Galois category and Riemann existence theorem

Zhiyu Zhang

Exodromy seminar

April 6th, 2021
Outline

1. Galois category
2. Reconstruction
3. Riemann existence theorem
Goal

- Define the Galois category of a scheme X (via stratified shape theory).
- $\text{Gal}(X)$ can recover the étale homotopy type of X.
- (Riemann existence theorem) The analytic and algebraic version can be compared.
Galois 1-category of a scheme

X a coherent i.e qcqs scheme $\leadsto \text{Gal}(X)$:

- **Object x**: geometric points $x \to X$.
- **Morphism $x \to y$**: étale specialization $y \leadsto x$ i.e a lift of y to the strict localization $X(x) = \text{Spec}(O_{X,x_0}^{sh}) \to X$.
Galois 1-category of a scheme

X a coherent i.e qcqs scheme $\rightsquigarrow \text{Gal}(X)$:

- **Object** x: geometric points $x \to X$.
- **Morphism** $x \to y$: étale specialization $y \rightsquigarrow x$ i.e a lift of y to the strict localization $X(x) = \text{Spec}(O_{X,x_0}^{sh}) \to X$.

X^{Zar} is a poset: $x_0 \leq y_0$ if and only if $x_0 \in \overline{\{y_0\}}$.

\rightsquigarrow a functor $\text{Gal}(X) \to X^{Zar}: x \mapsto x_0$, fiber $BG_{\kappa(x_0)}$ over x_0.

$\text{Gal}(X)$ globalizes absolute Galois groups of points of X.
Profinite topology on $\text{Gal}(X)$

$\text{Gal}(X)$ has a topology, like the profinite topology on $G_\kappa(x_0)$.

Idea: use finite level points $u \to X$.

An open basis of $\text{Gal}(X)$: $y \rightsquigarrow x$ lying over a given specialization $v \rightsquigarrow u$.

Can be precise using pyknotic/condensed math.
Theorem

Topological category $\text{Gal}(X)$ can recover the étale homotopy type of X (up to pro-truncation), hence $\pi^\text{et}_*(X, x)$.

Idea: Stratified profinite shape can recover the profinite shape by inverting all morphisms.
∞-category: ...

Topos: the category of sheaves on a site.

∞-topos: an ∞-category X satisfying ∞-Giraud’s axiom.

Geometric morphism: a pair of adjoints $(f^*, f_*) : X \to Y$ s.t f^* is exact.

S: the ∞-category of spaces (animas).

Top_∞: the ∞-category of ∞-topos.

the ∞-category $\text{Pt}(X) := \text{Fun}^*(S, X_{et})$ of points of X: geometric morphisms $S \to X$.

For us, let X_{et} be the ∞-topos of étale sheaves valued in S on the 1-site X^e_{et} of étale X-schemes. X_{et} is 1-localic.
In ∞-topos theory, the category of finite sets is replaced by the ∞-category of π-finite spaces S_π.
A lisse object $F \in X = a$ locally constant sheaf of π-finite spaces that can be trivialized on a finite cover $Y \to X$.
$X^{\text{lisse}} \subseteq X$: full subcategory of lisse objects, which is a bounded ∞-pretopos.
Constructible $= \text{lisse over a stratification of } X.$
Given an ∞-topos $X \in \text{Top}_\infty$, Lurie constructed a pro-∞-groupoid $\Pi_\infty(X) \in \text{Pro}(\mathcal{S})$ called the shape of X. If X is from a nice topological space, $\Pi_\infty(X)$ is the ∞-fundamental groupoid of X.
Stone duality: profinite sets = totally disconnected compact Hausdorff topological spaces.

∞-Stone duality: \(S^\wedge_\pi := \text{Pro}(S_\pi) \to \text{Top}_\infty \) is fully faithful, with a left adjoint \(\hat{\Pi}_\infty : \text{Top}_\infty \to \text{Pro}(S_\pi) \) (profinite shape). Essential images are called Stone \(\infty \)-topoi.
Stone duality: profinite sets = totally disconnected compact Hausdorff topological spaces.

\(\infty \)-Stone duality: \(S^\wedge_\pi := \text{Pro}(S_\pi) \to \text{Top}_\infty \) is fully faithful, with a left adjoint \(\widehat{\Pi}_\infty : \text{Top}_\infty \to \text{Pro}(S_\pi) \) (profinite shape).
Essential images are called Stone \(\infty \)-topoi.

Construction of \(\widehat{\Pi}_\infty \): a "profinite" completion.
For a \(\pi \)-finite space \(X \), \(X \simeq \widehat{\Pi}_\infty(X) \) e.g \(\mathbb{RP}^\infty \simeq B(\mathbb{Z}/2) \).
By design, any quasi-equivalence \(X \to Y \) is a shape-equivalence.
Étale homotopy type of a scheme

X is a locally noetherian scheme. Artin–Mazur defined the étale homotopy type of $X \in \text{Pro}(h_1S)$. Friedlander refined it to étale topological type of $X \in \text{Pro}(S)$.

$\widehat{\Pi}^\text{et}_\infty (X) :=$ the profinite étale topological type.

(Hoyois) $\widehat{\Pi}^\text{et}_\infty (X) \simeq \widehat{\Pi}_\infty (X_{\text{et}})$.

- $\widehat{\Pi}^\text{et}_\infty (\text{Spec}(k)) = BG_k$.
- $\widehat{\Pi}^\text{et}_\infty (\mathbb{C}\mathbb{P}^1) = (S^2)^{\wedge}_\pi$.
Bounded coherent ∞-topoi can be classified via ∞-pretopoi.
[SAG, Theorem E.2.3.2] For any ∞-topos X, $\text{Sh}_{\text{eff}}(X^{\text{lisse}}) \in \mathbf{Top}^{\text{Stone}}_{\infty}$ (effective epimorphism topology) is called Stone reflection of X, $\text{Sh}_{\text{eff}}(X^{\text{lisse}}) \leftrightarrow \hat{\Pi}_{\infty}(X)$.

∞-Stone duality $\sim \text{Fun}\left(\hat{\Pi}_{\infty}(X), S_\pi\right) \simeq X^{\text{lisse}}$.

In particular for qcqs noetherian scheme X,

$$\text{Fun}\left(\hat{\Pi}_{\infty}^{\text{et}}(X), S_\pi\right) \simeq X^{\text{lisse}}_{\text{et}}.$$

Next step: define a stratified version of $\hat{\Pi}_{\infty}(X_{\text{et}})$.

P a finite poset.
A P-stratified space $X = \text{an } \infty$-category X with a conservative functor $X \to P$.

Hochster duality: profinite posets $=$ spectral topological spaces.
$
\rightsquigarrow
S$-stratified spaces for any spectral topological space S.

$\text{Str}_\pi = \text{the } \infty$-category of π-finite stratified spaces.
S-stratified ∞-topos $=$ an ∞-topos X equipped with a geometric morphism $X \to \text{Sh}(S)$ to the ∞-topos of sheaves of spaces on S.
Theorem

\[\text{Pro}(\text{Str}_\pi)_S \leftrightarrow \text{StrTop}_{\infty,S} \] extending

\[[\Pi \to P] \mapsto [\text{Fun}(\Pi, S) \to \text{Fun}(P, S)] \]

is fully faithful, with a left adjoint

\[\hat{\Pi}^S_{(\infty,1)} : \text{StrTop}_{\infty,S} \to \text{Pro}(\text{Str}_\pi)_S \] (profinite S-stratified shape).

Essential images are called spectral \(\infty \)-topoi.
Similar to Stone reflection, there is a spectralification functor

\[\text{StrTop}_{\infty,S} \to \text{StrTop}^{\text{spec}}_{\infty,S} \overset{\hat{\Pi}^S_{(\infty,1)}}{\cong} \text{Pro}(\text{Str}_\pi)_S, \quad X \mapsto \text{Sh}_{\text{eff}}(X^{S\text{-cons}}). \]
For any \(S\)-stratified \(\infty\)-topos \(X\), adjunction gives a natural equivalence:

\[
\text{Fun}\left(\hat{\Pi}^{S}_{(\infty,1)}(X), S_{\pi}\right) \cong X^{S-\text{cons}}.
\]

The \(\infty\)-category of representations of \(\hat{\Pi}^{S}_{(\infty,1)}(X)\) valued in \(\pi\)-finite spaces = \(S\)-constructible sheaves on \(X\).
Return to the coherent scheme X, $S := X^{Zar}$, \rightsquigarrow stratified ∞-topos $X^{et} \to X^{Zar}$. It’s a spectral ∞-topos. Profinite stratified étale homotopy type $\hat{\Pi}^{et}_{(\infty,1)}(X) := \hat{\Pi}^{X^{Zar}}_{(\infty,1)}(X_{et})$.

Theorem

\[\text{Gal}(X) \simeq \hat{\Pi}^{X^{Zar}}_{(\infty,1)}(X_{et}). \]

Corollary

\[\text{Fun} \left(\text{Gal}(X), S_\pi \right) \simeq X^{\text{cons}}_{\text{ét}}. \]
Reconstruction

Idea: A constructible sheaf \mathcal{F} is lisse iff all specializations of \mathcal{F} are isomorphisms.

Homotopy theorem
For any spectral S-stratified ∞-topos X, the profinite classifying space of $\hat{\Pi}_S^{(\infty,1)}(X)$ is precisely $\hat{\Pi}_\infty(X)$.

In particular, there is an equivalence $\theta_X : \hat{\Pi}_\infty^\text{ét}(X) \to \varepsilon(\text{Gal}(X))$. This finishes reconstruction theorem, let’s see some examples.
An example

We use the language of spatial décollages.

\[X = \mathbb{A}^1_{\mathbb{C}}, \quad P = [0 \to \infty, 1 \to \infty], \] a stratification \(X \to P \) given by

\[X(0) = Z_0 = \{0\}, \quad X(1) = Z_1 = \{1\}, \quad X(\infty) = U = \mathbb{A}^1_{\mathbb{C}} - \{0, 1\}. \]

\[\text{Gal}^P(X) \to P. \]

- \(\text{Gal}^P(X)(0) = \hat{\Pi}_\infty(X(0)) = B\{\ast\}. \)
- \(\text{Gal}^P(X)(1) = \hat{\Pi}_\infty(X(1)) = B\{\ast\}. \)
- \(\text{Gal}^P(X)(\infty) = \hat{\Pi}_\infty(X(\infty)) = BF(x_0, x_1) \) the classifying
groupoid for profinite completion of the free group of two
variables.
- \(\text{Gal}^P(X)(0 \to \infty) = \hat{\Pi}_\infty(X(x_0) \setminus \{x_0\}) = B\hat{\mathbb{Z}}. \)
- \(\text{Gal}^P(X)(0) \leftarrow \text{Gal}^P(X)(0 \to \infty) \to \text{Gal}^P(X)(\infty). \)
Another example

Let \((A, K, k)\) be a DVR, \(S = \text{Spec}A, s = \text{Spec}k, \eta = \text{Spec}K\).
\(S_{et}\) is a naturally [1]-stratified spectral \(\infty\)-topos, with closed stratum \(s_{et}\) and open stratum \(\eta_{et}\).

\[
s_{et} \times_{S_{et}} S_{et} = S_{et}^h. \quad s_{et} \times_{S_{et}} \eta_{et} = \eta_{et}^h.
\]

Example

\[
\hat{\Pi}_\infty^{\text{ét}}(\eta) \simeq B\Gamma_K, \quad \hat{\Pi}_\infty^{\text{ét}}(\eta^h) \simeq BD_A,
\]

\[
\hat{\Pi}_\infty^{\text{ét}}(\eta^{sh}) \simeq BI_A, \quad \hat{\Pi}_\infty^{\text{ét}}(S^h) \simeq BG_k.
\]

\(BG_k \leftarrow BD_A \rightarrow BG_K\).
Let K be a number field, and write O_K be the ring of integers of K.

$\text{Gal}(O_K)$ has objects (up to iso) the prime ideals of O_K.

The profinite stratified etale shape of $\text{Spec} O_K$ is stratified by the various closed strata, each of which is an embedded profinite "circle" $BG_{k(p)} \cong \hat{\mathbb{Z}}$ i.e a knot.

Enveloping each knot is a tubular neighborhood, given by $\text{Gal}(\text{Spec} O_{p}^{sh})$. And the deleted tubular neighborhood is given by BG_{Kp}.
Riemann existence theorem

\(X \) a finite type \(\mathbb{C} \)-scheme.
\(X^{an} = \) complex points of \(X \) with analytic topology.
SGA4 \(\leadsto \) a geometric morphism of 1-localic \(\infty \)-topoi

\[\varepsilon_{X,*} : X^{an} \to X_{et} \]

s.t for any \(f : X \to Y \), we have \(f^{et}_{*} \varepsilon_{X,*} \simeq \varepsilon_{Y,*} f^{an}_{*} \).
Riemann existence theorem

Riemann Existence Theorem

\[\varepsilon_{X,*} \text{ restricts to an equivalence} \quad X^\text{lisse}_{\text{ét}} \simeq X^\text{lisse}_{\text{an}} \quad \text{between} \]
\[\infty\text{-categories of lisse sheaves}. \]

Equivalently, it induces an equivalence of profinite spaces

\[(X^{\text{an}})^{\wedge}_\pi = \hat{\Pi}_\infty (X^{\text{an}}) \simeq \hat{\Pi}_\infty (X^{\text{et}}). \]
Note $\varepsilon_{X,*} : X_{an} \to X_{et}$ is over $S = X^{Zar}$ i.e S-stratified, the pullback functor $\varepsilon^{X,*}$ restricts to a morphism of ∞-pretopoi:

$$\varepsilon^{X,*} : X^{S-\text{cons}}_{et} \to X^{S-\text{cons}}_{an}.$$

$$(X/S)_{an} := \text{Sh}_{\text{eff}}\left(X^{S-\text{cons}}_{an}\right), \quad (X/S)_{et} := \text{Sh}_{\text{eff}}\left(X^{S-\text{cons}}_{et}\right).$$

$$\Rightarrow \varepsilon_{X,*} : (X/S)_{an} \to (X/S)_{et}.$$

Proposition 12.6.4 in [Exo]

The pullback functor $\varepsilon^{X,*}$ restricts to an equivalence on constructible sheaves.
Proof by reduction

Idea: reduce to lisse version by gluing. Do induction for dimension of X. If $\dim = 0$, then constructible=lisse, done. Write X^{Zar} as limits of $S = Z^{Zar} \cup \{\infty\}$.

$$(Z/Z^{Zar})_{an} \xrightarrow{i_*} (X/S)_{an} \xleftarrow{j^*} (U/\infty)_{an}.$$

$Z_{et} \xrightarrow{i_*} (X/S)_{et} \xleftarrow{j^*} (U/\infty)_{et}.$

An ∞-topos X can be recovered from a closed subtopos Z, its open complement U, and the gluing information in the deleted tubular neighborhood W of Z in U. $W = Z \times_X U$ (oriented fiber product).
Proof by reduction

Idea: reduce to lisse version by gluing. Do induction for dimension of X. If $\dim = 0$, then constructible=lisse, done. Write X^{Zar} as limits of $S = Z^{Zar} \cup \{\infty\}$.

$$(Z/Z^{Zar})_{an} \leftrightarrow (X/S)_{an} \leftrightarrow (U/\infty)_{an}.$$

$$(X/S)_{et} \leftrightarrow (U/\infty)_{et}.$$

An ∞-topos X can be recovered from a closed subtopos Z, its open complement U, and the gluing information in the deleted tubular neighborhood W of Z in U. $W = Z \times_X U$ (oriented fiber product).

ϵ is natural, i.e $f^\an \epsilon^X, * F \simeq \epsilon^Y, * f^\et F$ holds for any constructible sheaf $F \in X_{et}$.

\leadsto the gluing data are also matched, we’re done.
Van Kampen Theorem

If $X = Z \cup^\phi U$ is a bounded coherent constructible $[1]$-stratified ∞-topos. Then the pushout of the morphisms

$\hat{\Pi}_\infty(Z \times_X U) \to \hat{\Pi}_\infty(Z)$, $\hat{\Pi}_\infty(Z \times_X U) \to \hat{\Pi}_\infty(U)$ is exactly $\hat{\Pi}_\infty(X)$.
The natural morphism $\epsilon : \text{Gal}_{an}(X) \to \text{Gal}(X)$ is an equivalence.
$\text{Gal}_{an}(X)$ is related to the exit path category of X^{an} in topology.
An anabelian application

Let k be a finitely generated field of characteristic 0. Then a normal k-variety X can be reconstructed from the stratified homotopy type of $(X \otimes_k \bar{k})^{an}$ with its action of G_k.
Thank you!