$E \cong 0_E, \pi, \mathbb{F}_q$ as usual

Thm S perfectoid space / \mathbb{F}_q

$Z \longrightarrow X_S \equiv X_{S,E}$ smooth map of (sous-perfectoid) adic spaces

$s \in Z$ quasi-projective (Zariski closed embedding $Z \hookrightarrow U \subset \mathbb{A}^n_{X_S}$)

Letting $M_Z \leq M_Z = \{\text{sections of } Z \to X_S \}$

be the open subspace $T / S \mapsto \{ X_T \to X_S \}$

where s^*T_{Z/X_S} has everywhere > 0 HN slope
then the map $\mathcal{M}^\text{smooth}_Z \to S$ is l-cohom. smooth $\forall l \neq p$.

(Recall: $\mathcal{M}_Z \to S$ is repr. in loc spat. diamond, locally finite dim tag)

\Rightarrow same for $\mathcal{M}^\text{smooth}_Z$

Strategy: 1) formal smoothness of $\mathcal{M}^\text{smooth}_Z$

2) formal smooth + "geo finite dim"

$\Rightarrow \{ F_i \text{ f-ULA} \} \Leftrightarrow f$ cohom. smooth

3) $Rf^! F_i$ invertible

1) "formal smoothness" $T_0 \to CT$

Zar closed im of aff'ld perf'd spcws

(important, can't assume just local diamonds)
$\Rightarrow \exists T' \rightarrow T$ étale containing T_0 in image

$s.t. \quad T_0 \times_T T' \rightarrow M^\text{smooth}_2$

pf: tricky, explicite BC spaces argument

2) Prop \exists a $\text{ahom. smooth + formally smooth}$ subject to map $T_0 \rightarrow M^\text{smooth}_2$ locally finite étale compatifiable

st T_0 is a perf'd space st T_0 locally admit a Zariski closed embedding into finite dim perf'd balls

proof: $M^2_2 \subset M^{1p^n}_S$ locally Zar closed (in suitable sense)

$\text{c pullback of surj is surj }$

only need do it for $M^{1p^n}_S$
\[M^{p^n}_S \subseteq \bigcup_{d>0} \text{ open } d > \varepsilon \]

\[\Rightarrow \text{ enough for } BC(O(d)^{n+1})_S | E^{x} \]

this can be done explicitly?

Cor
\[F_V \text{ is ULA for } M^{sm}_Z \rightarrow S \]

prof: enough for \[T_0 \rightarrow S \text{ (check locally)} \]

\[\text{coh, smooth} \]

Lem \[T_0 \rightarrow S \text{ map of aff'd perf'd space} \]

\[s.t. \ (1) \ T_0 \rightarrow S \text{ formally smooth} \]

\[2) \ T_0 \rightarrow \text{LB}_S \text{ Zariski closed in a finite dim perf'd ball} \]

Then \[F_V \text{ is ULA for } T_0 \rightarrow S \]
prof: \[T_0 \times_T T' \longrightarrow T_0 \xrightarrow{\text{étale}} T = \operatorname{IB}_S^n \rightarrow S \]

\[\Rightarrow \]

Shrinking \(T' \), can even find a retraction

\[T' \rightarrow T_0 \times_T T' \]

\[\Rightarrow \]

etale \[T_0 \times_T T' \]

Retract of \[T_0 \]

ULA \[\leftarrow \]

ULA \[\xrightarrow{\text{étale}} \]

ULA is étale local

(even abom. smooth)

being ULA is stable under retracts

follows either by defin

or from categorical characterisation
3) \(Rf^* \left(\mathcal{F}_\ell \right) \) is invertible is locally isomorphic to \(\mathcal{F}_\ell \mid_{\mathcal{X}} \).

Fact: If \(A \) is a \(\text{f-ULA} \) for \(f : X \to S \), then \(1D \times S (A) \) is again \(\text{f-ULA} \) and its formalism commutes with any \(s' \to S \) base change.

Being invertible can be checked \(\nu \)-locally, so can be checked after pullback along \(\nu \)-cover.

\(\Rightarrow \) Passing to universal section of

\[M^\text{smooth}_Z \to S \]

enough to prove that for a section

\[s : S \to M^\text{smooth}_Z \]

\(\cong (s : X_S \to Z) \)
the pullback \(s^* Rf^! IF_\ell \subset \text{Det}(S, IF_\ell) \) is invertible.

Now we use deformation to the normal cone:

\[
\begin{array}{ccc}
S & \rightarrow & \sim \rightarrow \sim \rightarrow \sim \rightarrow Z \\
\downarrow & & \downarrow \text{smooth} & \downarrow & \downarrow \\
X_S & \rightarrow & X_S \times \mathbb{A}^1 \\
\end{array}
\]

s.t. \(\sim \times \mathbb{A}^1 \{1\} = Z \)

\(\sim \times \mathbb{A}^1 \{0\} \) = normal cone of \(s \) in \(Z \)

\(= \text{geometric vector bundle over to } s^* T_Z|_{X_S} \)

\[
\begin{array}{ccc}
E \times S & \rightarrow & \mathbb{A}^m \\
\cap & \rightarrow & \cap \\
X(S \times E) \rightarrow X_S \times \mathbb{A}^1 \\
\end{array}
\]
Get $\bar{\mathcal{Z}}' \to X \times S \times \mathbb{E}$ fibre over $S \times \{1\}$ is \mathbb{Z} over $S \times \{0\}$ is $s^*T_2|_{X \times S}$

(0 is still in closure of \mathbb{E} under action of \mathbb{E}_x)

$\tilde{\mathcal{Z}}'$ still quasi-proj, all previous results apply

$\tilde{f}: M_{\tilde{\mathcal{Z}}'} \to S \times \mathbb{E}$

and $R\tilde{f}^!\mathcal{F}_i$ is \tilde{f}-ULA

$R\tilde{f}^!\mathcal{F}_i |_{S \times \{1\}} = Rf^!\mathcal{F}_i$

$+ R\tilde{f}^!\mathcal{F}_i |_{S \times \{0\}}$ = dualizing complex is invertible for $BC(s^*T_2|_{X \times S})$
Q: explicit

\[S^* Rf' \mathcal{F} \text{ is invertible} \]

deformation to the normal cone

(Similar argument by Clausen to show dualizing sphere of p-adic lie gp agrees and \ldots \text{ of its lie alg})

Application to \(\text{Det}(\text{Bun}_A, \mathcal{L}) \)

Recall charts for \(\text{Bun}_A \):

Def'n: Let \(M \) be the moduli space of \(\mathbb{Q} \)-filtered \(G \)-bundles, i.e.

\[
\text{exact } \otimes - \text{ functor } \text{Rep}_E G \xrightarrow{\rho} (\mathbb{Q} \text{-Fil Bun}_{A^s})
\] (increasing filtration)
$\text{st \: A \: all \: } V \in \text{Rep}_E \text{ G}$

$p(V)^\lambda := \bigcup_{\lambda' \leq \lambda} \bigcup_{V \text{ semi-stable of slope } \lambda'} p(V) \leq \lambda$

"opposite HN filtrations."

Then $\bigsqcup_{b \in B(G)} M_b = M \to \text{Bun}_G$

pass to associated graded bundle

$\bigsqcup_{b \in B(G)} \left[* \big/ G_b(E) \right]$

Thm $M \to \text{Bun}_G$ is a hom, smooth

Example: $\text{GL}_2 \quad b = O \oplus O(1)$
Then \(M_b \) classify extensions

\[
0 \rightarrow L \rightarrow E \rightarrow L' \rightarrow 0
\]

\[
\deg L = 0 \quad \deg L' = 1
\]

\[G = \text{GL}_n : \text{similar successive extensions} \]

Thm is a consequence of Jacobian criterion

(Take any \(S \rightarrow \text{Bun}_A \) \(\cong E / X_S \)

\(Z = \) moduli space of \(\mathbb{Q} \)-fil on \(E \)

Then \(M \in M_Z \) actually lie in

\[M^\text{smooth} \] by condition on shapes.
Now fix be $\text{B}(\mathcal{G})$, consider

$$
\pi_b: \quad \mathcal{M}_b \longrightarrow \text{Bun}\mathcal{G}
$$

"chart for $\text{Bun}\mathcal{G}$ near Bun_b^G".

Structure of \mathcal{M}_b:

- \[\mathcal{M}_b = [\tilde{\mathcal{M}}_b / G_b(E)] \]

In $\tilde{\mathcal{M}}_b$, graded bundle is trivialized

\[\mathcal{E} \quad \text{e.g.} \quad \{ 0 \rightarrow 0 \rightarrow \mathcal{E} \rightarrow \mathcal{O}(1) \rightarrow 0 \} \]

"base point" \(* \in \tilde{\mathcal{M}}_b \) corresponding to split extension
\[[\ast / G_b(E)] \subseteq M_b \]

\[\xymatrix{ \ast \\ \text{Bun}_b^b \\ \text{Bun}_A \ar[u]_{\text{Bun}_b^b} } \]

(i.e. if \(E \in \text{Bun}_A^b \) then HN fil of \(E \) gives splitting of given \(Q \)-fil)

\[\tilde{M}_b \rightarrow \ast \text{ rep in \ loc \, spot \ diamonds, \ cohom, smooth} \]

successive ext of negative BC spaces of \(\text{dim} = \langle 2p, V_b \rangle \)
\[\{ 0 \to O \to E \to O(\frac{1}{2}) \to 0 \} \]

\[= \text{BC}(O(-1)) [2] \]

- \(\tilde{M}_b \backslash \ast = \tilde{M}_b^0 \) is a spatial diamond

\(\Rightarrow \) qcqs! , but not qcqs!^2

In \(\text{GL}_2 \)-example, it's

\[
\frac{(\text{Spa} \, \overline{F_q((t^{1/2})}))/\overline{\text{SL}_2(D)}}{\text{aff'd perfectoid profinite}} \]

\(\text{alg} \)

(On \(\tilde{M}_b^0 \), \(E = O(\frac{1}{2}) \) Picking such iso

\[\text{this is} \]

\[\text{BC}(O(\frac{1}{2})) \backslash \{ 0 \} = \text{Spa} \, \overline{F_q((t^{1/2})}. \]

\(t \), so \(t \) can't go to zero
Warning. In \(GL_2 \)-example

modulo some \(\hat{M}_b \leq \hat{M}_b = \hat{M}_b^0 \cup \mathcal{B} \)

\(\text{gp action} \)

\(\overline{\text{Spa}(\mathbb{F}_q((t\frac{1}{T^m})))} \)

formal punctured open disc

after base change to \(\mathbb{C} \):

- \(\hat{M}_b \) "strictly local": as strict localization at \(b \)

\(\text{this point } * \) sits

\(\text{near } |t| = 1 \)

not near origin \(|t| = 0 \)!
If any \(A \in D_{et}(\tilde{\mathcal{M}}_b, \Lambda) \), the restriction
\[
R^_\ast (\tilde{\mathcal{M}}_b, A) \to R^_\ast (*, A)
\]
is an isomorphism.

Sketch the cone of this map is
\[
R^_\ast_{c.s.} (\tilde{\mathcal{M}}^0_b, A)
\]
compact supported towards *
no supported condition towards boundary of \(\tilde{\mathcal{M}}_b \)

Special case of: e.g.

Let \(X = (\tilde{\mathcal{M}}^0_b) \) spatial diamonds dim \(\leq \omega \)
\[
\begin{array}{c}
X \to * \\
partially proper
\end{array}
\]
\(\xrightarrow{\text{`one-pt' compactification}} \)

i.e. \(X(R, R^+) = X(R, R^0) \)
Then for any C/\mathbb{F}_q

X_C has "two ends"? precise examples: $X = \text{Spa } (R, R^+) \text{ aff'd perf'd}$

$C = \text{Spa } (\mathbb{F}_q ((t)))$

$X_C \rightarrow X \times \text{Spa } (\mathbb{F}_q ((t)))$

\[\text{profinite} \rightarrow \text{punctured open unit} \rightarrow \text{disc } / X\]

one boundary = origin
another boundary = "boundary of" unit disc

\Rightarrow can define "partial compact supported cohomology"
\[R_{\theta-c}^p (X_c, A) \]

Thm

\[R_{\theta-c}^p (X_c, A) = 0 \]

Sketch:

Reduce to \(X = \text{Spa} \bar{F}_q ((t^{1/p^m})) \)

(Use proper base change + "correspondence")

\[+ A = \Lambda + \text{compute} \]

(Not many \(A \))

Picture:

Say \(M \) topological manifold

free action \(\mathbb{R} \circlearrowright M \) "flow"

\[\text{s.t. } \overline{M} = M / \mathbb{R} \text{ is compact} \]
two boundaries
"source of flow"

collapse to "end of flow"

+ for all $A \in D(M/\mathbb{R}, \mathbb{Z})$,

$$R^{\partial}_{\sigma-c}(M, A) = 0$$

pf: Flow contracts everything

"later for hyperbolic localization"

How is this analogous?

Roughly:

$$C = \overline{F_q ((t^R))} \supseteq_{\mathbb{R}, 0} \text{exp}_{\mathbb{R}} \text{rescaling}$$
$X_C \subseteq \mathbb{R}$

$X_C \subseteq M$

$X_C/\mathbb{R} \rightarrow \mathbb{R}$

Prop: "ends"

Cor. X_C as above satisfies "odd-dim' Poincaré duality"

$RP_C(X) \twoheadrightarrow RP_{\vartheta-c_1}(X) \otimes RP_{\vartheta-c_2}(X)$

$\Rightarrow RP_C(X) \simeq RP_C(X)$
Q: $T_0 \rightarrow M_2$?

shall all work in practice

If X Zariski closed in finite-dim perfectoid ball $/C$

is $\dim X = \dim \text{tng} X$?