
in the category of E-algebras, and also consider the closed algebraic subgroup P (µ) ⊂ G over E:

P (µ)(R) = {g ∈ G(R)|gµRg
−1 is equivalent to µR}

then the functor above is representable by the homogenous variety F = GE/P (µ) defined over E.
Prop. (.1.4.2). F is a projective variety.
Proof: If V is a faithful representation in RepQp

(G), we denote Flag(V ) the partial flag variety
over Qp which associates to any Qp-algebra R the filtration Fil• of V ⊗Qp R s.t. gri(R) are direct
summands and rk Fili = dimE Filiµ(VE). Then Flag(V ) is a projective variety, by classical results,
and there is a closed immersion

F ↪→ Flag(V )E

because the isocrystal on other representations are determined by this faithful representation. □
Def. (.1.4.3) (p-adic Period Space). Let Ĕ = EK0(F p)∧ be the completion of the maximal
unramified extension of E, then there is a rigid-analytic structure on F̆ = FĔ . define the p-adic
period space (F̆wa

b )rig ⊂ F̆rig associated to (G, b{µ}) the set of points ξ conjugate to µ that (ξ, b)
is weakly admissible.

Let Jb be the algebraic group associated to b as in(.1.3.12), then Jb(Qp) ⊂ G(K0) acts on F̆rig,
and it preserves the set (F̆wa

b )rig.
(F̆wa

b )rig has a natural structure of an admissible open subset of F̆rig. if b′ = gbσ(g)−1, then
µ 7→ g−1µg induces an isomorphism from (F̆wa

b )rig to (F̆wa
b′ )rig. Moreover, if b satisfies descent

condition w.r.t. s > 0, then this admissible open subset is defined over E.Qps .
Proof: Cf.[Rapoport Zink, P26]. □

5 Algebraic Groups of EL/PEL Types
Def. (.1.5.1) (Algebraic Groups of EL/PEL Types). Let F be a finite étale algebra over Qp,
B a finite central algebra over F , and V is a f.g. B-module.

An algebraic group of EL type over Qp is an algebraic group of the form GLB(V ). They are
related to the classification of p-divisible groups with an endomorphism and level structures.

Let (−,−) be a non-degenerate alternating Qp-bilinear form on V together with a formal invo-
lution ∗ on B that

(bv, w) = (v, b∗w).
Let F0 be the field of elements of F fixed by ∗.

An algebraic group of PEL type over Qp is an algebraic group over Qp given by

G(R) = {g ∈ GLB(V ⊗Qp R)|∃c ∈ X(G), (gv, gw) = c(g)(v, w), ∀v, w}
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Prop. (.1.5.2) (Setups). If G is an algebraic group of EL/PEL type, K0 = W (Fp)[1
p ], b ∈ G(K0),

then we associate to b and the natural representation of G on V the isocrystal

(N(V ),Φ) = (V ⊗Qp K0, b(1 ⊗ σ)).

This isocrystal is equipped with an action of B, and in the PEL case an alternating bilinear
form

ψ : N(V ) ⊗N(V ) → 1(n).

where n = vp(c(b)). In fact, we can find some unit u that c(b) = pnuσ(u)−1, then the pairing is
defined as

ψ(v, v′) = u−1(v, v′),

any other choices of u multiplies ψ by an element in Z∗
p.

We will fix in addition a conjugacy class of cocharacters µ : Gm → G defined over a field E, and
the associated homogenous algebraic variety F defined over E of filtrations(.1.4.1). F is equipped
with a B-action, as G ∈ GLB(V ).

Notice in the PEL case, these filtrations satisfy F i = (Fm−i+1)⊥, wherem = c◦µ ∈ Hom(Gm,Gm) ∼=
Z. This is due to the fact (kv, kw) = km(v, w) and the fact the pairing is non-degenerate.

Prop. (.1.5.3) (Shimura Field). Fix a conjugacy class of cocharacters {µ} defined over E and
µ0 ∈ {µ}, its corresponding filtration F•

0 , The field E in(.1.5.2) can be described as the field of
definition of the isomorphism class of F•

0 as a B-invariant filtration, or equivalently as the finite
extension of QP generated by the traces

tr(d; gri
F0(V ⊗Qp Qp)), d ∈ B, i ∈ Z.

And the filtration F is described as the functor that for any E-algebra R, F(R) is the set of
filtrations F• of V ⊗Qp R by R-modules that are direct summands that

tr(d; gri
F (V ⊗Qp R)) = tr(d; gri

F0(V ⊗Qp Qp)).

and moreover in the PEL case satisfies F i = (Fm−i+1)⊥.

Proof: 1: The field of definition E of the conjugacy class {µ} is determined by Tannakian duality,
so it suffices to check over which field these two filtrations are isomorphic as G-filtrations, but G is
just the group fixing the B-module structure, so it suffices to show they are equivalent as B-modules,
which is then determined by the traces, by??.

2: It suffices to show F is a homogenous space under G. We restrict to the PEL case, the EL
case is simpler. After base change from Qp to Qp, the data decomposes to the following types:

• (A) : B = End(W ) × End(W∨) where W is a f.d. Qp-vector space and (u, v)∗ = (vt, ut).
And V = W ⊗ V ′ ⊕

W∨ ⊗ V ′∨ where the pairing is natural and makes the sum orthogonal.

G = {(1 ⊗ g, c · (1 ⊗ g−t)|g ∈ GL(V ′), c ∈ X(G)}

• (C) : B = End(W ) where W is a f.d. Qp-vector space equipped with a symmetric bilinear
form (−,−)W and ∗ is the transposition w.r.t it.
And V = W ⊗ V ′ where V ′ is equipped with an alternating form (−,−)V ′ that (−,−)V =
(−,−)W ⊗ (−,−)V ′ .

G = {cg|g ∈ Sp(V ′), c ∈ X(G)}
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• (BD): As in (C), except that (−,−)W is skew-symmetric and (−,−)V ′ is symmetric.

G = {cg|g ∈ SO(V ′), c ∈ C(G)}

Under this decomposition, the functor F in the proposition is represented by products of partial
flags of V :

• (A) : F i = W ⊗ (F ′)i ⊕
W∨ ⊗ ((F ′)m+1−i)⊥ and the correspondence F• 7→ (F ′)• identifies F

with the partial flag variety of V ′ with fixed dimensions dim((F ′)i).
• (B,CD) : F• = W ⊗ (F ′)• and F is identified with the partial flag variety of V ′ of fixed

dimensions dim((F ′)i) and (F ′)i = ((F ′)m+1−i)⊥.
The (A) case G clearly acts transitively on F , and the (B,CD) case (F ′)i is isotropic for
i ≥ (m + 1)/2, and it determines all other components, so G acts transitively, by Witt’s
theorem??.

The reason is?? and the fact representations of B is semisimple, then contemplating on the
pairing condition. □

Prop. (.1.5.4) (Examples of PEL Type). Let B = D be the quaternion algebra over Qp and
∗ be the involution, i.e.

D = Qp2 [Π], Π2 = p, Πa = σ(a)Π

and
a∗ = σ(a), a ∈ Qp2 , ,Π∗ = Π.

Let (V, ι) be a free D-module of rank n with a non-degenerate bilinear form satisfying the conditions
in(.1.5.1). Then G is a non-trivial inner form of the group GSp2n of symmetric similitudes:

Firstly Qp2 ⊗ K0 ∼= K0 ⊕ K0, then Qps acts on K0 ⊕ K0 by a(x, y) = ax, σ(a)y). As V is a
Qp2-vector space, there is a decomposition

V = V0 ⊕ V1

where Qp2 acts on Vi by a(v) = v.σi(a), then GK0 is just GSp2n,K0 , and G ̸= GSp2n as the Galois
action σ on Qp2 ⊗K0 and K0 ∼= K0 ⊕K0 are different.

Take b ∈ G(K0) the element with c(b) = p and the corresponding isocrystal (N,Φ) is isotypical
of slope 1/2. N decomposes as N0 ⊕N1. Notice now Π and Φ = bσ interchanges Ni, and ΠΦ = ΦΠ.
Also Ni is isotropic: For v, w ∈ Ni, a ∈ Qp2 ,

a(v, w) = (av, w) = (ι(σi(a))v, w) = (v, ι(σi+1(a))w) = (v, σ(a)w) = σ(a)(v, w)

so (v, w) = 0.
We can define a new non-degenerate alternating form

⟨−,−⟩ : N0 ×N0 → K0 : ⟨v, v′⟩ = (v,Πv′)

and also a σ-linear endomorphism of N0: Φ0 = Π−1 ◦ Φ|N0 . From the condition, vp(det Φ0) = 0,
and Φ has all the slopes 0. Also ⟨Φ0v,Φ0w⟩ = σ(⟨v, w⟩), as

⟨Φ0v,Φ0w⟩ = (Π−1Φv,Φw) = (Π−1bσv, bσw) = σ(v,Πw) = σ(⟨v, w⟩).

so this alternating form is defined over Qp, denoted by (V0, ⟨−,−⟩), and Φ0 corresponds to σ. Then
Jb = GSp(V0, ⟨−,−⟩).
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Next we consider
(0) = F2

0 ⊂ F1
0 ⊂ F0

0 = V ⊗ Qp

be a filtration where F1
0 be a D-invariant Lagrangian subspace. This corresponds to a cocharacter

µ → G, and F is just the Qp2 variety of D-invariant Lagrangian subspaces of VQp2 . By(.1.5.3), the
Shimura field is Qp.

Let F ⊂ F(K) where K/K0 is a field extension, then

F = F0 ⊕ F1

where Fi ∈ N0 ⊗K0 K, as F is Π-invariant. Now F0 is also a Lagrangian subspace of (V0, ⟨−,−⟩).
F(K) identifies the K-points of the Grassmannian of Lagrangian subspaces of (V0, ⟨−,−⟩).

Cor. (.1.5.5). Under the above identification, the subset Fwa(K) of the Grassmannian of La-
grangian spaces F of (V0 ⊗K, ⟨−,−⟩) is characterized by F satisfying the the following conditions:

For all totally isotropic subspaces W0 ⊂ V0, we have dimK F ∩ (W0 ⊗K) ≤ 1/2 dimW0.

Proof: It’s clear µ(N,Φ,F) = 0, so weakly-admissibility is equivalent to semi-stability. The
uniqueness of the HN-filtration of F implies its D-invariance, thus semi-stability is equivalent to
the fact that for any subspace P ⊂ N stable under Φ and D-action, we have

dimK(F ∩ (P ⊗K0 K)) ≤ vp(det(Φ;P )).

Now Φ is isotypical with slope 1/2, vp(det(Φ;P )) = 1
2 dimP , and the D-invariance of P is equivalent

to P = P0 ⊕ P1 and the Φ-invariance of P is equivalent to the Φ0-invariance of P0, i.e. P0 is a
Qp-rational subspace W0 ⊂ V0.

Finally we show it suffices to check for totally isotropic subspaces: Let W ′
0 be the radical of W0,

then there is a non-singular alternating form on W0/W
′
0, then the image of F ′

0 ∩ (P ⊗K0 K) in this
quotient is a totally isotropic space, thus has dimension≤ 1

2 dim(W0/W
′
0). then it suffices to check

the condition for W ′
0. □
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