.1 p-Adic Period Domains

Hao Peng, hao_peng@mit.edu

1 Isocrystals

Def. (.1.1.1) (φ -module). Let M be a A-module and $\sigma : A \to A$ is a ring map. Then an additive map $\varphi : M \to M$ is called σ -semi-linear iff $\varphi(am) = \sigma(a)\varphi(m)$ for $a \in A$. A φ -module over (A, σ) is just an A-module M with a σ -semi-linear φ .

If we define a ring $A_{\sigma}[\varphi]$ as the free group A[X] modulo the relation $Xa = \sigma(a)X$ and ring relations in A, then it is a ring. Then a φ -module over (A, σ) is equivalent to a left $A_{\sigma}[\varphi]$ -module.

Thus we know that the category of φ -modules is a Grothendieck Abelian category $\Phi \mathcal{M}$ with tensor products, and moreover, the kernel as $A_{\sigma}[\varphi]$ -module is the same as the kernel as a A-module.

Def. (.1.1.2) (Isocrystals). We consider a perfect field k and K = W(k)[1/p], K is equipped with the natural σ lifting the Frobenius. Define an **isocrystal** over K as a f.d. φ -modules V over K with $\sigma = \sigma^a(.1.1.1)$, where $a \in \mathbb{Z} \setminus \{0\}$. We don't care about this a much. dim_K V is called the **height** of this isocrystal. The fact that k is perfect implies that the kernel and image of φ are K-vector subspaces.

Def. (1.1.3) (Isotypical φ -Modules). A φ -module is called **pure(isotypical) of slope** $\lambda = s/r \in \mathbb{Q}$ if D admits a lattice M on which $p^{-s}\varphi^r$ is a bijection. This is independent of M because λ is independent of M.

Prop. (.1.1.4) (Dieudonné-Manin). If M is a φ -module over $W(k)[\frac{1}{p}]$ where k is a perfect field, then M is a finite sum of modules pure of slopes λ_i . This is called the **isocrystal decomposition** of M.

Proof: We use the $\tilde{\varphi}$ as in the proof of??, we see that M has a decomposition $M_0 \oplus M_{>0}$ by??, and $M_0 \neq 0$ by definition. Then we use induction to get the result.

Def. (.1.1.5). When k is alg.closed, for $\lambda = s/r$, we define a φ -module over K = W(k)[1/p] $E_{\lambda} = \bigoplus_{i=0}^{r-1} Ke_i$ that $\varphi(e_i) = e_{i+1}$, and $\varphi(e_{r+1}) = p^s e_0$. In this case, E_{λ} is irreducible.

Prop. (.1.1.6) (Dieudonné-Manin). If k is alg.closed, then any φ -module over K has a unique decomposition as sums of $E_{\lambda_i}(.1.1.5)$.

Def. (.1.1.7) (Tate Twist). The Tate object $1(n), n \in \mathbb{Z}$ is the 1-dimensional isocrystal over K_0 that $\varphi = p^n \sigma$, so it is of slope n. And the Tate twist isocrystal is tensoring by 1(n).

2 Filtered Isocrystals and HN-Formalism

Def. (.1.2.1) (Filtered (φ, N) -Modules). A filtered φ -module(isocrystals) (D, φ_D, Fil) over K is a (φ, N) -module $(D, \varphi_D) \in \varphi - Mod_{K_0}$ together with a finite filtration Fil on $D_K = D \otimes_{K_0} K$ in the category of vector spaces over K. The category of filtered φ -modules over K is denoted by $\varphi - FilMod_{K/K_0}$.

Harder-Narasimhan Formalism

Main references are https://arxiv.org/abs/2003.11950.

Def. (.1.2.2) (Harder-Narasimhan Formalism). A Harder-Narasimhan formalism consists of

- An exact category C??.
- A function deg : $Ob(\mathcal{C}) \to \mathbb{Z}$ that is additive w.r.t short exact sequences.
- An exact faithful generic fiber functor to an Abelian category $F : \mathcal{C} \to \mathcal{A}$ that induces for each object $F : \mathcal{E} \in \mathcal{C}$ a bijection

 $\{\text{strict objects of } \mathcal{E}\} \cong \{\text{subobjects of } F(\mathcal{E})\}\$

where a strict subobject is an object that can be prolonged to an exact sequence.

- An additive function rank: $\mathcal{A} \to \mathbb{N}$ on \mathcal{A} that rank $(\mathcal{L}) = 0 \iff \mathcal{L} = 0$, and its composition with F is also called rank.
- If $u : \mathcal{E} \to \mathcal{E}'$ is a morphism in \mathcal{C} that F(u) is an isomorphism, then $\deg(\mathcal{E}) \leq \deg(\mathcal{E}')$ with equality iff u is an isomorphism.

Cor. (.1.2.3).

- We are free to choose the "kernel" for u that F(u) is surjection.
- The subobjects of subobjects are subobjects, by axiom3.

Prop. (.1.2.4) (HN-Formalism on the Category of Filtered Vector Spaces). If L/K is a field extension, there is a category $VectFil_{L/K}$ consisting of (V, Fil) where V is a K-vector space and Fil is a finite filtration on $V \otimes_K L$. It is an exact category by declaring exact sequences be those induce exact sequences on the gradeds.

The generic fiber functor is $VectFil_{L/K} \to Vect_K : (V, Fil) \mapsto V$, and rank is as usual, the **Hodge-Tate degree** is defined to be $t_H((V, Fil)) = \sum i \dim_K gr^i(V \otimes_K L)$. This is a HN-filtration.

Proof: The axioms can be directly checked, notice a filtration W_n of a filtration V_n is a strict object iff $W_k = W_n \cap V_k$.

Def. (.1.2.5) (Slope). In a HN-formalism, the slope is defined to be slope(E) = $\frac{\deg(E)}{\operatorname{rank}(E)}$

 \mathcal{E} is called **semistable of slope** λ iff slope(\mathcal{E}) = λ , and slope(\mathcal{E}') $\leq \lambda$ for any nonzero strict subobject $\mathcal{E}' \subset \mathcal{E}$.

Prop. (.1.2.6) (Semistable Objects). If $f : \mathcal{E} \to \mathcal{F}$ be a map of objects of the same slope λ , then ker(f) and Coker(f) are all semistable vector bundles of slope λ , and if $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ is exact and $\mathcal{E}', \mathcal{E}''$ are semistable of slope λ , then so does \mathcal{E} .

Def. (.1.2.7) (Harder-Narasimhan Filtration). Let $\mathcal{E} \in \mathcal{C}$, a chain of objects $0 \subset \mathcal{E}_0 \subsetneq \mathcal{E}_1 \subsetneq \ldots \subsetneq \mathcal{E}_m = \mathcal{E}$ is called a **Harder-Narasimhan filtration** iff each quotient $\mathcal{E}_i/\mathcal{E}_{i-1}$ is semistable of slope λ_i and $\lambda_1 > \lambda_2 > \ldots > \lambda_m$.

Prop. (.1.2.8). Every object $\mathcal{E} \in \mathcal{C}$ has a unique functorial Harder-Narasimhan filtration.

Prop. (.1.2.9) (HN-Formalism for Filtered φ -Modules). The category φ -FilMod_{K/K0}(.1.2.1) is a HN-formalism where \mathcal{A} is the Abelian category of φ -modules??, the rank is defined as usual and

$$\deg((D,\varphi_D,Fil)) = t_H(D_K,Fil) - t_N(D,\varphi_D)$$

where t_H is the Hodge-Tate degree (1.2.4) and $t_N = v_p(\det(\varphi_D; D))$. This is a HN-formalism.

Proof: The proof is clear, the same as that of(.1.2.4).

Fontaine's Rings

Def. (.1.2.10) (Fontaine's Rings). There is a ring B_{dR} which is a complete discrete valued field of residue field characteristic 0 with a G_K -action, it has a natural filtration structure given by the valuation $\operatorname{Fil}^i = t^i B_{dR}^+$, and B_{crys} is a subring of PD-structures of B_{dR} , and B_{crys} is equipped with a Frobenius morphism φ that commutes with the G_K -action.

 $B_{dR}^{G_K} = K, \ B_{crys}^{G_K} = K_0$, and there is an embedding $(B_{crys})_{K_0} K \to B_{dR}$.

Def. (.1.2.11) (Admissible Representations). A p-adic representation V of G_K over \mathbb{Q}_p of dimension d is called de Rham iff the B_{dR} -semilinear representation $B_{dR} \otimes_{\mathbb{Q}_p} V$ is trivial.

Similarly, it is called crystalline iff the B_{crys} -semilinear representation $B_{crys} \otimes_{\mathbb{Q}_p} V$ is trivial.

By the conditions above, if V is crystalline, then it is de Rham.

And for $B = B_{dR}$ or B_{crys} satisfying G_K -regularity, define $D_B(V) = (B \otimes_{\mathbb{Q}_p} V)^{G_K}$ which is a vector space over $F = B^{G_K}$, Fontaine proved that *B*-admissibility is equivalent to $\dim_F D_B(V) = \dim_{\mathbb{Q}_p}(V)$, equivalently,

$$D_B(V) \otimes_F B \to V \otimes_{\mathbb{Q}_n} B$$

is an isomorphism.

Notice in this way $D_B(V)$ contains filtration structures or φ -action structures inherited from that of B. In particular, if V is crystalline, then $D_{crys}(V)$ is equipped with a φ -module structure and $D_{crys}(V) \otimes_{K_0} K \subset D_{dR}(V)$ equipped with a filtration. Thus this is a filtered isocrystal, and any filtered isocrystal of this form is called **admissible**.

Def. (.1.2.12) (Weakly Admissible is Admissible). If K is a finite field extension of K_0 , then weakly admissibility is equivalent to admissibility.

3 Isocrystals with Additional Structures

Main references are [Period Spaces for *p*-Divisible Groups, Rapoport/Zink] and [Isocrystals with Additional Structures, Kottwitz].

Def. (.1.3.1) (Isocrystals with G-structures over K_0). An Isocrystal with G-structures over K_0 is an exact faithful \otimes -functor $\operatorname{Rep}_{\mathbb{Q}_p}(G) \to \varphi - \operatorname{Mod}_{K_0}$.

Prop. (.1.3.2) (Associated Isocrystals). Let L be a perfect field of char p and $K_0 = W(L)[\frac{1}{p}]$ and let $b \in G(K_0)$, then to every \mathbb{Q}_p -linear representation V of G, we can associate an isocrystal

$$\operatorname{Rep}_{\mathbb{Q}_p}(G) \to \varphi - \operatorname{Mod}_{K_0} : V \mapsto (V \otimes_{\mathbb{Q}_p} K_0, b \circ (\operatorname{id} \otimes \sigma))$$

this is an isocrystal with G-structures over K_0 associated to b.

If $g \in G(K_0)$ and $b' = gb\sigma(g)^{-1}$, then multiplying by g implies a natural isomorphism between T_b and $T_{b'}$.

$$\operatorname{Rep}_{\mathbb{O}_p}(G) \to \varphi - FilMod_K \mathcal{I} : V \mapsto (V \otimes_{\mathbb{O}_p} K_0, b \circ (\operatorname{id} \otimes \sigma), \operatorname{Fil}_{\mu}^{\bullet}),$$

where the filtration comes from μ by weight-filtrations(\mathbb{G}_m is diagonalizable??).

Def. (.1.3.4) (Admissible Pair). Let G be a reductive group, then a pair (μ, b) in(.1.3.3) is called a (weakly)admissible pair if for any \mathbb{Q}_p -representation of G, the filtered isocrystal $\mathcal{I}(V)$ is (weakly)admissible??(.1.2.11).

It suffices to check this condition for any faithful representation V.

Proof: This is because for a faithful representation V, any \mathbb{Q}_p -representation appears as a direct summand of $V^{\otimes n} \otimes \widehat{V}^{\otimes m}$??. Then the assertion follows from the fact direct summands and tensor products of (weakly)admissible filtered isocrystals is (weakly)admissible.

Prop. (.1.3.5) (Slope Morphism). Let $\mathbb{D} = \operatorname{Spec} \mathbb{Q}_p[\{T^{1/k}\}_{k \in \mathbb{Z}}] = \mathbb{D}(\mathbb{Q})_{\mathbb{Q}_p}$ be the pro-algebraic torus over \mathbb{Q}_p with character group \mathbb{Q} , and $b \in G(K_0)$, then there is a morphism $\nu : D_{K_0} \to G_{K_0}$, called the **slope morphism** associated to b, which is defined as follows:

For any f.d. representation $\rho: G \to GL(V)$, there is an associated isocrystal defined in(.1.3.2), then there is a morphism $\nu_{\rho} \in \operatorname{Hom}_{L}(\mathbb{D}, GL(V))$ that \mathbb{D} acts on the isotypical component V_{λ} of V by the character $\lambda \in \mathbb{Q} = X^{*}(\mathbb{D})$. Then for any $x \in G(R)$, the mapping $\rho \to \mu_{\rho}$ gives an automorphism of the standard fiber functor on $\operatorname{Rep}(G)$, so by Tannakian duality corresponds to a unique element $y \in G(R)$ that $\rho(y) = \nu_{\rho}(x)$ for any ρ . The homomorphism $x \mapsto y$ is functorial in R and thus defines an element $\nu \in \operatorname{Hom}_{L}(\mathbb{D}, G)$.

Notice the group \mathbb{Q}^* acts on \mathbb{D} , and for $s \in \mathbb{Q}^*$ and $v \in \text{Hom}(\mathbb{D}, G)$, denote by sv the composite $\mathbb{D} \xrightarrow{s} \mathbb{D} \xrightarrow{v} G$, and $D \to \mathbb{G}_m$ the natural morphism, then for any v, there is a suitable s that sv factors through a morphism also denoted by $sv : \mathbb{G}_{m,K_0} \to G_{K_0}$, as G is algebraic.

Prop. (.1.3.6) (Characterizing Slope Morphism). The slope morphism can be characterized intrinsically to be the unique morphism $\nu \in \text{Hom}_L(\mathbb{D}, G)$ that there exists some $s > 0, c \in G(L)$ that

- $s\mu \in \operatorname{Hom}_L(\mathbb{G}_m, G),$
- $c(s\mu)c^{-1}$ is defined over \mathbb{Q}_{p^s} .
- $c(b\sigma)^n c^{-1} = c(n\nu)(p)c^{-1}\sigma^n$.

Proof: Cf.[Kottwitz, P13].

Cor. (.1.3.7) (Conjugate of Slope Morphism). Now we can define the σ -conjugate of the slope morphism ν , and we have the identity

$$b\nu^{\sigma}b^{-1} = \nu$$

To check this, replace ν by some $s\nu$ to assume ν factors through \mathbb{G}_m , then it suffices to show for any $a \in K_0^*$,

$$b\sigma(s\nu(\sigma^{-1}(a))) = s\nu(a)b\sigma$$

It suffices to check for any G-representation \mathbb{Q} , and it is true as $(V \otimes_{\mathbb{Q}_p} K_0, b\sigma)$ is a φ -module for σ and $s\nu(a)$ acts on the isotypical part of slope r by a^r .

.1. P-ADIC PERIOD DOMAINS

More generally enerally, any $g \in G(L)$ commuting with $b\sigma$ also commutes with $\varphi(a), a \in K_0^*$, as it preserves the isotypical decomposition for any isocrystal, and on the isotypical component V_{λ} , the *a* acts by a^r .

Def. (.1.3.8) (Descent Conditions). A σ -conjugacy class \overline{b} in $G(\overline{K})$ is called a descent if there is some $s \ge 0$ and some $b \in \overline{b}$ that $s\nu$ factors through $D \to \mathbb{G}_m$ and

$$(b\sigma)^s = s\nu(p)\sigma^s$$

as an identity in $G(K_0) \rtimes \langle \sigma \rangle$.

Prop. (.1.3.9). If G is connected and L is alg.closed, then any σ -conjugacy class is descent(.1.3.8).

Proof: Cf.[Kottwitz].

Prop. (.1.3.10). Let \overline{b} be a descent and b satisfies the descent condition for s in(.1.3.8), then if $\mathbb{Q}_{p^s} = W(\mathbb{F}_{p^s})[\frac{1}{p}], b \in G(\mathbb{Q}_{p^s})$ and ν is defined over \mathbb{Q}_{p^s} .

Proof: Set $b_s = b\sigma(b) \dots \sigma^{s-1}(b)$, then iterating(.1.3.7), $b_s \nu^{\sigma^s} b_s^{-1} = \nu$. And we have $b_s = s\nu(p)$, so $\nu^{\sigma^s} = \nu$, so ν is defined over \mathbb{Q}_{p^s} .

To show the first assertion, notice $(b\sigma)(b\sigma)^s = (b\sigma)^s(b\sigma)$ shows

$$s\nu(p)\sigma^s b\sigma = b\sigma s\nu(p)\sigma^s = s\nu(p)b\sigma^{s+1}(.1.3.7).$$

and then $b\sigma^s = \sigma^s b$.

Cor. (.1.3.11). If $b_1, b_2 \in \overline{b}$ are descent w.r.t the same s, then they are conjugate w.r.t. $G(K_0 \cap \mathbb{Q}_{p^s})$.

In particular, for any descent $b \in G(\mathbb{Q}_{p^s})$ and any \mathbb{Q}_p -representation V of G, the induced isocrystal is defined over the field $K_s = W(\mathbb{F}_{p^s} \cap L)[\frac{1}{p}]$, and it only depends on \overline{b} up to isomorphism.

Proof: Suppose $b_2 = gb_1\sigma(g)^{-1}$, then $\nu_2 = g\nu_1g^{-1}$, and the descent equations are

$$(b_1\sigma)^2 = s\nu_1(p)\sigma^s, \quad g(b_1\sigma)^s g^{-1} = gs\nu_1(p)g^{-1}\sigma^s.$$

Comparing these two, g commutes with σ^s , so $g \in G(K_0 \cap \mathbb{Q}_{p^s})$.

Prop. (.1.3.12). Let $b \in G(K_0)$, then the following functor on the category of \mathbb{Q}_p -algebras is representable by a smooth affine group scheme:

$$J(R) = \{g \in G(R \otimes_{\mathbb{O}_n} K_0) | g(b\sigma) = (b\sigma)g\}.$$

Moreover, if $b \in G(W(L')[\frac{1}{p}])$ where L' is an alg.closed subfield of L, and J' be the corresponding functor defined with L', then the canonical morphism $J' \to J$ is an isomorphism.

Proof: Choose an embedding $G \subset GL(V, \mathbb{Q}_p)$, consider the functor:

$$F(R) = \{g \in \operatorname{End}(V_{K_0}) \otimes R | g = b\sigma(g)b^{-1}\},\$$

then it is representable by an affine space by the lemma(.1.3.13) applied to the σ -linear map $g \mapsto b\sigma(g)b^{-1}$.

More precisely, there is a f.d. \mathbb{Q}_p -vector space $W \subset \operatorname{End}(V_{K_0})$ that $F(R) = W \otimes_{\mathbb{Q}_p} R$. Choose a basis A_i of W, then J(R) is just the subfunctor of $r_i \in R$ that $f_k(\sum r_i A_i) = 0$, and $\det(\sum r_i A_i) \neq 0$. Taking a basis of K_0 over \mathbb{Q}_p , then these are polynomials with coefficients in \mathbb{Q}_p . It is automatically smooth by Cartier's theorem??

The last assertion follows from the proof of(.1.3.13).

$$F(R) = \{ n \in N \otimes_{\mathbb{Q}_n} R | \varphi(n) = n \}$$

is representable by an affine space over \mathbb{Q}_p .

Proof: F(R) is just $N^{\varphi} \otimes_{\mathbb{Q}_p} R$, so it suffices to show $\dim_{\mathbb{Q}_p} N^{\varphi} < \infty$. Firstly assume that L is alg.closed, then this is a consequence of Dieudonné-Manin classification(.1.1.6). This functor F doesn't depend on L once L reaches its alg.closure: if L is alg.closed and L' is a field extension, then the corresponding functor F' defined by $N \otimes_{W(L)[\frac{1}{p}]} W(L')[\frac{1}{p}]$ coincide with F.(This is also by Dieudonné-Manin classification.)

Cor. (.1.3.14). Assume b satisfies a descent condition for s(.1.3.8), then J is a $\mathbb{Q}_{p^s}/\mathbb{Q}_p$ -inner form of the centralizer $G_{s\nu(p)}(.1.3.10)$.

Proof: The descent equation shows $b_s = s\nu(p)$, so the adjoint $b_{ad} : g \mapsto (b\sigma)g(b\sigma)^{-1} = b\sigma(g)b^{-1}$ defines an element in $H^1(G(\mathbb{Q}_{p^s}/\mathbb{Q}_p), \operatorname{Aut}(G_{s\nu(p)}(\mathbb{Q}_{p^s})))$, because

$$\sigma^k b_{ad} : g \mapsto \sigma(b\sigma^{-1}(g))b^{-1})) = \sigma^k(b)\sigma(g)\sigma^k(b)^{-1}.$$

 \mathbf{SO}

$$b_{ad} \circ \sigma(b_{ad}) \circ \ldots \circ \sigma^{s-1}(b_{ad}) : g \mapsto b_s g b_s^{-1} = s \nu(p) g(s \nu(p))^{-1} = g.$$

So it defines an inner form, which is just

$$J'(R) = G_{s\nu(p)}(\mathbb{Q}_{p^s}))^{b_{ad}\sigma} = \{g \in G_{s\nu(p)}(R \otimes_{\mathbb{Q}_p} \mathbb{Q}_{p^s}) | g(b\sigma) = (b\sigma)g\}$$

Now it suffices to show J'(R) is just J(R) defined in(.1.3.12). For this, notice any $g \in J(R)$ commutes with $b\sigma$ thus commutes with $s\nu(p)$ by(.1.3.7), and the descent condition $(b\sigma)^n = s\nu(p)\sigma^n$ shows it commutes with σ^n , so $g \in J'(R)$.

Prop. (.1.3.15). Let G be a connected reductive group and L be alg.closed, then the following are equivalent for $b \in G(K_0)$:

- The slope morphism ν factors through the center of G.
- b is σ -conjugate to an element in $T(K_0)$ where T is an elliptic maximal torus of G.
- The algebraic group J of (.1.3.12) is an inner form on G.

In this case, b and its conjugacy class b are called **basic**.

Proof: Cf.[Kottwitz].

Prop. (.1.3.16) (Conjugacy Classes and Base Change). Let b_1, b_2 be two elements of $G(W(L)[\frac{1}{n}])$, then the functor

$$J(R) = \{g \in G(R \otimes_{\mathbb{Q}_p} W(L)[\frac{1}{p}]) | g(b_1\sigma) = (b_2\sigma)g\}$$

is representable by a smooth affine scheme over \mathbb{Q}_p .

Assume $b_1, b_2 \in G(W(L')[\frac{1}{p}])$ where L' where L' is an alg.closed field of L, and J' the corresponding functor, then $J' \to J$ is an isomorphism. In particular, the map from the set of σ -conjugacy classes in $G(W(L')[\frac{1}{p}])$ to the set of σ -conjugacy classes in $G(W(L)[\frac{1}{p}])$ is injective, and it is surjective iff L is also alg.closed and G is connected.

Proof: The surjectivity follows from the fact that every conjugacy class is descent(.1.3.9), and those descent elements are in $G(\mathbb{Q}_s)$ for some $s \ge 0(.1.3.10)$, so in $G(W(L')[\frac{1}{n}])$.

4 Period Domain

Def. (.1.4.1) (Associated Partial Flag Variety). Let G be an algebraic group over \mathbb{Q}_p and $\mu : \mathbb{G}_m \to G$ is a conjugacy class of cocharacters defined over a finite extension field E/\mathbb{Q}_p ??, then there is associated a faithful \otimes -functor

 $\operatorname{Rep}_{\mathbb{O}_n} \to \mathbb{Z}$ -graded *R*-vector spaces \to filtered *E*-spaces

Now call two cocharacters equivalent if their associated functor are isomorphic. Consider the functor

 $R \mapsto \{\text{the equivalence classes in the conjugacy class of } \mu_R \text{ under } G(R)\}$

in the category of E-algebras, and also consider the closed algebraic subgroup $P(\mu) \subset G$ over E:

 $P(\mu)(R) = \{g \in G(R) | g\mu_R g^{-1} \text{ is equivalent to } \mu_R \}$

then the functor above is representable by the homogenous variety $\mathcal{F} = G_E/P(\mu)$ defined over E.

Prop. (.1.4.2). \mathcal{F} is a projective variety.

Proof: If V is a faithful representation in $\operatorname{Rep}_{\mathbb{Q}_p}(G)$, we denote Flag(V) the partial flag variety over \mathbb{Q}_p which associates to any \mathbb{Q}_p -algebra R the filtration $\operatorname{Fil}^{\bullet}$ of $V \otimes_{\mathbb{Q}_p} R$ s.t. $\operatorname{gr}^i(R)$ are direct summands and $\operatorname{rk} \operatorname{Fil}^i = \dim_E \operatorname{Fil}^i_{\mu}(V_E)$. Then Flag(V) is a projective variety, by classical results, and there is a closed immersion

$$\mathcal{F} \hookrightarrow Flag(V)_E$$

because the isocrystal on other representations are determined by this faithful representation. \Box

Def. (.1.4.3) (*p*-adic Period Space). Let $\check{E} = EK_0(\bar{F}_p)^{\wedge}$ be the completion of the maximal unramified extension of E, then there is a rigid-analytic structure on $\check{\mathcal{F}} = \mathcal{F}_{\check{E}}$. define the *p*-adic period space $(\check{\mathcal{F}}_b^{wa})^{rig} \subset \check{\mathcal{F}}^{rig}$ associated to $(G, b\{\mu\})$ the set of points ξ conjugate to μ that (ξ, b) is weakly admissible.

Let J_b be the algebraic group associated to b as in(.1.3.12), then $J_b(\mathbb{Q}_p) \subset G(K_0)$ acts on $\check{\mathcal{F}}^{rig}$, and it preserves the set $(\check{\mathcal{F}}_b^{wa})^{rig}$.

 $(\check{\mathcal{F}}_{b}^{wa})^{rig}$ has a natural structure of an admissible open subset of $\check{\mathcal{F}}^{rig}$. if $b' = gb\sigma(g)^{-1}$, then $\mu \mapsto g^{-1}\mu g$ induces an isomorphism from $(\check{\mathcal{F}}_{b}^{wa})^{rig}$ to $(\check{\mathcal{F}}_{b'}^{wa})^{rig}$. Moreover, if b satisfies descent condition w.r.t. s > 0, then this admissible open subset is defined over $E.\mathbb{Q}_{p^s}$.

Proof: Cf.[Rapoport Zink, P26].

5 Algebraic Groups of EL/PEL Types

Def. (.1.5.1) (Algebraic Groups of EL/PEL Types). Let F be a finite étale algebra over \mathbb{Q}_p , B a finite central algebra over F, and V is a f.g. B-module.

An algebraic group of EL type over \mathbb{Q}_p is an algebraic group of the form $GL_B(V)$. They are related to the classification of *p*-divisible groups with an endomorphism and level structures.

Let (-, -) be a non-degenerate alternating \mathbb{Q}_p -bilinear form on V together with a formal involution * on B that

$$(bv, w) = (v, b^*w).$$

Let F_0 be the field of elements of F fixed by *.

An algebraic group of PEL type over \mathbb{Q}_p is an algebraic group over \mathbb{Q}_p given by

$$G(R) = \{g \in GL_B(V \otimes_{\mathbb{Q}_n} R) | \exists c \in X(G), \quad (gv, gw) = c(g)(v, w), \quad \forall v, w\}$$

Prop. (.1.5.2) (Setups). If G is an algebraic group of EL/PEL type, $K_0 = W(\overline{\mathbb{F}_p})[\frac{1}{p}], b \in G(K_0)$, then we associate to b and the natural representation of G on V the isocrystal

$$(N(V), \Phi) = (V \otimes_{\mathbb{Q}_p} K_0, b(1 \otimes \sigma)).$$

This isocrystal is equipped with an action of B, and in the PEL case an alternating bilinear form

$$\psi: N(V) \otimes N(V) \to 1(n).$$

where $n = v_p(c(b))$. In fact, we can find some unit u that $c(b) = p^n u \sigma(u)^{-1}$, then the pairing is defined as

$$\psi(v, v') = u^{-1}(v, v'),$$

any other choices of u multiplies ψ by an element in \mathbb{Z}_p^* .

We will fix in addition a conjugacy class of cocharacters $\mu : \mathbb{G}_m \to G$ defined over a field E, and the associated homogenous algebraic variety \mathcal{F} defined over E of filtrations(.1.4.1). \mathcal{F} is equipped with a *B*-action, as $G \in GL_B(V)$.

Notice in the PEL case, these filtrations satisfy $\mathcal{F}^i = (\mathcal{F}^{m-i+1})^{\perp}$, where $m = c \circ \mu \in \operatorname{Hom}(\mathbb{G}_m, \mathbb{G}_m) \cong \mathbb{Z}$. This is due to the fact $(kv, kw) = k^m(v, w)$ and the fact the pairing is non-degenerate.

Prop. (.1.5.3) (Shimura Field). Fix a conjugacy class of cocharacters $\{\mu\}$ defined over E and $\mu_0 \in \{\mu\}$, its corresponding filtration \mathcal{F}_0^{\bullet} , The field E in(.1.5.2) can be described as the field of definition of the isomorphism class of \mathcal{F}_0^{\bullet} as a *B*-invariant filtration, or equivalently as the finite extension of \mathbb{Q}_P generated by the traces

$$\operatorname{tr}(d; \operatorname{gr}^{i}_{\mathbb{F}_{0}}(V \otimes_{\mathbb{Q}_{p}} \overline{\mathbb{Q}_{p}})), d \in B, i \in \mathbb{Z}.$$

And the filtration \mathcal{F} is described as the functor that for any *E*-algebra *R*, $\mathcal{F}(R)$ is the set of filtrations \mathcal{F}^{\bullet} of $V \otimes_{\mathbb{Q}_p} R$ by *R*-modules that are direct summands that

$$\operatorname{tr}(d; \operatorname{gr}^{i}_{\mathcal{F}}(V \otimes_{\mathbb{Q}_{p}} R)) = \operatorname{tr}(d; \operatorname{gr}^{i}_{\mathbb{F}_{0}}(V \otimes_{\mathbb{Q}_{p}} \overline{\mathbb{Q}_{p}})).$$

and moreover in the PEL case satisfies $\mathcal{F}^i = (\mathcal{F}^{m-i+1})^{\perp}$.

Proof: 1: The field of definition E of the conjugacy class $\{\mu\}$ is determined by Tannakian duality, so it suffices to check over which field these two filtrations are isomorphic as G-filtrations, but G is just the group fixing the B-module structure, so it suffices to show they are equivalent as B-modules, which is then determined by the traces, by??

2: It suffices to show \mathcal{F} is a homogenous space under G. We restrict to the PEL case, the EL case is simpler. After base change from \mathbb{Q}_p to $\overline{\mathbb{Q}_p}$, the data decomposes to the following types:

• $(A): B = \operatorname{End}(W) \times \operatorname{End}(W^{\vee})$ where W is a f.d. $\overline{\mathbb{Q}_p}$ -vector space and $(u, v)^* = (v^t, u^t)$. And $V = W \otimes V' \bigoplus W^{\vee} \otimes V'^{\vee}$ where the pairing is natural and makes the sum orthogonal.

$$G = \{ (1 \otimes g, c \cdot (1 \otimes g^{-t}) | g \in GL(V'), c \in X(G) \}$$

(C): B = End(W) where W is a f.d. Q_p-vector space equipped with a symmetric bilinear form (-, -)_W and * is the transposition w.r.t it. And V = W ⊗ V' where V' is equipped with an alternating form (-, -)_{V'} that (-, -)_V = (-, -)_W ⊗ (-, -)_{V'}.

$$G = \{ cg | g \in \operatorname{Sp}(V'), c \in X(G) \}$$

.1. P-ADIC PERIOD DOMAINS

• (BD): As in (C), except that $(-, -)_W$ is skew-symmetric and $(-, -)_{V'}$ is symmetric.

$$G = \{ cg | g \in SO(V'), c \in C(G) \}$$

Under this decomposition, the functor \mathcal{F} in the proposition is represented by products of partial flags of V:

- $(A): \mathcal{F}^i = W \otimes (\mathcal{F}')^i \bigoplus W^{\vee} \otimes ((\mathcal{F}')^{m+1-i})^{\perp}$ and the correspondence $\mathcal{F}^{\bullet} \mapsto (\mathcal{F}')^{\bullet}$ identifies \mathcal{F} with the partial flag variety of V' with fixed dimensions $\dim((\mathcal{F}')^i)$.
- (B,CD): F[•] = W ⊗ (F')[•] and F is identified with the partial flag variety of V' of fixed dimensions dim((F')ⁱ) and (F')ⁱ = ((F')^{m+1-i})[⊥].
 The (A) case G clearly acts transitively on F, and the (B,CD) case (F')ⁱ is isotropic for i ≥ (m + 1)/2, and it determines all other components, so G acts transitively, by Witt's theorem??.

The reason is?? and the fact representations of B is semisimple, then contemplating on the pairing condition.

Prop. (.1.5.4) (Examples of PEL Type). Let B = D be the quaternion algebra over \mathbb{Q}_p and * be the involution, i.e.

$$D = \mathbb{Q}_{p^2}[\Pi], \quad \Pi^2 = p, \quad \Pi a = \sigma(a)\Pi$$

and

$$a^* = \sigma(a), a \in \mathbb{Q}_{n^2}, \quad , \Pi^* = \Pi.$$

Let (V, ι) be a free *D*-module of rank *n* with a non-degenerate bilinear form satisfying the conditions in(.1.5.1). Then *G* is a non-trivial inner form of the group GSp_{2n} of symmetric similitudes:

Firstly $\mathbb{Q}_{p^2} \otimes K_0 \cong K_0 \oplus K_0$, then \mathbb{Q}_{p^s} acts on $K_0 \oplus K_0$ by $a(x, y) = ax, \sigma(a)y$). As V is a \mathbb{Q}_{p^2} -vector space, there is a decomposition

$$V = V_0 \oplus V_1$$

where \mathbb{Q}_{p^2} acts on V_i by $a(v) = v.\sigma^i(a)$, then G_{K_0} is just GSp_{2n,K_0} , and $G \neq GSp_{2n}$ as the Galois action σ on $\mathbb{Q}_{p^2} \otimes K_0$ and $K_0 \cong K_0 \oplus K_0$ are different.

Take $b \in G(K_0)$ the element with c(b) = p and the corresponding isocrystal (N, Φ) is isotypical of slope 1/2. N decomposes as $N_0 \oplus N_1$. Notice now Π and $\Phi = b\sigma$ interchanges N_i , and $\Pi \Phi = \Phi \Pi$. Also N_i is isotropic: For $v, w \in N_i, a \in \mathbb{Q}_{p^2}$,

$$a(v,w) = (av,w) = (\iota(\sigma^{i}(a))v,w) = (v,\iota(\sigma^{i+1}(a))w) = (v,\sigma(a)w) = \sigma(a)(v,w)$$

so (v, w) = 0.

We can define a new non-degenerate alternating form

$$\langle -, - \rangle : N_0 \times N_0 \to K_0 : \langle v, v' \rangle = (v, \Pi v')$$

and also a σ -linear endomorphism of N_0 : $\Phi_0 = \Pi^{-1} \circ \Phi|_{N_0}$. From the condition, $v_p(\det \Phi_0) = 0$, and Φ has all the slopes 0. Also $\langle \Phi_0 v, \Phi_0 w \rangle = \sigma(\langle v, w \rangle)$, as

$$\langle \Phi_0 v, \Phi_0 w \rangle = (\Pi^{-1} \Phi v, \Phi w) = (\Pi^{-1} b \sigma v, b \sigma w) = \sigma(v, \Pi w) = \sigma(\langle v, w \rangle).$$

so this alternating form is defined over \mathbb{Q}_p , denoted by $(V_0, \langle -, - \rangle)$, and Φ_0 corresponds to σ . Then $J_b = GSp(V_0, \langle -, - \rangle)$.

Next we consider

$$(0) = \mathcal{F}_0^2 \subset \mathcal{F}_0^1 \subset \mathcal{F}_0^0 = V \otimes \overline{\mathbb{Q}_p}$$

be a filtration where \mathcal{F}_0^1 be a *D*-invariant Lagrangian subspace. This corresponds to a cocharacter $\mu \to G$, and \mathcal{F} is just the \mathbb{Q}_{p^2} variety of *D*-invariant Lagrangian subspaces of $V_{\mathbb{Q}_{p^2}}$. By(.1.5.3), the Shimura field is \mathbb{Q}_p .

Let $\mathcal{F} \subset \mathcal{F}(K)$ where K/K_0 is a field extension, then

$$\mathcal{F} = \mathcal{F}_0 \oplus \mathcal{F}_1$$

where $\mathcal{F}_i \in N_0 \otimes_{K_0} K$, as \mathcal{F} is Π -invariant. Now \mathcal{F}_0 is also a Lagrangian subspace of $(V_0, \langle -, - \rangle)$. $\mathcal{F}(K)$ identifies the K-points of the Grassmannian of Lagrangian subspaces of $(V_0, \langle -, - \rangle)$.

Cor. (.1.5.5). Under the above identification, the subset $\mathcal{F}^{wa}(K)$ of the Grassmannian of Lagrangian spaces \mathcal{F} of $(V_0 \otimes K, \langle -, -\rangle)$ is characterized by \mathcal{F} satisfying the the following conditions: For all totally isotropic subspaces $W_0 \subset V_0$, we have $\dim_K \mathcal{F} \cap (W_0 \otimes K) \leq 1/2 \dim W_0$.

Proof: It's clear $\mu(N, \Phi, \mathcal{F}) = 0$, so weakly-admissibility is equivalent to semi-stability. The uniqueness of the HN-filtration of \mathcal{F} implies its *D*-invariance, thus semi-stability is equivalent to the fact that for any subspace $P \subset N$ stable under Φ and *D*-action, we have

$$\dim_K(\mathcal{F} \cap (P \otimes_{K_0} K)) \le v_p(\det(\Phi; P)).$$

Now Φ is isotypical with slope 1/2, $v_p(\det(\Phi; P)) = \frac{1}{2} \dim P$, and the *D*-invariance of *P* is equivalent to $P = P_0 \oplus P_1$ and the Φ -invariance of *P* is equivalent to the Φ_0 -invariance of P_0 , i.e. P_0 is a \mathbb{Q}_p -rational subspace $W_0 \subset V_0$.

Finally we show it suffices to check for totally isotropic subspaces: Let W'_0 be the radical of W_0 , then there is a non-singular alternating form on W_0/W'_0 , then the image of $\mathcal{F}'_0 \cap (P \otimes_{K_0} K)$ in this quotient is a totally isotropic space, thus has dimension $\leq \frac{1}{2} \dim(W_0/W'_0)$. then it suffices to check the condition for W'_0 .