## . 1 p-Adic Period Domains

Hao Peng, hao_peng@mit.edu

## 1 Isocrystals

Def. (.1.1.1) ( $\varphi$-module). Let $M$ be a $A$-module and $\sigma: A \rightarrow A$ is a ring map. Then an additive $\operatorname{map} \varphi: M \rightarrow M$ is called $\sigma$-semi-linear iff $\varphi(a m)=\sigma(a) \varphi(m)$ for $a \in A$. A $\varphi$-module over $(A, \sigma)$ is just an $A$-module $M$ with a $\sigma$-semi-linear $\varphi$.

If we define a ring $A_{\sigma}[\varphi]$ as the free group $A[X]$ modulo the relation $X a=\sigma(a) X$ and ring relations in $A$, then it is a ring. Then a $\varphi$-module over $(A, \sigma)$ is equivalent to a left $A_{\sigma}[\varphi]$-module.

Thus we know that the category of $\varphi$-modules is a Grothendieck Abelian category $\Phi \mathcal{M}$ with tensor products, and moreover, the kernel as $A_{\sigma}[\varphi]$-module is the same as the kernel as a $A$-module.

Def. (.1.1.2) (Isocrystals). We consider a perfect field $k$ and $K=W(k)[1 / p], K$ is equipped with the natural $\sigma$ lifting the Frobenius. Define an isocrystal over $K$ as a f.d. $\varphi$-modules $V$ over $K$ with $\sigma=\sigma^{a}(.1 .1 .1)$, where $a \in \mathbb{Z} \backslash\{0\}$. We don't care about this $a$ much. $\operatorname{dim}_{K} V$ is called the height of this isocrystal. The fact that $k$ is perfect implies that the kernel and image of $\varphi$ are $K$-vector subspaces.

Def. (.1.1.3) (Isotypical $\varphi$-Modules). A $\varphi$-module is called pure(isotypical) of slope $\lambda=$ $s / r \in \mathbb{Q}$ if $D$ admits a lattice $M$ on which $p^{-s} \varphi^{r}$ is a bijection. This is independent of $M$ because $\lambda$ is independent of $M$.

Prop. (.1.1.4) (Dieudonné-Manin). If $M$ is a $\varphi$-module over $W(k)\left[\frac{1}{p}\right]$ where $k$ is a perfect field, then $M$ is a finite sum of modules pure of slopes $\lambda_{i}$. This is called the isocrystal decomposition of $M$.

Proof: We use the $\widetilde{\varphi}$ as in the proof of??, we see that $M$ has a decomposition $M_{0} \oplus M_{>0}$ by??, and $M_{0} \neq 0$ by definition. Then we use induction to get the result.

Def. (.1.1.5). When $k$ is alg.closed, for $\lambda=s / r$, we define a $\varphi$-module over $K=W(k)[1 / p]$ $E_{\lambda}=\oplus_{i+0}^{r-1} K e_{i}$ that $\varphi\left(e_{i}\right)=e_{i+1}$, and $\varphi\left(e_{r+1}\right)=p^{s} e_{0}$. In this case, $E_{\lambda}$ is irreducible.

Prop. (.1.1.6) (Dieudonné-Manin). If $k$ is alg.closed, then any $\varphi$-module over $K$ has a unique decomposition as sums of $E_{\lambda_{i}}(.1 .1 .5)$.

Def. (.1.1.7) (Tate Twist). The Tate object $1(n), n \in \mathbb{Z}$ is the 1 -dimensional isocrystal over $K_{0}$ that $\varphi=p^{n} \sigma$, so it is of slope $n$. And the Tate twist isocrystal is tensoring by $1(n)$.

## 2 Filtered Isocrystals and HN-Formalism

Def. (.1.2.1) (Filtered ( $\varphi, N$ )-Modules). A filtered $\varphi$-module(isocrystals) ( $D, \varphi_{D}, F i l$ ) over $K$ is a $(\varphi, N)$-module $\left(D, \varphi_{D}\right) \in \varphi-\operatorname{Mod}_{K_{0}}$ together with a finite filtration Fil on $D_{K}=D \otimes_{K_{0}} K$ in the category of vector spaces over $K$. The category of filtered $\varphi$-modules over $K$ is denoted by $\varphi-$ FilMod $_{K / K_{0}}$.

## Harder-Narasimhan Formalism

Main references are https://arxiv.org/abs/2003.11950.
Def. (.1.2.2) (Harder-Narasimhan Formalism). A Harder-Narasimhan formalism consists of

- An exact category $\mathcal{C}$ ??.
- A function deg : $\operatorname{Ob}(\mathcal{C}) \rightarrow \mathbb{Z}$ that is additive w.r.t short exact sequences.
- An exact faithful generic fiber functor to an Abelian category $F: \mathcal{C} \rightarrow \mathcal{A}$ that induces for each object $F: \mathcal{E} \in \mathcal{C}$ a bijection

$$
\{\text { strict objects of } \mathcal{E}\} \cong\{\text { subobjects of } F(\mathcal{E})\}
$$

where a strict subobject is an object that can be prolonged to an exact sequence.

- An additive function $\operatorname{rank}: \mathcal{A} \rightarrow \mathbb{N}$ on $\mathcal{A}$ that $\operatorname{rank}(\mathcal{L})=0 \Longleftrightarrow \mathcal{L}=0$, and its composition with $F$ is also called rank.
- If $u: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ is a morphism in $\mathcal{C}$ that $F(u)$ is an isomorphism, then $\operatorname{deg}(\mathcal{E}) \leq \operatorname{deg}\left(\mathcal{E}^{\prime}\right)$ with equality iff $u$ is an isomorphism.

Cor. (.1.2.3).

- We are free to choose the "kernel" for $u$ that $F(u)$ is surjection.
- The subobjects of subobjects are subobjects, by axiom3.

Prop. (.1.2.4) (HN-Formalism on the Category of Filtered Vector Spaces). If $L / K$ is a field extension, there is a category $V e c t F i l_{L / K}$ consisting of $(V, F i l)$ where $V$ is a $K$-vector space and $F i l$ is a finite filtration on $V \otimes_{K} L$. It is an exact category by declaring exact sequences be those induce exact sequences on the gradeds.

The generic fiber functor is VectFil $_{L / K} \rightarrow$ Vect $_{K}:(V, F i l) \mapsto V$, and rank is as usual, the Hodge-Tate degree is defined to be $t_{H}((V, F i l))=\sum i \operatorname{dim}_{K} g r^{i}\left(V \otimes_{K} L\right)$. This is a HN-filtration.

Proof: The axioms can be directly checked, notice a filtration $W_{n}$ of a filtration $V_{n}$ is a strict object iff $W_{k}=W_{n} \cap V_{k}$.

Def. (.1.2.5) (Slope). In a HN-formalism, the slope is defined to be $\operatorname{slope}(E)=\frac{\operatorname{deg}(E)}{\operatorname{rank}(E)}$.
$\mathcal{E}$ is called semistable of slope $\lambda$ iff $\operatorname{slope}(\mathcal{E})=\lambda$, and $\operatorname{slope}\left(\mathcal{E}^{\prime}\right) \leq \lambda$ for any nonzero strict subobject $\mathcal{E}^{\prime} \subset \mathcal{E}$.

Prop. (.1.2.6) (Semistable Objects). If $f: \mathcal{E} \rightarrow \mathcal{F}$ be a map of objects of the same slope $\lambda$, then $\operatorname{ker}(f)$ and $\operatorname{Coker}(f)$ are all semistable vector bundles of slope $\lambda$, and if $0 \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\prime \prime} \rightarrow 0$ is exact and $\mathcal{E}^{\prime}, \mathcal{E}^{\prime \prime}$ are semistable of slope $\lambda$, then so does $\mathcal{E}$.

Def. (.1.2.7) (Harder-Narasimhan Filtration). Let $\mathcal{E} \in \mathcal{C}$, a chain of objects $0 \subset \mathcal{E}_{0} \subsetneq \mathcal{E}_{1} \subsetneq$ $\ldots \subsetneq \mathcal{E}_{m}=\mathcal{E}$ is called a Harder-Narasimhan filtration iff each quotient $\mathcal{E}_{i} / \mathcal{E}_{i-1}$ is semistable of slope $\lambda_{i}$ and $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{m}$.

Prop. (.1.2.8). Every object $\mathcal{E} \in \mathcal{C}$ has a unique functorial Harder-Narasimhan filtration.

Prop. (.1.2.9) (HN-Formalism for Filtered $\varphi$-Modules). The category $\varphi$-FilMod ${ }_{K / K_{0}}(.1 .2 .1)$ is a HN -formalism where $\mathcal{A}$ is the Abelian category of $\varphi$-modules??, the rank is defined as usual and

$$
\operatorname{deg}\left(\left(D, \varphi_{D}, F i l\right)\right)=t_{H}\left(D_{K}, F i l\right)-t_{N}\left(D, \varphi_{D}\right)
$$

where $t_{H}$ is the Hodge-Tate degree(.1.2.4) and $t_{N}=v_{p}\left(\operatorname{det}\left(\varphi_{D} ; D\right)\right)$. This is a HN-formalism.
Proof: The proof is clear, the same as that of(.1.2.4).

## Fontaine's Rings

Def. (.1.2.10) (Fontaine's Rings). There is a ring $B_{d R}$ which is a complete discrete valued field of residue field characteristic 0 with a $G_{K}$-action, it has a natural filtration structure given by the valuation $\mathrm{Fil}^{i}=t^{i} B_{d R}^{+}$, and $B_{\text {crys }}$ is a subring of PD-structures of $B_{d R}$, and $B_{\text {crys }}$ is equipped with a Frobenius morphism $\varphi$ that commutes with the $G_{K}$-action.
$B_{d R}^{G_{K}}=K, B_{\text {crys }}^{G_{K}}=K_{0}$, and there is an embedding $\left(B_{\text {crys }}\right)_{K_{0}} K \rightarrow B_{d R}$.
Def. (.1.2.11) (Admissible Representations). A p-adic representation $V$ of $G_{K}$ over $\mathbb{Q}_{p}$ of dimension $d$ is called de Rham iff the $B_{d R^{-}}$-semilinear representation $B_{d R} \otimes_{\mathbb{Q}_{p}} V$ is trivial.

Similarly, it is called crystalline iff the $B_{\text {crys }}$-semilinear representaion $B_{\text {crys }} \otimes_{\mathbb{Q}_{p}} V$ is trivial.
By the conditions above, if $V$ is crystalline, then it is de Rham.
And for $B=B_{d R}$ or $B_{\text {crys }}$ satisfying $G_{K}$-regularity, define $D_{B}(V)=\left(B \otimes_{\mathbb{Q}_{p}} V\right)^{G_{K}}$ which is a vector space over $F=B^{G_{K}}$, Fontaine proved that $B$-admissibility is equivalent to $\operatorname{dim}_{F} D_{B}(V)=$ $\operatorname{dim}_{\mathbb{Q}_{p}}(V)$, equivalently,

$$
D_{B}(V) \otimes_{F} B \rightarrow V \otimes_{\mathbb{Q}_{p}} B
$$

is an isomorphism.
Notice in this way $D_{B}(V)$ contains filtration structures or $\varphi$-action structures inherited from that of $B$. In particular, if $V$ is crystalline, then $D_{\text {crys }}(V)$ is equipped with a $\varphi$-module structure and $D_{\text {crys }}(V) \otimes_{K_{0}} K \subset D_{d R}(V)$ equipped with a filtration. Thus this is a filtered isocrystal, and any filtered isocrystal of this form is called admissible.

Def. (.1.2.12) (Weakly Admissible is Admissible). If $K$ is a finite field extension of $K_{0}$, then weakly admissibility is equivalent to admissibility.

## 3 Isocrystals with Additional Structures

Main references are [Period Spaces for $p$-Divisible Groups, Rapoport/Zink] and [Isocrystals with Additional Structures, Kottwitz].

Def. (.1.3.1) (Isocrystals with $G$-structures over $K_{0}$ ). An Isocrystal with $G$-structures over $K_{0}$ is an exact faithful $\otimes$-functor $\operatorname{Rep}_{\mathbb{Q}_{p}}(G) \rightarrow \varphi-\operatorname{Mod}_{K_{0}}$.
Prop. (.1.3.2) (Associated Isocrystals). Let $L$ be a perfect field of char $p$ and $K_{0}=W(L)\left[\frac{1}{p}\right]$ and let $b \in G\left(K_{0}\right)$, then to every $\mathbb{Q}_{p}$-linear representation $V$ of $G$, we can associate an isocrystal

$$
\operatorname{Rep}_{\mathbb{Q}_{p}}(G) \rightarrow \varphi-\operatorname{Mod}_{K_{0}}: V \mapsto\left(V \otimes_{\mathbb{Q}_{p}} K_{0}, b \circ(\mathrm{id} \otimes \sigma)\right) .
$$

this is an isocrystal with $G$-structures over $K_{0}$ associated to $b$.
If $g \in G\left(K_{0}\right)$ and $b^{\prime}=g b \sigma(g)^{-1}$, then multiplying by $g$ implies a natural isomorphism between $T_{b}$ and $T_{b^{\prime}}$.

Prop. (.1.3.3) (Associated Filtered Isocrystals). Let $K$ be a field extension of $K_{0}$, $G$ be an algebraic group over $\mathbb{Q}_{p}$, and $\mu: \mathbb{G}_{m, K} \rightarrow G_{K}$ be a cocharacter over $K$, then the associated isocrystal over $K_{0}$ upgrades to a filtered isocrystal over $K(.1 .2 .1)$,

$$
\operatorname{Rep}_{\mathbb{Q}_{p}}(G) \rightarrow \varphi-\operatorname{FilMod}_{K} \mathcal{I}: V \mapsto\left(V \otimes_{\mathbb{Q}_{p}} K_{0}, b \circ(\mathrm{id} \otimes \sigma), \operatorname{Fil}_{\mu}^{\bullet}\right),
$$

where the filtration comes from $\mu$ by weight-filtrations( $\mathbb{G}_{m}$ is diagonalizable??).
Def. (.1.3.4) (Admissible Pair). Let $G$ be a reductive group, then a pair $(\mu, b) \operatorname{in}(.1 .3 .3)$ is called a (weakly)admissible pair if for any $\mathbb{Q}_{p}$-representation of $G$, the filtered isocrystal $\mathcal{I}(V)$ is (weakly)admissible??(.1.2.11).

It suffices to check this condition for any faithful representation $V$.
Proof: This is because for a faithful representation $V$, any $\mathbb{Q}_{p}$-representation appears as a direct summand of $V^{\otimes n} \otimes \widehat{V}^{\otimes m}$ ??. Then the assertion follows from the fact direct summands and tensor products of (weakly)admissible filtered isocrystals is (weakly)admissible.
Prop. (.1.3.5) (Slope Morphism). Let $\mathbb{D}=\operatorname{Spec} \mathbb{Q}_{p}\left[\left\{T^{1 / k}\right\}_{k \in \mathbb{Z}}\right]=\mathbb{D}(\mathbb{Q})_{\mathbb{Q}_{p}}$ be the pro-algebraic torus over $\mathbb{Q}_{p}$ with character group $\mathbb{Q}$, and $b \in G\left(K_{0}\right)$, then there is a morphism $\nu: D_{K_{0}} \rightarrow G_{K_{0}}$, called the slope morphism associated to $b$, which is defined as follows:

For any f.d. representation $\rho: G \rightarrow G L(V)$, there is an associated isocrystal defined in(.1.3.2), then there is a morphism $\nu_{\rho} \in \operatorname{Hom}_{L}(\mathbb{D}, G L(V))$ that $\mathbb{D}$ acts on the isotypical component $V_{\lambda}$ of $V$ by the character $\lambda \in \mathbb{Q}=X^{*}(\mathbb{D})$. Then for any $x \in G(R)$, the mapping $\rho \rightarrow \mu_{\rho}$ gives an automorphism of the standard fiber functor on $\operatorname{Rep}(G)$, so by Tannakian duality corresponds to a unique element $y \in G(R)$ that $\rho(y)=\nu_{\rho}(x)$ for any $\rho$. The homomorphism $x \mapsto y$ is functorial in $R$ and thus defines an element $\nu \in \operatorname{Hom}_{L}(\mathbb{D}, G)$.

Notice the group $\mathbb{Q}^{*}$ acts on $\mathbb{D}$, and for $s \in \mathbb{Q}^{*}$ and $v \in \operatorname{Hom}(\mathbb{D}, G)$, denote by $s v$ the composite $\mathbb{D} \xrightarrow{s} \mathbb{D} \xrightarrow{v} G$, and $D \rightarrow \mathbb{G}_{m}$ the natural morphism, then for any $v$, there is a suitable $s$ that $s v$ factors through a morphism also denoted by $s \nu: \mathbb{G}_{m, K_{0}} \rightarrow G_{K_{0}}$, as $G$ is algebraic.

Prop. (.1.3.6) (Characterizing Slope Morphism). The slope morphism can be characterized intrinsically to be the unique morphism $\nu \in \operatorname{Hom}_{L}(\mathbb{D}, G)$ that there exists some $s>0, c \in G(L)$ that

- $s \mu \in \operatorname{Hom}_{L}\left(\mathbb{G}_{m}, G\right)$,
- $c(s \mu) c^{-1}$ is defined over $\mathbb{Q}_{p^{s}}$.
- $c(b \sigma)^{n} c^{-1}=c(n \nu)(p) c^{-1} \sigma^{n}$.

Proof: Cf.[Kottwitz, P13].
Cor. (.1.3.7) (Conjugate of Slope Morphism). Now we can define the $\sigma$-conjugate of the slope morphism $\nu$, and we have the identity

$$
b \nu^{\sigma} b^{-1}=\nu
$$

To check this, replace $\nu$ by some $s \nu$ to assume $\nu$ factors through $\mathbb{G}_{m}$, then it suffices to show for any $a \in K_{0}^{*}$,

$$
b \sigma\left(s \nu\left(\sigma^{-1}(a)\right)\right)=s \nu(a) b \sigma
$$

It suffices to check for any $G$-representation $\mathbb{Q}$, and it is true as $\left(V \otimes_{\mathbb{Q}_{p}} K_{0}, b \sigma\right)$ is a $\varphi$-module for $\sigma$ and $s \nu(a)$ acts on the isotypical part of slope $r$ by $a^{r}$.

More generally enerally, any $g \in G(L)$ commuting with $b \sigma$ also commutes with $\varphi(a), a \in K_{0}^{*}$, as it preserves the isotypical decomposition for any isocrystal, and on the isotypical component $V_{\lambda}$, the $a$ acts by $a^{r}$.
Def. (.1.3.8) (Descent Conditions). A $\sigma$-conjugacy class $\bar{b}$ in $G(\bar{K})$ is called a descent if there is some $s \geq 0$ and some $b \in \bar{b}$ that $s \nu$ factors through $D \rightarrow \mathbb{G}_{m}$ and

$$
(b \sigma)^{s}=s \nu(p) \sigma^{s}
$$

as an identity in $G\left(K_{0}\right) \rtimes\langle\sigma\rangle$.
Prop. (.1.3.9). If $G$ is connected and $L$ is alg.closed, then any $\sigma$-conjugacy class is descent(.1.3.8).

## Proof: Cf.[Kottwitz].

Prop. (.1.3.10). Let $\bar{b}$ be a descent and $b$ satisfies the descent condition for $s$ in(.1.3.8), then if $\mathbb{Q}_{p^{s}}=W\left(\mathbb{F}_{p^{s}}\right)\left[\frac{1}{p}\right], b \in G\left(\mathbb{Q}_{p^{s}}\right)$ and $\nu$ is defined over $\mathbb{Q}_{p^{s}}$.
Proof: Set $b_{s}=b \sigma(b) \ldots \sigma^{s-1}(b)$, then iterating(.1.3.7), $b_{s} \nu^{\sigma^{s}} b_{s}^{-1}=\nu$. And we have $b_{s}=s \nu(p)$, so $\nu^{\sigma^{s}}=\nu$, so $\nu$ is defined over $\mathbb{Q}_{p^{s}}$.

To show the first assertion, notice $(b \sigma)(b \sigma)^{s}=(b \sigma)^{s}(b \sigma)$ shows

$$
s \nu(p) \sigma^{s} b \sigma=b \sigma s \nu(p) \sigma^{s}=s \nu(p) b \sigma^{s+1}(.1 .3 .7) .
$$

and then $b \sigma^{s}=\sigma^{s} b$.
Cor. (.1.3.11). If $b_{1}, b_{2} \in \bar{b}$ are descent w.r.t the same $s$, then they are conjugate w.r.t. $G\left(K_{0} \cap \mathbb{Q}_{p^{s}}\right)$.
In particular, for any descent $b \in G\left(\mathbb{Q}_{p^{s}}\right)$ and any $\mathbb{Q}_{p}$-representation $V$ of $G$, the induced isocrystal is defined over the field $K_{s}=W\left(\mathbb{F}_{p^{s}} \cap L\right)\left[\frac{1}{p}\right]$, and it only depends on $\bar{b}$ up to isomorphism.
Proof: Suppose $b_{2}=g b_{1} \sigma(g)^{-1}$, then $\nu_{2}=g \nu_{1} g^{-1}$, and the descent equations are

$$
\left(b_{1} \sigma\right)^{2}=s \nu_{1}(p) \sigma^{s}, \quad g\left(b_{1} \sigma\right)^{s} g^{-1}=g s \nu_{1}(p) g^{-1} \sigma^{s} .
$$

Comparing these two, $g$ commutes with $\sigma^{s}$, so $g \in G\left(K_{0} \cap \mathbb{Q}_{p^{s}}\right)$.
Prop. (.1.3.12). Let $b \in G\left(K_{0}\right)$, then the following functor on the category of $\mathbb{Q}_{p}$-algebras is representable by a smooth affine group scheme:

$$
J(R)=\left\{g \in G\left(R \otimes_{\mathbb{Q}_{p}} K_{0}\right) \mid g(b \sigma)=(b \sigma) g\right\} .
$$

Moreover, if $b \in G\left(W\left(L^{\prime}\right)\left[\frac{1}{p}\right]\right)$ where $L^{\prime}$ is an alg.closed subfield of $L$, and $J^{\prime}$ be the corresponding functor defined with $L^{\prime}$, then the canonical morphism $J^{\prime} \rightarrow J$ is an isomorphism.

Proof: Choose an embedding $G \subset G L\left(V, \mathbb{Q}_{p}\right)$, consider the functor:

$$
F(R)=\left\{g \in \operatorname{End}\left(V_{K_{0}}\right) \otimes R \mid g=b \sigma(g) b^{-1}\right\},
$$

then it is representable by an affine space by the lemma(.1.3.13) applied to the $\sigma$-linear map $g \mapsto$ $b \sigma(g) b^{-1}$.

More precisely, there is a f.d. $\mathbb{Q}_{p}$-vector space $W \subset \operatorname{End}\left(V_{K_{0}}\right)$ that $F(R)=W \otimes_{\mathbb{Q}_{p}} R$. Choose a basis $A_{i}$ of $W$, then $J(R)$ is just the subfunctor of $r_{i} \in R$ that $f_{k}\left(\sum r_{i} A_{i}\right)=0$, and $\operatorname{det}\left(\sum r_{i} A_{i}\right) \neq 0$. Taking a basis of $K_{0}$ over $\mathbb{Q}_{p}$, then these are polynomials with coefficients in $\mathbb{Q}_{p}$. It is automatically smooth by Cartier's theorem??.

The last assertion follows from the proof of(.1.3.13).

Lemma (.1.3.13). Let $N$ be a f.d. isocrystal over $K_{0}=W(L)\left[\frac{1}{p}\right]$ w.r.t. $\sigma^{s}$ for some $s \neq 0$, then the following functor on the category of $\mathbb{Q}_{p}$-algebras

$$
F(R)=\left\{n \in N \otimes_{\mathbb{Q}_{p}} R \mid \varphi(n)=n\right\}
$$

is representable by an affine space over $\mathbb{Q}_{p}$.
Proof: $\quad F(R)$ is just $N^{\varphi} \otimes_{\mathbb{Q}_{p}} R$, so it suffices to show $\operatorname{dim}_{\mathbb{Q}_{p}} N^{\varphi}<\infty$. Firstly assume that $L$ is alg.closed, then this is a consequence of Dieudonné-Manin classification(.1.1.6). This functor $F$ doesn't depend on $L$ once $L$ reaches its alg.closure: if $L$ is alg.closed and $L^{\prime}$ is a field extension, then the corresponding functor $F^{\prime}$ defined by $N \otimes_{W(L)\left[\frac{1}{p}\right]} W\left(L^{\prime}\right)\left[\frac{1}{p}\right]$ coincide with $F$. (This is also by Dieudonné-Manin classification.)
Cor. (.1.3.14). Assume $b$ satisfies a descent condition for $s(.1 .3 .8)$, then $J$ is a $\mathbb{Q}_{p^{s}} / \mathbb{Q}_{p^{-}}$-inner form of the centralizer $G_{s \nu(p)}(.1 .3 .10)$.
Proof: The descent equation shows $b_{s}=s \nu(p)$, so the adjoint $b_{a d}: g \mapsto(b \sigma) g(b \sigma)^{-1}=b \sigma(g) b^{-1}$ defines an element in $H^{1}\left(G\left(\mathbb{Q}_{p^{s}} / \mathbb{Q}_{p}\right), \operatorname{Aut}\left(G_{s \nu(p)}\left(\mathbb{Q}_{p^{s}}\right)\right)\right)$, because

$$
\left.\left.\sigma^{k} b_{a d}: g \mapsto \sigma\left(b \sigma^{-1}(g)\right) b^{-1}\right)\right)=\sigma^{k}(b) \sigma(g) \sigma^{k}(b)^{-1}
$$

so

$$
b_{a d} \circ \sigma\left(b_{a d}\right) \circ \ldots \circ \sigma^{s-1}\left(b_{a d}\right): g \mapsto b_{s} g b_{s}^{-1}=s \nu(p) g(s \nu(p))^{-1}=g .
$$

So it defines an inner form, which is just

$$
\left.J^{\prime}(R)=G_{s \nu(p)}\left(\mathbb{Q}_{p^{s}}\right)\right)^{b_{a d} \sigma}=\left\{g \in G_{s \nu(p)}\left(R \otimes_{\mathbb{Q}_{p}} \mathbb{Q}_{p^{s}}\right) \mid g(b \sigma)=(b \sigma) g\right\}
$$

Now it suffices to show $J^{\prime}(R)$ is just $J(R)$ defined in(.1.3.12). For this, notice any $g \in J(R)$ commutes with $b \sigma$ thus commutes with $s \nu(p)$ by(.1.3.7), and the descent condition ( $b \sigma)^{n}=s \nu(p) \sigma^{n}$ shows it commutes with $\sigma^{n}$, so $g \in J^{\prime}(R)$.

Prop. (.1.3.15). Let $G$ be a connected reductive group and $L$ be alg.closed, then the following are equivalent for $b \in G\left(K_{0}\right)$ :

- The slope morphism $\nu$ factors through the center of $G$.
- $b$ is $\sigma$-conjugate to an element in $T\left(K_{0}\right)$ where $T$ is an elliptic maximal torus of $G$.
- The algebraic group $J$ of(.1.3.12) is an inner form on $G$.

In this case, $b$ and its conjugacy class $\bar{b}$ are called basic.
Proof: Cf.[Kottwitz].
Prop. (.1.3.16) (Conjugacy Classes and Base Change). Let $b_{1}, b_{2}$ be two elements of $G\left(W(L)\left[\frac{1}{p}\right]\right)$, then the functor

$$
J(R)=\left\{\left.g \in G\left(R \otimes_{\mathbb{Q}_{p}} W(L)\left[\frac{1}{p}\right]\right) \right\rvert\, g\left(b_{1} \sigma\right)=\left(b_{2} \sigma\right) g\right\}
$$

is representable by a smooth affine scheme over $\mathbb{Q}_{p}$.
Assume $b_{1}, b_{2} \in G\left(W\left(L^{\prime}\right)\left[\frac{1}{p}\right]\right)$ where $L^{\prime}$ where $L^{\prime}$ is an alg.closed field of $L$, and $J^{\prime}$ the corresponding functor, then $J^{\prime} \rightarrow J$ is an isomorphism. In particular, the map from the set of $\sigma$-conjugacy classes in $G\left(W\left(L^{\prime}\right)\left[\frac{1}{p}\right]\right.$ to the set of $\sigma$-conjugacy classes in $G\left(W(L)\left[\frac{1}{p}\right]\right)$ is injective, and it is surjective iff $L$ is also alg.closed and $G$ is connected.
Proof: The surjectivity follows from the fact that every conjugacy class is descent(.1.3.9), and those descent elements are in $G\left(\mathbb{Q}_{s}\right)$ for some $s \geq 0(.1 .3 .10)$, so in $G\left(W\left(L^{\prime}\right)\left[\frac{1}{p}\right]\right)$.

## 4 Period Domain

Def. (.1.4.1) (Associated Partial Flag Variety). Let $G$ be an algebraic group over $\mathbb{Q}_{p}$ and $\mu: \mathbb{G}_{m} \rightarrow G$ is a conjugacy class of cocharacters defined over a finite extension field $E / \mathbb{Q}_{p}$ ??, then there is associated a faithful $\otimes$-functor

$$
\operatorname{Rep}_{\mathbb{Q}_{p}} \rightarrow \mathbb{Z} \text {-graded } R \text {-vector spaces } \rightarrow \text { filtered } E \text {-spaces }
$$

Now call two cocharacters equivalent if their associated functor are isomorphic. Consider the functor

$$
R \mapsto\left\{\text { the equivalence classes in the conjugacy class of } \mu_{R} \text { under } G(R)\right\}
$$

in the category of $E$-algebras, and also consider the closed algebraic subgroup $P(\mu) \subset G$ over $E$ :

$$
P(\mu)(R)=\left\{g \in G(R) \mid g \mu_{R} g^{-1} \text { is equivalent to } \mu_{R}\right\}
$$

then the functor above is representable by the homogenous variety $\mathcal{F}=G_{E} / P(\mu)$ defined over $E$.
Prop. (.1.4.2). $\mathcal{F}$ is a projective variety.
Proof: If $V$ is a faithful representation in $\operatorname{Rep}_{\mathbb{Q}_{p}}(G)$, we denote $\operatorname{Flag}(V)$ the partial flag variety over $\mathbb{Q}_{p}$ which associates to any $\mathbb{Q}_{p}$-algebra $R$ the filtration Fil ${ }^{\bullet}$ of $V \otimes_{\mathbb{Q}_{p}} R$ s.t. $\operatorname{gr}^{i}(R)$ are direct summands and $\operatorname{rkFil}{ }^{i}=\operatorname{dim}_{E} \operatorname{Fil}_{\mu}^{i}\left(V_{E}\right)$. Then $\operatorname{Flag}(V)$ is a projective variety, by classical results, and there is a closed immersion

$$
\mathcal{F} \hookrightarrow \operatorname{Flag}(V)_{E}
$$

because the isocrystal on other representations are determined by this faithful representation.
Def. (.1.4.3) ( $p$-adic Period Space). Let $\breve{E}=E K_{0}\left(\bar{F}_{p}\right)^{\wedge}$ be the completion of the maximal unramified extension of $E$, then there is a rigid-analytic structure on $\breve{\mathcal{F}}=\mathcal{F}_{\breve{E}}$. define the $p$-adic period space $\left(\breve{\mathcal{F}}_{b}^{\text {wa }}\right)^{\text {rig }} \subset \breve{\mathcal{F}}^{\text {rig }}$ associated to $(G, b\{\mu\})$ the set of points $\xi$ conjugate to $\mu$ that $(\xi, b)$ is weakly admissible.

Let $J_{b}$ be the algebraic group associated to $b$ as in(.1.3.12), then $J_{b}\left(\mathbb{Q}_{p}\right) \subset G\left(K_{0}\right)$ acts on $\breve{\mathcal{F}}^{\text {rig }}$, and it preserves the set $\left(\breve{\mathcal{F}}_{b}^{\text {wa }}\right)^{\text {rig }}$.
$\left(\breve{\mathcal{F}}_{b}^{\text {wa }}\right)^{\text {rig }}$ has a natural structure of an admissible open subset of $\breve{\mathcal{F}}^{\text {rig }}$. if $b^{\prime}=g b \sigma(g)^{-1}$, then $\mu \mapsto g^{-1} \mu g$ induces an isomorphism from $\left(\breve{\mathcal{F}}_{b}^{w a}\right)^{\text {rig }}$ to $\left(\breve{\mathcal{F}}_{b^{\prime}}^{w a}\right)^{\text {rig }}$. Moreover, if $b$ satisfies descent condition w.r.t. $s>0$, then this admissible open subset is defined over $E . \mathbb{Q}_{p}$.
Proof: Cf.[Rapoport Zink, P26].

## 5 Algebraic Groups of EL/PEL Types

Def. (.1.5.1) (Algebraic Groups of EL/PEL Types). Let $F$ be a finite étale algebra over $\mathbb{Q}_{p}$, $B$ a finite central algebra over $F$, and $V$ is a f.g. $B$-module.

An algebraic group of EL type over $\mathbb{Q}_{p}$ is an algebraic group of the form $G L_{B}(V)$. They are related to the classification of $p$-divisible groups with an endomorphism and level structures.

Let $(-,-)$ be a non-degenerate alternating $\mathbb{Q}_{p}$-bilinear form on $V$ together with a formal involution $*$ on $B$ that

$$
(b v, w)=\left(v, b^{*} w\right) .
$$

Let $F_{0}$ be the field of elements of $F$ fixed by *.
An algebraic group of PEL type over $\mathbb{Q}_{p}$ is an algebraic group over $\mathbb{Q}_{p}$ given by

$$
G(R)=\left\{g \in G L_{B}\left(V \otimes_{\mathbb{Q}_{p}} R\right) \mid \exists c \in X(G), \quad(g v, g w)=c(g)(v, w), \quad \forall v, w\right\}
$$

Prop. (.1.5.2) (Setups). If $G$ is an algebraic group of EL/PEL type, $K_{0}=W\left(\overline{\mathbb{F}_{p}}\right)\left[\frac{1}{p}\right], b \in G\left(K_{0}\right)$, then we associate to $b$ and the natural representation of $G$ on $V$ the isocrystal

$$
(N(V), \Phi)=\left(V \otimes_{\mathbb{Q}_{p}} K_{0}, b(1 \otimes \sigma)\right) .
$$

This isocrystal is equipped with an action of $B$, and in the PEL case an alternating bilinear form

$$
\psi: N(V) \otimes N(V) \rightarrow 1(n) .
$$

where $n=v_{p}(c(b))$. In fact, we can find some unit $u$ that $c(b)=p^{n} u \sigma(u)^{-1}$, then the pairing is defined as

$$
\psi\left(v, v^{\prime}\right)=u^{-1}\left(v, v^{\prime}\right),
$$

any other choices of $u$ multiplies $\psi$ by an element in $\mathbb{Z}_{p}^{*}$.
We will fix in addition a conjugacy class of cocharacters $\mu: \mathbb{G}_{m} \rightarrow G$ defined over a field $E$, and the associated homogenous algebraic variety $\mathcal{F}$ defined over $E$ of filtrations(.1.4.1). $\mathcal{F}$ is equipped with a $B$-action, as $G \in G L_{B}(V)$.

Notice in the PEL case, these filtrations satisfy $\mathcal{F}^{i}=\left(\mathcal{F}^{m-i+1}\right)^{\perp}$, where $m=c o \mu \in \operatorname{Hom}\left(\mathbb{G}_{m}, \mathbb{G}_{m}\right) \cong$ $\mathbb{Z}$. This is due to the fact $(k v, k w)=k^{m}(v, w)$ and the fact the pairing is non-degenerate.

Prop. (.1.5.3) (Shimura Field). Fix a conjugacy class of cocharacters $\{\mu\}$ defined over $E$ and $\mu_{0} \in\{\mu\}$, its corresponding filtration $\mathcal{F}_{0}^{\bullet}$, The field $E \operatorname{in}(.1 .5 .2)$ can be described as the field of definition of the isomorphism class of $\mathcal{F}_{0}^{\bullet}$ as a $B$-invariant filtration, or equivalently as the finite extension of $\mathbb{Q}_{P}$ generated by the traces

$$
\operatorname{tr}\left(d ; \operatorname{gr}_{\mathbb{F}_{0}}^{i}\left(V \otimes_{\mathbb{Q}_{p}} \overline{\mathbb{Q}_{p}}\right)\right), d \in B, i \in \mathbb{Z} .
$$

And the filtration $\mathcal{F}$ is described as the functor that for any $E$-algebra $R, \mathcal{F}(R)$ is the set of filtrations $\mathcal{F}^{\bullet}$ of $V \otimes_{\mathbb{Q}_{p}} R$ by $R$-modules that are direct summands that

$$
\operatorname{tr}\left(d ; \operatorname{gr}_{\mathcal{F}}^{i}\left(V \otimes_{\mathbb{Q}_{p}} R\right)\right)=\operatorname{tr}\left(d ; \operatorname{gr}_{\mathbb{F}_{0}}^{i}\left(V \otimes_{\mathbb{Q}_{p}} \overline{\mathbb{Q}_{p}}\right)\right) .
$$

and moreover in the PEL case satisfies $\mathcal{F}^{i}=\left(\mathcal{F}^{m-i+1}\right)^{\perp}$.
Proof: 1: The field of definition $E$ of the conjugacy class $\{\mu\}$ is determined by Tannakian duality, so it suffices to check over which field these two filtrations are isomorphic as $G$-filtrations, but $G$ is just the group fixing the $B$-module structure, so it suffices to show they are equivalent as $B$-modules, which is then determined by the traces, by??.

2: It suffices to show $\mathcal{F}$ is a homogenous space under $G$. We restrict to the PEL case, the EL case is simpler. After base change from $\mathbb{Q}_{p}$ to $\overline{\mathbb{Q}_{p}}$, the data decomposes to the following types:

- $(A): B=\operatorname{End}(W) \times \operatorname{End}\left(W^{\vee}\right)$ where $W$ is a f.d. $\overline{\mathbb{Q}_{p}}$-vector space and $(u, v)^{*}=\left(v^{t}, u^{t}\right)$.

And $V=W \otimes V^{\prime} \oplus W^{\vee} \otimes V^{\prime V}$ where the pairing is natural and makes the sum orthogonal.

$$
G=\left\{\left(1 \otimes g, c \cdot\left(1 \otimes g^{-t}\right) \mid g \in G L\left(V^{\prime}\right), c \in X(G)\right\}\right.
$$

- $(C): B=\operatorname{End}(W)$ where $W$ is a f.d. $\overline{\mathbb{Q}_{p}}$-vector space equipped with a symmetric bilinear form $(-,-)_{W}$ and $*$ is the transposition w.r.t it.
And $V=W \otimes V^{\prime}$ where $V^{\prime}$ is equipped with an alternating form $(-,-)_{V^{\prime}}$ that $(-,-)_{V}=$ $(-,-)_{W} \otimes(-,-)_{V^{\prime}}$.

$$
G=\left\{c g \mid g \in \operatorname{Sp}\left(V^{\prime}\right), c \in X(G)\right\}
$$

- $(B D)$ : As in $(C)$, except that $(-,-)_{W}$ is skew-symmetric and $(-,-)_{V^{\prime}}$ is symmetric.

$$
G=\left\{c g \mid g \in S O\left(V^{\prime}\right), c \in C(G)\right\}
$$

Under this decomposition, the functor $\mathcal{F}$ in the proposition is represented by products of partial flags of $V$ :

- $(A): \mathcal{F}^{i}=W \otimes\left(\mathcal{F}^{\prime}\right)^{i} \oplus W^{\vee} \otimes\left(\left(\mathcal{F}^{\prime}\right)^{m+1-i}\right)^{\perp}$ and the correspondence $\mathcal{F}^{\bullet} \mapsto\left(\mathcal{F}^{\prime}\right) \bullet$ identifies $\mathcal{F}$ with the partial flag variety of $V^{\prime}$ with fixed dimensions $\operatorname{dim}\left(\left(\mathcal{F}^{\prime}\right)^{i}\right)$.
- $(B, C D): \mathcal{F}^{\bullet}=W \otimes\left(\mathcal{F}^{\prime}\right)^{\bullet}$ and $\mathcal{F}$ is identified with the partial flag variety of $V^{\prime}$ of fixed dimensions $\operatorname{dim}\left(\left(\mathcal{F}^{\prime}\right)^{i}\right)$ and $\left(\mathcal{F}^{\prime}\right)^{i}=\left(\left(\mathcal{F}^{\prime}\right)^{m+1-i}\right)^{\perp}$.
The $(A)$ case $G$ clearly acts transitively on $\mathcal{F}$, and the $(B, C D)$ case $\left(\mathcal{F}^{\prime}\right)^{i}$ is isotropic for $i \geq(m+1) / 2$, and it determines all other components, so $G$ acts transitively, by Witt's theorem??.
The reason is?? and the fact representations of $B$ is semisimple, then contemplating on the pairing condition.

Prop. (.1.5.4) (Examples of PEL Type). Let $B=D$ be the quaternion algebra over $\mathbb{Q}_{p}$ and * be the involution, i.e.

$$
D=\mathbb{Q}_{p^{2}}[\Pi], \quad \Pi^{2}=p, \quad \Pi a=\sigma(a) \Pi
$$

and

$$
a^{*}=\sigma(a), a \in \mathbb{Q}_{p^{2}}, \quad, \Pi^{*}=\Pi .
$$

Let $(V, \iota)$ be a free $D$-module of rank $n$ with a non-degenerate bilinear form satisfying the conditions $\operatorname{in}(.1 .5 .1)$. Then $G$ is a non-trivial inner form of the group $G S p_{2 n}$ of symmetric similitudes:

Firstly $\mathbb{Q}_{p^{2}} \otimes K_{0} \cong K_{0} \oplus K_{0}$, then $\mathbb{Q}_{p^{s}}$ acts on $K_{0} \oplus K_{0}$ by $\left.a(x, y)=a x, \sigma(a) y\right)$. As $V$ is a $\mathbb{Q}_{p^{2}}$-vector space, there is a decomposition

$$
V=V_{0} \oplus V_{1}
$$

where $\mathbb{Q}_{p^{2}}$ acts on $V_{i}$ by $a(v)=v \cdot \sigma^{i}(a)$, then $G_{K_{0}}$ is just $G S p_{2 n, K_{0}}$, and $G \neq G S p_{2 n}$ as the Galois action $\sigma$ on $\mathbb{Q}_{p^{2}} \otimes K_{0}$ and $K_{0} \cong K_{0} \oplus K_{0}$ are different.

Take $b \in G\left(K_{0}\right)$ the element with $c(b)=p$ and the corresponding isocrystal $(N, \Phi)$ is isotypical of slope $1 / 2 . N$ decomposes as $N_{0} \oplus N_{1}$. Notice now $\Pi$ and $\Phi=b \sigma$ interchanges $N_{i}$, and $\Pi \Phi=\Phi \Pi$. Also $N_{i}$ is isotropic: For $v, w \in N_{i}, a \in \mathbb{Q}_{p^{2}}$,

$$
a(v, w)=(a v, w)=\left(\iota\left(\sigma^{i}(a)\right) v, w\right)=\left(v, \iota\left(\sigma^{i+1}(a)\right) w\right)=(v, \sigma(a) w)=\sigma(a)(v, w)
$$

so $(v, w)=0$.
We can define a new non-degenerate alternating form

$$
\langle-,-\rangle: N_{0} \times N_{0} \rightarrow K_{0}:\left\langle v, v^{\prime}\right\rangle=\left(v, \Pi v^{\prime}\right)
$$

and also a $\sigma$-linear endomorphism of $N_{0}: \Phi_{0}=\left.\Pi^{-1} \circ \Phi\right|_{N_{0}}$. From the condition, $v_{p}\left(\operatorname{det} \Phi_{0}\right)=0$, and $\Phi$ has all the slopes 0 . Also $\left\langle\Phi_{0} v, \Phi_{0} w\right\rangle=\sigma(\langle v, w\rangle)$, as

$$
\left\langle\Phi_{0} v, \Phi_{0} w\right\rangle=\left(\Pi^{-1} \Phi v, \Phi w\right)=\left(\Pi^{-1} b \sigma v, b \sigma w\right)=\sigma(v, \Pi w)=\sigma(\langle v, w\rangle) .
$$

so this alternating form is defined over $\mathbb{Q}_{p}$, denoted by $\left(V_{0},\langle-,-\rangle\right)$, and $\Phi_{0}$ corresponds to $\sigma$. Then $J_{b}=G S p\left(V_{0},\langle-,-\rangle\right)$.

Next we consider

$$
(0)=\mathcal{F}_{0}^{2} \subset \mathcal{F}_{0}^{1} \subset \mathcal{F}_{0}^{0}=V \otimes \overline{\mathbb{Q}_{p}}
$$

be a filtration where $\mathcal{F}_{0}^{1}$ be a $D$-invariant Lagrangian subspace. This corresponds to a cocharacter $\mu \rightarrow G$, and $\mathcal{F}$ is just the $\mathbb{Q}_{p^{2}}$ variety of $D$-invariant Lagrangian subspaces of $V_{\mathbb{Q}_{p^{2}}}$. By(.1.5.3), the Shimura field is $\mathbb{Q}_{p}$.

Let $\mathcal{F} \subset \mathcal{F}(K)$ where $K / K_{0}$ is a field extension, then

$$
\mathcal{F}=\mathcal{F}_{0} \oplus \mathcal{F}_{1}
$$

where $\mathcal{F}_{i} \in N_{0} \otimes_{K_{0}} K$, as $\mathcal{F}$ is $\Pi$-invariant. Now $\mathcal{F}_{0}$ is also a Lagrangian subspace of $\left(V_{0},\langle-,-\rangle\right)$. $\mathcal{F}(K)$ identifies the $K$-points of the Grassmannian of Lagrangian subspaces of $\left(V_{0},\langle-,-\rangle\right)$.

Cor. (.1.5.5). Under the above identification, the subset $\mathcal{F}^{w a}(K)$ of the Grassmannian of Lagrangian spaces $\mathcal{F}$ of $\left(V_{0} \otimes K,\langle-,-\rangle\right)$ is characterized by $\mathcal{F}$ satisfying the the following conditions:

For all totally isotropic subspaces $W_{0} \subset V_{0}$, we have $\operatorname{dim}_{K} \mathcal{F} \cap\left(W_{0} \otimes K\right) \leq 1 / 2 \operatorname{dim} W_{0}$.
Proof: It's clear $\mu(N, \Phi, \mathcal{F})=0$, so weakly-admissibility is equivalent to semi-stability. The uniqueness of the HN-filtration of $\mathcal{F}$ implies its $D$-invariance, thus semi-stability is equivalent to the fact that for any subspace $P \subset N$ stable under $\Phi$ and $D$-action, we have

$$
\operatorname{dim}_{K}\left(\mathcal{F} \cap\left(P \otimes_{K_{0}} K\right)\right) \leq v_{p}(\operatorname{det}(\Phi ; P)) .
$$

Now $\Phi$ is isotypical with slope $1 / 2, v_{p}(\operatorname{det}(\Phi ; P))=\frac{1}{2} \operatorname{dim} P$, and the $D$-invariance of $P$ is equivalent to $P=P_{0} \oplus P_{1}$ and the $\Phi$-invariance of $P$ is equivalent to the $\Phi_{0}$-invariance of $P_{0}$, i.e. $P_{0}$ is a $\mathbb{Q}_{p}$-rational subspace $W_{0} \subset V_{0}$.

Finally we show it suffices to check for totally isotropic subspaces: Let $W_{0}^{\prime}$ be the radical of $W_{0}$, then there is a non-singular alternating form on $W_{0} / W_{0}^{\prime}$, then the image of $\mathcal{F}_{0}^{\prime} \cap\left(P \otimes_{K_{0}} K\right)$ in this quotient is a totally isotropic space, thus has dimension $\leq \frac{1}{2} \operatorname{dim}\left(W_{0} / W_{0}^{\prime}\right)$. then it suffices to check the condition for $W_{0}^{\prime}$.

