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Lectures on Springer theories and orbital integrals

Zhiwei Yun

Abstract. These are the expanded lecture notes from the author’s mini-course
during the graduate summer school of the Park City Math Institute in 2015. The
main topics covered are: geometry of Springer fibers, affine Springer fibers and
Hitchin fibers; representations of (affine) Weyl groups arising from these objects;
relation between affine Springer fibers and orbital integrals.
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0. Introduction

0.1. Topics of these notes These are the lectures notes from a mini-course that
I gave at the PCMI graduate summer school in 2015. The goal is twofold. First
I would like to introduce to the audience some interesting geometric objects that
have representation-theoretic applications, and Springer fibers and their general-
izations are nice examples of such. Second is to introduce orbital integrals with
emphasis on its relationship with affine Springer fibers, and thereby supplying
background material for B-C. Ngô’s mini-course on the Fundamental Lemmas.

The geometric part of these lectures (everything except §3) consists of the study
of three types of “fibers”: Springer fibers, affine Springer fibers and Hitchin fibers,
with increasing complexity. We will study their geometric properties such as
connectivity and irreducible components. We will construct certain group ac-
tions on these varieties, and use the action to study several nontrivial examples.
Most importantly we will study certain Weyl group actions on the cohomology
of these fibers which do not come from actions on the varieties themselves. The
representation-theoretic significance of these three types of fibers and the analogy
between them can be summarized in the following table.

Springer fibers affine Springer fibers Hitchin fibers
field k local field F = k((t)) global field k(X)

symmetry W W̃ W̃

extended sym graded AHA graded DAHA graded DAHA
rep theory characters of orbital integrals trace formula

when k = Fq G(k) for G(F) for G over k(X)

Here AHA stands for the Affine Hecke Algebra, while DAHA stands for the
Double Affine Hecke Algebra; X denotes an algebraic curve over k; W and W̃ are
the Weyl group and extended affine Weyl group.
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In these lecture notes we do not try to give complete proofs to all statements
but instead to point out interesting phenomena and examples. We do, however,
give more or less complete proofs of several key results, such as

• Theorem 1.5.1 (the Springer correspondence);
• Theorem 2.5.2 (finiteness properties of affine Springer fibers);
• Theorem 3.4.8 (cohomological interpretation of stable orbital integrals).

0.2. What we assume from the readers The target readers for these lectures are
beginning graduate students interested in geometric representation theory. We
assume some basic algebraic geometry (scheme theory, moduli problems, point
counting over a finite field, etc) though occasionally we will use the language
of algebraic stacks. We also assume some Lie theory (reductive groups over an
algebraic closed field and over a local field), but knowing GLn and SLn should
be enough to understand most of these notes.

The next remark is about the cohomology theory we use in these notes. Since
we work with algebraic varieties over a general field k instead of C, we will be us-
ing the étale cohomology with coefficients in `-adic sheaves (usually the constant
sheaf Q`) on these varieties. We denote the étale cohomology of a scheme X over
k with Q`-coefficients simply by H∗(X). Readers not familiar with étale cohomol-
ogy are encouraged to specialize to the case k = C and understand H∗(X) as the
singular cohomology of X(C) with Q-coefficients. Perverse sheaves will be used
only in §1.5.

Acknowledgement I would like to thank the co-organizers, lecturers and the
staff of the PCMI summer program in 2015. I would also like to thank the au-
dience of my lectures for their feedback. I am especially grateful to Jingren Chi
who carefully read through the first draft of these notes and provided helpful
suggestions. I also thank the referee for many useful suggestions.

1. Lecture I: Springer fibers

Springer fibers are classical and fundamental objects in geometric representa-
tion theory. Springer [46] first discovered that their cohomology groups realized
representations of Weyl groups, a phenomenon known as the Springer correspon-
dence. As singular algebraic varieties, Springer fibers are interesting geometric
objects by themselves. They are also connected to the representation theory of
finite groups of Lie type via character sheaves.

1.1. The setup In this section, let k be an algebraically closed field. Let G be a
connected reductive group over k whose adjoint group is simple (so the adjoint
group Gad is determined by one of the seven series of Dynkin diagrams). Assume
that char(k) is large compared to G. Let r be the rank of G.
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Sometimes it will be convenient to fix a Cartan subalgebra t of g, or equiva-
lently a maximal torus T ⊂ G. Once we have done this, we may talk about the
roots of the T -action on g.

Let B be the flag variety of G: this is the G-homogeneous projective variety
parametrizing Borel subgroups of G. Choosing a Borel subgroup B ⊂ G, we may
identify B with G/B.

Let g be the Lie algebra of G. For X ∈ g, let CG(X) denote the centralizer of X
in G, i.e., the stabilizer at X of the adjoint action of G on g.

Let N ⊂ g be the subvariety of nilpotent elements. This is a cone: it is stable
under the action of Gm on g by scaling. It is known that there are finitely many
G-orbits on N under the adjoint action.

1.2. Springer fibers

1.2.1. The Springer resolution The cotangent bundle Ñ := T∗B classifies pairs
(e,B) where e ∈ N and B is a Borel subgroup of G such that e ∈ n, where n is the
nilpotent radical of Lie B. The Springer resolution is the forgetful map

π : Ñ→ N

sending (e,B) to e. This map is projective.
For e ∈ N, the fiber Be := π−1(e) is called the Springer fiber of e. By definition,

Be is the closed subscheme of B consisting of those Borel subgroups B ⊂ G such
that e is contained in the nilpotent radical of Lie B.

1.2.2. The Grothendieck alteration Consider the variety g̃ of pairs (X,B) where
X ∈ g and B ∈ B such that X ∈ Lie B. The forgetful map (X,B) 7→ X

πg : g̃→ g

is called the Grothendieck alteration 1, also known as the Grothendieck simultaneous
resolution.

Let c = g �G ∼= t �W be the categorical quotient of g by the adjoint action of
G. Then we have a commutative diagram

(1.2.3) g̃

πg

��

χ̃ // t

��
g

χ // c

Here χ : g→ c is the natural quotient map; χ̃ : g̃→ t sends (X,B) ∈ g̃ to the image
of X in the universal Cartan h = b/n (where b = Lie B with nilpotent radical n),
for which we choose an identification with t. The diagram (1.2.3) is Cartesian
when restricting the left column to regular elements 2 in g. In particular, if we

1The term “alteration” refers to a proper, generically finite map whose source is smooth over k.
2An element X ∈ g is called regular if its centralizer in G has dimension r, the rank of G.
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restrict the diagram (1.2.3) to the regular semisimple locus crs ⊂ c 3, we see that
πg|g̃rs : g̃rs → grs is a W-torsor; i.e., there is an action of W on π−1

g (grs) preserving
the projection to grs making the fibers of πg into principal homogeneous spaces
for W. The map πg becomes branched but still finite over the regular locus greg ⊂
g.

For X ∈ g, we denote the fiber π−1
g (X) simply by B̃X. Restricting πg to N, the

fibers B̃e for a nilpotent element e ∈ N is the closed subvariety of B consisting
of those B such that e ∈ Lie B. Clearly Be is a subscheme of B̃e, and the two
schemes have the same reduced structure. However, as schemes, B̃e and Be are
different in general. See §1.3.2 below and Exercise 1.7.2.

1.3. Examples of Springer fibers

1.3.1. When e = 0, Be = B.

1.3.2. Regular nilpotent elements The unique dense open G-orbit consists of
regular nilpotent elements, i.e., those e such that dimCG(e) = r. When e is a
regular nilpotent element, Be is a single point: there is a unique Borel subgroup
of G whose Lie algebra contains e. What is this Borel subgroup?

By the Jacobson-Morosov theorem, we may extend e to an sl2-triple (e,h, f) in
g. The adjoint action of h on g has integer weights, and it decomposes g into
weight spaces g(n), n ∈ Z. Let b = ⊕n>0g(n). This is a Borel subalgebra of g,
and the corresponding Borel subgroup is the unique point in Be.

When e is regular, the fiber B̃e of the Grothendieck alteration is a non-reduced
scheme whose underlying reduced scheme is a point. The coordinate ring of B̃e
is isomorphic to the coinvariant algebra Sym(t∗)/(Sym(t∗)W+ ), which is, interest-
ingly, also isomorphic to the cohomology ring with k-coefficients of the complex
flag variety BC.

1.3.3. When G = SL(V) for some vector space V of dimension n, B is the moduli
space of full flags 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V . The Springer fiber
Be consists of those flags such that eVi ⊂ Vi−1.

1.3.4. Consider the case G = SL3 and e =


0 0 1

0 0 0

0 0 0

 under the standard

basis {v1, v2, v3} of V . Then Be is the union of two P1s: the first P1 consisting of
flags 0 ⊂ V1 ⊂ 〈v1, v2〉 ⊂ V with varying V1 inside the fixed plane ker(e) = 〈v1, v2〉;
the second P1 consisting of flags 0 ⊂ 〈v1〉 ⊂ V2 ⊂ V with a varying V2 containing
Im(e) = 〈v1〉.

3An element X ∈ t is regular semisimple if α(X) 6= 0 for any root α. Denote by trs ⊂ t the open
subscheme of regular semisimple elements in t. Since trs is stable under W, it is the full preimage of
an open subset crs ⊂ c. The open subset grs = χ−1(crs) is by definition the locus of regular semisimple
elements of g.
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1.3.5. Consider the case G = SL4 and the nilpotent element e : v3 7→ v1 7→
0, v4 7→ v2 7→ 0 under the standard basis {v1, v2, v3, v4}. If a flag 0 ⊂ V1 ⊂ V2 ⊂
V3 ⊂ V is in Be, then V1 ⊂ ker(e) = 〈v1, v2〉, and V3 ⊃ Im(e) = 〈v1, v2〉. We denote
H := 〈v1, v2〉. There are two cases:

(1) V2 = H. Then we may choose V1 to be any line in H and V3 to be any
hyperplane containing V2. We get a closed subvariety of Be isomorphic
to P(H)×P(H) ∼= P1 ×P1. We denote this closed subvariety of Be by C1.

(2) V2 6= H. This defines an open subscheme U of Be. Suppose the line
V1 ⊂ H is spanned by av1 +bv2 for some [a : b] ∈ P(H), then the image of
V2 in V/H = 〈v3, v4〉 is spanned by av3 + bv4. Fixing V1, the choices of V2

are given by Hom(〈av3 + bv4〉,H/V1) ∼= Hom(V1,H/V1). Once V2 is fixed,
V3 = V2 +H is also fixed. Therefore U is isomorphic to the total space of
the line bundle O(2) over P(H) ∼= P1.

From the above discussion we see that Be has dimension 2, C1 is an irreducible
component of Be and so is the closure of U, which we denote by C2. We have
C1 ∪C2 = Be and C1 ∩C2 is the diagonal inside C1 ∼= P1 ×P1.

1.3.6. Components of type A Springer fibers When G = SLn = SL(V), Spal-
tenstein [43] and Steinberg [48] gave a description of the irreducible components
of Be using standard Young tableaux of size n. This will be relevant to the
Springer correspondence that we will discuss later, see §1.5.16. Below we follow
the presentation of [45, Ch II, §5].

Fix a nilpotent element e ∈ N whose Jordan type is a partition λ of n. This
means, if the partition λ is n = λ1 +λ2 + · · · , e has Jordan blocks of sizes λ1, λ2, · · · .
We shall construct a (non-algebraic) map Be → ST(λ), where ST(λ) is the discrete
set of standard Young tableau for the partition λ. For each full flag 0 = V0 ⊂ V1 ⊂
· · · ⊂ Vn−1 ⊂ Vn = V such that eVi ⊂ Vi−1, e induces a nilpotent endomorphism
of V/Vn−i. Let µi be the Jordan type of the e on V/Vn−i, then µi is a partition
of i. The increasing sequence of partitions µ1,µ2, · · · ,µn = λ satisfies that µi is
obtained from µi−1 by increasing one part of µi−1 by 1 (including creating a part
of size 1). This gives an increasing sequence Y1, · · · , Yn = Y(λ) of subdiagrams of
the Young diagram Y(λ) of λ. We label the unique box in Yi − Yi−1 by i to get a
standard Young tableau.

Spaltenstein [45, Ch II, Prop 5.5] showed that the closure of the preimage of
each standard Young tableaux in Be is an irreducible component. Moreover, all
irreducible components of Be arise in this way and they all have the same dimen-
sion de = 1

2
∑
i λ
∗
i (λ
∗
i − 1), where λ∗ is the conjugate partition of λ. In particular,

the top dimensional cohomology H2de(Be) has dimension equal to #ST(λ), which
is also the dimension of an irreducible representation of the symmetric group Sn.
This statement is a numerical shadow of the Springer correspondence, which says
that H2de(Be) is naturally an irreducible representation of Sn.
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Spaltenstein [45, Ch II, Prop 5.9] also showed that there exists a stratification
of B into affine spaces such that Be is a union of strata. This implies that the
restriction map on cohomology H∗(B)→ H∗(Be) is surjective.

1.3.7. Consider the case G = Sp(V) for some symplectic vector space V of di-
mension 2n, then B is the moduli space of full flags

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · ⊂ V2n−1 ⊂ V2n = V

such that V⊥i = V2n−i for i = 1, · · · ,n. The Springer fiber Be consists of those
flags such that eVi ⊂ Vi−1 for all i.

Consider the case where dimV = 4. We choose a basis {v1, v2, v3, v4} for V such
that the symplectic form ω on V satisfies ω(vi, v5−i) = 1 if i = 1 and 2, and
ω(vi, vj) = 0 for i + j 6= 5. Let e be the nilpotent element in g = sp(V) given
by e : v4 7→ v1 7→ 0, v3 7→ 0, v2 7→ 0. Then a flag 0 ⊂ V1 ⊂ V2 ⊂ V⊥1 ⊂ V

in Be must satisfy 〈v1〉 ⊂ V2 ⊂ 〈v1, v2, v3〉, and this is the only condition for it
to lie in Be (Exercise 1.7.3). Such a V2 corresponds to a line V2/〈v1〉 ⊂ 〈v2, v3〉,
hence a point in P1 = P(〈v2, v3〉). Over this P1 we have a tautological rank
two bundle V2 whose fiber at V2/〈v1〉 is the two-dimensional vector space V2.
The further choice of V1 gives a point in the projectivization of V2. The exact
sequence 0 → 〈v1〉 → V2 → V2/〈v1〉 → 0 gives an exact sequence of vector
bundles 0 → O → V2 → O(−1) → 0 over P1. Therefore V2 is isomorphic to
O(−1)⊕O, and Be ∼= P(O(−1)⊕O) is a Hirzebruch surface.

1.3.8. Subregular Springer fibers The example considered in §1.3.4 is a simplest
case of a subregular Springer fiber. There is a unique nilpotent orbit Osubreg of
codimension 2 in N, which is called the subregular nilpotent orbit. For e ∈ Osubreg,
it is known that Be is a union of P1’s whose configuration we now describe. We
may form the dual graph to Be whose vertices are the irreducible components of
Be and two vertices are joined by an edge if the two corresponding components
intersect (it turns out that they intersection at a single point).

For simplicity assume G is of adjoint type. Let G ′ be another adjoint simple
group whose type is defined as follows. When G is simply-laced, take G ′ = G.
When G is of type Bn, Cn, F4 and G2, take G ′ to be of type A2n−1, Dn+1, E6

and D4 respectively. One can show that Be is always a union of P1 whose dual
graph is the Dynkin diagram of G ′. The rule in the non-simply-laced case is
that each long simple root corresponds to 2 or 3 P1’s while each short simple
root corresponds to a unique P1. Such a configuration of P1’s is called a Dynkin
curve, see [49, §3.10, Definition and Prop 2] and [42, §6.3].

For example, when G is of type An, then Be is a chain consisting of n P1’s:
Be = C1 ∪C2 ∪ · · · ∪Cn with Ci ∩Ci+1 a point and otherwise disjoint.

Brieskorn [8], following suggestions of Grothendieck, related the singularity of
the nilpotent cone along the subregular orbits with Kleinian singularities, and he
also realized the semi-universal deformation of this singularity inside g. Assume
G is simply-laced. One can construct a transversal slice Se ⊂ N through e of
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dimension two such that Se consists of regular elements except e. Then Se is a
normal surface with a Kleinian singularity at e of the same type as the Dynkin
diagram of G. 4. The preimage S̃e := π−1(Se) ⊂ Ñ turns out to be the minimal
resolution of Se, and hence Be is the union of exceptional divisors. Upon identi-
fying the components of Be with simple roots of G, the intersection matrix of the
exceptional divisors is exactly the negative of the Cartan matrix of G. Slodowy
[42] extended the above picture to non-simply-laced groups, and we refer to his
book [42] for a beautiful account of the connection between the subregular orbit
and Kleinian singularities.

1.4. Geometric Properties of Springer fibers

1.4.1. Connectivity The Springer fibers Be are connected. See [49, p.131, Prop
1], [45, Ch II, Cor 1.7], [10, Remark 3.3.26] and Exercise 1.7.12.

1.4.2. Equidimensionality Spaltenstein [44], [45, Ch II, Prop 1.12] showed that
all irreducible components of Be have the same dimension.

1.4.3. The dimension formula Let de be the dimension of Be. Steinberg [48,
Thm 4.6] and Springer [46] showed that

(1.4.4) de =
1
2
(dimN− dimG · e) = 1

2
(dimCG(e) − r).

1.4.5. Centralizer action The group G×Gm acts on N (where Gm by dilation).
Let G̃e = StabG×Gm(e) be the stabilizer. Then G̃e acts on Be. The action of G̃e
on H∗(Be) factors through π0(G̃e). Since G̃e always maps surjectively onto Gm

with kernel CG(e) as one can see by constructing an sl2-triple containing e, we
have Ae := π0(CG(e)) � π0(G̃e). Note that Ae depends on the isomorphism
class of G, and not only on the isogeny class of G. For example, for e regular,
Ae = π0(ZG) where ZG is the center of G. Since ZG acts trivially on B, the action
of Ae on H∗(Be) factors through the quotient π0(CG(e)/ZG).

1.4.6. Purity Springer [47] proved that the cohomology of Be is always pure (in
the sense of Hodge theory when k = C, or in the sense of Frobenius weights
when k is a finite field).

1.4.7. Let e ∈ N. Consider the restriction map i∗e : H∗(B) → H∗(Be) induced
by the inclusion Be ↪→ B. Then the image of i∗e lies in the invariants of H∗(Be)
under Ae. When G is of type A, i∗e is surjective for any e ∈ N.

1.4.8. Parity vanishing De Concini, Lusztig and Procesi [12] proved that Hi(Be)
vanishes for all odd i and any e ∈ N. When k = C, they prove a stronger
statement: Hi(Be, Z) vanishes for odd i and is torsion-free for even i.

4A Kleinian singularity is a surface singularity analytically isomorphic to the singularity at (0, 0) of
the quotient of A2 by a finite subgroup of SL2.



Zhiwei Yun 9

1.5. The Springer correspondence Let W be the Weyl group of G. In 1976,
Springer [46] made the fundamental observation that there is natural W-action
on H∗(Be), even though W does not act on Be as automorphisms of varieties.

1.5.1. Theorem (Springer [46, Thm 6.10]). (1) For each nilpotent element e, there
is a natural graded action of W on H∗(Be) that commutes with the action of Ae.

(2) For each nilpotent element e and each irreducible representation ρ of Ae, the mul-
tiplicity space M(e, ρ) := HomAe(ρ, H2de(Be)) is either zero or an irreducible
representation of W under the action in part (1).

(3) Each irreducible representation χ ofW appears asM(e, ρ) for a unique pair (e, ρ)
up to G-conjugacy. The assignment χ 7→ (e, ρ) thus gives an injection

(1.5.2) Irr(W) ↪→ {(e, ρ)}/G.

1.5.3. Convention In fact there are two natural actions of W on H∗(Be) that
differ by tensoring with the sign representation of W. In these notes we use the
action that is normalized by the following properties. The trivial representation
of W corresponds to regular nilpotent e and the trivial ρ. The sign representation
of W corresponds to e = 0. Note however that Springer’s original paper [46] uses
the other action.

1.5.4. The case e = 0 Taking e = 0, Springer’s theorem gives a graded action of
W on H∗(B). What is this action? First, this action can be seen geometrically by
considering G/T instead of B = G/B. In fact, sinceNG(T)/T =W, the right action
of NG(T) on G/T induces an action of W on G/T , which then induces an action
of W on H∗(G/T). Since the projection G/T → G/B is an affine space bundle, it
follows that H∗(B) ∼= H∗(G/T). It can be shown that under this isomorphism, the
action of W on H∗(G/T) corresponds exactly to Springer’s action on H∗(B).

Let S = Sym(X∗(T)⊗Q`) be the graded symmetric algebra where X∗(T) has
degree 2. The reflection representation of W on X∗(T) then induces a graded
action of W on S. Recall Borel’s presentation of the cohomology ring of the flag
variety

(1.5.5) H∗(B, Q`) ∼= S/(SW+ )

where S+ ⊂ S is the ideal spanned by elements of positive degree, and (SW+ )

denotes the ideal of S generated by W-invariants on S+. Then (1.5.5) is in fact
an isomorphism of W-modules (see [46, Prop 7.2]). By a theorem of Cheval-
ley, S/(SW+ ) is isomorphic to the regular representation of W, therefore, as a
W-module, H∗(B) is also isomorphic to the regular representation of W.

1.5.6. Remark. The target set in (1.5.2) can be canonically identified with the set
of isomorphism classes of irreducible G-equivariant local systems on nilpotent
orbits. In fact, for an irreducible G-equivariant local systems L on a nilpotent
orbit O ⊂ N, its stalk at e ∈ O gives an irreducible representation ρ of the cen-
tralizer CG(e) which factors through Ae. Note that the notion of G-equivariance
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changes when G varies in a fixed isogeny class. It is possible to extend the above
injection (1.5.2) into a bijection by supplementing Irr(W) with Irr(W ′) for a collec-
tion of smaller Weyl groups. This is called the generalized Springer correspondence
discovered by Lusztig [25].

Springer’s original proof of Theorem 1.5.1 uses trigonometric sums over g(Fq)
and, when k has characteristic zero, his proof uses reduction to finite fields. The
following theorem due to Borho and MacPherson [5] can be used to give a direct
proof of the Springer correspondence for all base fields k of large characteristics
or characteristic zero. To state it, we need to use the language of constructible
(complexes of) Q`-sheaves and perverse sheaves, for which we refer to the stan-
dard reference [3] and de Cataldo’s lectures [11] in this volume.

1.5.7. Theorem. The complex S := Rπ∗Q`[dimN] is a perverse sheaf on N whose
endomorphism ring is canonically isomorphic to the group algebra Q`[W]. In particular,
W acts on the stalks of Rπ∗Q`, i.e., W acts on H∗(Be) for all e ∈ N.

We sketch three constructions of the W-action on Rπ∗Q`[dimN].

1.5.8. Construction via middle extension This construction (or rather the ver-
sion where g is replaced by G) is due to Lusztig [24, §3]. The dimension formula
for Springer fibers (1.4.4) imply that

• The map π : Ñ→ N is semismall. 5

There is an extension of the dimension formula (1.4.4) for the dimension of B̃X

valid for all elements X ∈ g. Using this formula one can show that

• The map πg : g̃→ g is small.

As a well-known fact in the theory of perverse sheaves, the smallness of πg (to-
gether with the fact that g̃ is smooth) implies that Sg := Rπg,∗Q`[dim g] is a
perverse sheaf which is the middle extension of its restriction to any open dense
subset of g. Over the regular semisimple locus grs ⊂ g, πg is a W-torsor, therefore
Sg|grs is a local system shifted in degree −dim g that admits an action of W. By
the functoriality of middle extension, Sg admits an action of W. Taking stalks of
Sg, we get an action of W on H∗(B̃X) for all X ∈ g.

In particular, for a nilpotent element e, we get an action of W on H∗(Be) =

H∗(B̃e), because B̃e and Be have the same reduced structure. This is the ac-
tion defined by Springer in his original paper [46], which differs from our action by
tensoring with the sign character of W.

1.5.9. Construction via Fourier transform By the semismallness of π, the com-
plex S = Rπ∗Q`[dimN] is also a perverse sheaf. However, it is not the middle
extension from an open subset of N. There is a notion of Fourier transform for
Gm-equivariant sheaves on affine spaces [23]. One can show that S is isomorphic

5A proper surjective map f : X→ Y of irreducible varieties is called semismall (resp. small) if for any
d > 1, {y ∈ Y|dim f−1(y) > d} has codimension at least 2d (resp. 2d+ 1) in Y.
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to the Fourier transform of Sg and vice versa. The W-action on Sg then induces
an action of W on S by the functoriality of Fourier transform. Taking the stalk of
S at e we get an action of W on H∗(Be). This action is normalized according to
our convention in §1.5.3.

1.5.10. Construction via correspondences Consider the Steinberg variety Stg =

g̃×g g̃ which classifies triples (X,B1,B2), where B1,B2 are Borel subgroups of G
and X ∈ Lie B1 ∩ Lie B2. The irreducible components of Stg are indexed by ele-
ments in the Weyl group: for w ∈W, letting Stw be the closure of the graph of the
w-action on g̃rs, then Stw is an irreducible component of St and these exhaust all
irreducible components of St. The formalism of cohomological correspondences
allows us to get an endomorphism of the complex Sg = Rπg,∗Q`[dim g] from
each Stw. It is nontrivial to show that these endomorphisms together form an
action of W on Sg. The key ingredient in the argument is still the smallness of
the map πg. After the W-action on Sg is defined, one then define the Springer
action on H∗(Be) by either twisting the action of W on the stalk Sg,e by the sign
representation as in §1.5.8, or by using Fourier transform as in §1.5.9. We refer to
[53, Remark 3.3.4] for some discussion of this construction. See also [10, §3.4] for
a similar but different construction using limits of Stw in the nilpotent Steinberg
variety Ñ×N Ñ.

Note that the above three constructions all allow one to show that End(S) ∼=

Q`[W], hence giving a proof of Theorem 1.5.7.

1.5.11. Construction via monodromy We sketch a construction of Slodowy [41,
§4] which works for k = C. This construction was conjectured to give the same
action of W on H∗(Be) as the one in Theorem 1.5.1. A similar construction by
Rossmann appeared in [38, §2], in which the author identified his action with that
constructed by Kazhdan and Lusztig in [19], and the latter was known to be the
same as Springer’s action. Thus all these constructions give the same W-action
as in Theorem 1.5.1.

Let e ∈ N and let Se ⊂ g be a transversal slice to the orbit of e. Upon choosing
an sl2-triple (e,h, f) containing e, there is a canonical choice of such a transversal
slice Se = e+gf, where gf is the centralizer of f in g. Now consider the following
diagram where the squares are Cartesian except for the rightmost one

(1.5.12) Be

��

� � // S̃nil
e

��

� � // S̃e

��

� � // g̃

πg

��

χ̃ // t

��
{e}
� � // Snil

e
� � // Se

� � // g
χ // c

Here the rightmost square is (1.2.3), Snil
e = Se ∩N and S̃e and S̃nil

e are the preim-
ages of Se and Snil

e under πg. Let Ve ⊂ Se be a small ball around e and let V0 ⊂ c

be an even smaller ball around 0 ∈ c. Let Ue = Ve ∩ χ−1(V0) ⊂ Se. Then the
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diagram (1.5.12) restricts to a diagram

(1.5.13) Be

��

� � // Ũnil
e

��

� � // Ũe

��

χ̃e // Ṽ0

��
{e}
� � // Unil

e
� � // Ue // V0

Here Unil
e = Ue ∩N, and Ṽ0, Ũe and Ũnil

e are the preimages of V0,Ue and Unil
e

under the vertical maps in (1.5.12). The key topological facts here are

• The inclusion Be ↪→ Ũnil
e admits a deformation retract, hence it is a homo-

topy equivalence;
• The map χ̃e : Ũe → Ṽ0 is a trivializable fiber bundle (in the sense of

differential topology).

Now a general fiber of χ̃e admits a homotopy action of W by the second point
above because the rightmost square in (1.5.13) is Cartesian over V0 ∩ crs and the
map Ṽ0 → V0 is aW-torsor over V0 ∩ crs. By the first point above, Be has the same
homotopy type with Ũnil

e = χ̃−1
e (0), hence Be also has the same homotopy type

as a general fiber of χ̃e because χ̃e is a fiber bundle. Combining these facts, we
get an action of W on the homotopy type of Be, which is a stronger structure than
an action of W on the cohomology of Be. A consequence of this construction is
that the W-action on H∗(Be) in Theorem 1.5.1 preserves the ring structure.

1.5.14. Proof of Theorem 1.5.1 assuming Theorem 1.5.7 We decompose the per-
verse sheaf S into isotypical components under the W-action

S =
⊕

χ∈Irr(W)

Vχ ⊗ Sχ

where Vχ is the space on which W acts via the irreducible representation χ, and
Sχ = HomW(Vχ, S) is a perverse sheaf on N. Since End(S) ∼= Q`[W], we conclude
that each Sχ is nonzero and that

(1.5.15) Hom(Sχ, Sχ ′) =

{
Q` χ = χ ′

0 otherwise

The decomposition theorem [3, Th 6.2.5] implies that each Sχ is a semisimple per-
verse sheaf. Therefore (1.5.15) implies that Sχ is simple. Hence Sχ is of the form
IC(O,L) where O ⊂ N is a nilpotent orbit and L is an irreducible G-equivariant
local system on O. Moreover, since Hom(Sχ, Sχ ′) = 0 for χ 6= χ ′, the simple
perverse sheaves {Sχ}χ∈Irr(W) are non-isomorphic to each other. This proves part
(3) of Theorem 1.5.1 by interpreting the right side of (1.5.2) as the set of isomor-
phism classes of irreducible G-equivariant local systems on nilpotent orbits. If
Sχ = IC(O,L) and e ∈ O, the semismallness of π allows us to identify the stalk
Le with an Ae-isotypic subspace of H2de(Be). This proves part (2) of Theorem
1.5.1. �
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We give some further examples of the Springer correspondence.

1.5.16. Type A When G = SLn, all Ae are trivial. The Springer correspondence
sets a bijection between irreducible representations of W = Sn and nilpotent
orbits of g = sln, both parametrized by partitions of n. In §1.3.6 we have seen
that if e has Jordan type λ, the top dimensional cohomology H2de(Be) has a basis
indexed by the standard Young tableaux of λ, the latter also indexing a basis of the
irreducible representation of Sn corresponding to the partition λ. For example,
for G = SL3, the Springer correspondences reads

• trivial representation↔ regular orbit, partition 3 = 3;
• two-dimensional representation↔ subregular orbit, partition 3 = 2 + 1;
• sign representation↔ {0}, partition 3 = 1 + 1 + 1.

1.5.17. The subregular orbit and the reflection representation Consider the
case e is a subregular nilpotent element. In this case, the component group Ae
can be identified with the automorphism group of the Dynkin diagram of G ′ in-
troduced in §1.3.8 (see [42, §7.5, Proposition]). After identifying the irreducible
components of Be with the vertices of the Dynkin diagram of G ′, the action of
Ae on H2(Be) is by permuting the basis given by irreducible components in the
same way as its action on the Dynkin diagram of G ′. For example, when G = G2,
we may write Be = C1 ∪C2 ∪C3 ∪C4 with C1, C2, C3 each intersecting C4 in a
point and otherwise disjoint. The group Ae is isomorphic to S3, and its action on
H2(Be) fixes the fundamental class of C4 and permutes the fundamental classes
of C1,C2 and C3.

Note that H2(Be)
Ae always has dimension r, the rank of G. In fact, as a W-

module, H2(Be)
Ae is isomorphic to the reflection representation of W on t∗. In

other words, under the Springer correspondence, the pair (e = subregular, ρ = 1)
corresponds to the reflection representation of W.

1.6. Comments and generalizations

1.6.1. Extended symmetry The W-action on H∗(Be) can be extended to an ac-
tion of a larger algebra in various ways, if we use more sophisticated cohomology
theories. On the equivariant cohomology H∗

G̃e
(Be), there is an action of the graded

affine Hecke algebra (see Lusztig [32] where equivariant homology is considered in-
stead). On the G̃e-equivariant K-group of Be, there is an action of the affine Hecke
algebra (see Kazhdan-Lusztig [30] and Chriss-Ginzburg [10]).

1.6.2. The group version There are obvious analogs of the Springer resolution
and the Grothendieck alteration when N and g are replaced with the unipotent
variety U ⊂ G and G itself. When char(k) is large, the exponential map identifies
N with U in a G-equivariant manner, hence the theories of Springer fibers for
nilpotent elements and unipotent elements are identical. The group version of the
perverse sheaf Sg and its irreducible direct summands are precursors of character
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sheaves, a theory developed by Lusztig ([26], [27], [28] and [29]) to study characters
of the finite groups G(Fq).

1.6.3. Partial Springer resolutions We may define analogs of Be in partial flag
varieties. Let P be a partial flag variety of G classifying parabolic subgroups P of
G of a given type. There are two analogs of the map π : Ñ→ N one may consider.

First, instead of considering Ñ = T∗B, we may consider T∗P, which classifies
pairs (e,P) ∈ N×P such that e ∈ Lie nP, where nP is the nilpotent radical of Lie P.
Let τP : T∗P → N be the first projection. In general this map is not surjective, its
image is the closure of a nilpotent orbit OP. The orbit OP is characterized by
the property that its intersection with nP is dense in nP, for any P ∈ P. This is
called the Richardson class associated to parabolic subgroups of type P. When G
is of type A, each nilpotent class O is the Richardson class associated to parabolic
subgroups of some type P (not unique in general). The map T∗P → O is a
resolution of singularities. For general G, not every nilpotent orbit is Richardson.

Second, we may consider the subscheme ÑP ⊂ N× P classifying pairs (e,P)
such that e ∈ NP, where NP ⊂ Lie P is the nilpotent cone of P. The projection
πP : ÑP → N is now surjective, and is a partial resolution of singularities. The
Springer resolution π can be factored as

π : Ñ = ÑB
νP−−→ ÑP

πP−−→ N.

We have an embedding T∗P ↪→ ÑP. We may consider the fibers of either τP or
πP as parabolic analogs of Springer fibers. We call them partial Springer fibers. The
Springer action of W on the cohomology of Be has an analog for partial Springer
fibers. For more information, we refer the readers to [5].

1.6.4. Hessenberg varieties The Grothendieck alteration πg : g̃ → g admits a
generalization where g is replaced with another linear representation of G.

Fix a Borel subgroup B of G. Let (V , ρ) be a representation of G and V+ ⊂ V be
a subspace which is stable under B. Now we use the pair (V ,V+) instead of the
pair (g, b), we get a generalization of the Grothendieck alteration. More precisely,
let Ṽ ⊂ V ×B be the subscheme consisting of pairs (v,gB) ∈ V ×B such that
v ∈ ρ(g)V+. Let πV : Ṽ → V be the first projection. The fibers of πV are called
Hessenberg varieties.

Hessenberg varieties appear naturally in the study of certain affine Springer
fibers, as we will see in §2.4. For more information on Hessenberg varieties, see
[14] and [37].

1.7. Exercises

1.7.1. For G = SLn, determine the sizes of the Jordan blocks of a regular and
subregular nilpotent element of g.



Zhiwei Yun 15

1.7.2. For G = SL2 and SL3, calculate the coordinate ring of the non-reduced
Springer fiber B̃e for a regular nilpotent element e. Show also that the Springer
fiber Be is indeed a reduced point.

Hint: if you write e as an upper triangular matrix, then B̃e lies in the big Bruhat
cell of the flag variety B, from which you get coordinates for your calculation.

1.7.3. Verify the statement in §1.3.7: consider G = Sp(V), V = 〈v1, v2, v3, v4〉with
the symplectic form given by 〈vi, v5−i〉 = 1 if i = 1, 2 and 〈vi, vj〉 = 0 for i+ j 6= 5.
Let e : v4 7→ v1 → 0, v2 7→ 0, v3 7→ 0. Then any flag 0 ⊂ V1 ⊂ V2 ⊂ V⊥1 ⊂ V in Be

must satisfy
〈v1〉 ⊂ V2 ⊂ 〈v1, v2, v3〉.

Moreover, this is the only condition for a flag 0 ⊂ V1 ⊂ V2 ⊂ V⊥1 ⊂ V to lie in Be.

1.7.4. Let e ∈ N. Let B ⊂ G be a Borel subgroup.

(1) Let α be a simple root. Let Pα ⊃ B be a parabolic subgroup whose Levi
factor has semisimple rank one with roots ±α. Let Pα ∼= G/Pα be the
partial flag variety of G classifying parabolics conjugate to Pα. Restricting
the projection B→ Pα to Be, we get a map

πα : Be → πα(Be).

Show that the pullback π∗α on cohomology induces an isomorphism

(1.7.5) H∗(πα(Be)) ∼= H∗(Be)sα

where sα ∈ W is the simple reflection associated with α, which acts on
H∗(Be) via Springer’s action.

(2) Can you generalize (1.7.5) to other partial flag varieties?

1.7.6. Let G = SL3 and let e ∈ N be a subregular element. Calculate the action of
S3 on the two dimensional H2(Be) in terms of the basis given by the fundamental
classes of the two irreducible components (see §1.3.4).

Hint: for this and the next problem, you may find Exercise 1.7.4 useful.

1.7.7. Describe the Springer fibers for Sp4. Calculate the Springer correspon-
dence for G = Sp4 explicitly.

1.7.8. Using the dimension formula for Be, verify that the Springer resolution
π is semismall.

1.7.9. Let X ∈ g and let X = Xs + Xn be the Jordan decomposition of X. Let
H = CG(Xs) ⊂ G. This is a Levi subgroup of G. Let BH be the flag variety of H
and let BHXn be the Springer fiber of Xn viewed as a nilpotent element in Lie H.
Show that dim B̃X = dimBHXn .

1.7.10. Use Exercise 1.7.9 and the dimension formula (1.4.4) to derive a formula
for the dimension of B̃X for all elements X ∈ g. Use your formula to prove that
the Grothendieck alteration πg is small.
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1.7.11. Show that N is rationally smooth; i.e., its intersection cohomology com-
plex is isomorphic to the shifted constant sheaf Q`[dimN].

Hint: the largest direct summand in Rπ∗Q` is the shifted IC sheaf of N, and it
is also the restriction of a direct summand of Rπg,∗Q`.

1.7.12. Show that the Springer fibers Be are connected.
Hint: the H0 of the Springer fibers are packed in some sheaf.

1.7.13. Denote the simple roots of G by {α1, · · · ,αr}. A parabolic subgroup
P ⊂ G is called of type i if the roots of its Levi quotient LP are ±αi.

(1) Let 1 6 i 6 r and let P be a parabolic subgroup of type i. Let nP be the
nilpotent radical of Lie P. Show that nP ∩Osubreg is dense in nP.

(2) Let e ∈ Osubreg. Show that for each i, there are finitely many parabolics
P of type i such that e ∈ nP. For each such P, the subvariety CP := {B ∈
Be|B ⊂ P} of Be is isomorphic to P1, and is called a curve of type i.

(3) For parabolics P 6= Q of type i and j, show that CP ∩CQ is either empty
or a point.

(4) Let P be a parabolic subgroup of type i such that e ∈ nP. For any 1 6 j 6
r, i 6= j, CP intersects exactly −〈α∨i ,αj〉 curves of type j.

(5) Show that Be has the configuration described in §1.3.8.
(6) Use Exercise 1.7.4 to calculate the Springer action of W on H2(Be).

2. Lecture II: Affine Springer fibers

Affine Springer fibers are analogs of Springer fibers for loop groups. They
were introduced by Kazhdan and Lusztig [20]. Roughly speaking, in the case of
classical groups, instead of classifying flags in a k-vector space fixed by a k-linear
transformation, affine Springer fibers classify (chains of) lattices in an F-vector
space fixed by an F-linear transformation, where F = k((t)). The cohomology
groups of affine Springer fibers carry actions of the affine Weyl group.

The setup in this section is the same as in §1.1.

2.1. Loop group, parahoric subgroups and the affine flag variety Let F = k((t))
be the field of formal Laurent series in one variable t. Then F has a discrete
valuation valF : F× → Z such that valF(t) = 1 and its valuation ring is OF = k[[t]].

2.1.1. The loop group The positive loop group L+G is a group-valued functor on
k-algebras. For any k-algebra R, we define LG(R) := G(R[[t]]). It turns out that LG
is representable by a scheme over k which is not of finite type.

For example, when G = GLn, an element in LG(R) = GLn(R[[t]]) is given by
n2 formal Laurent series aij =

∑
s>0 a

(s)
ij t

s (1 6 i, j 6 n), with a(s)ij ∈ R, subject
to one condition that det((aij)) (which is a polynomial in the a(s)ij of degree n)
is invertible in R. Therefore in this case LG is an open subscheme in the infinite
dimensional affine space with coordinates a(s)ij , 1 6 i, j 6 n and s > 0.
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Similarly we may define the loop group LG to be the functor LG(R) = G(R((t)))
on k-algebras R. The functor LG is no longer representable by a scheme, but
rather by an ind-scheme. An ind-scheme is an inductive limit lim−→m Xm in the
category of schemes, i.e., {Xm} form an inductive system of schemes over k, and
lim−→m Xm is the functor R 7→ lim−→m Xm(R). When G = GLn, we may define Xm
to be the subfunctor of LG such that Xm(R) consists of n-by-n invertible matrices
with entries in t−mR[[t]] ⊂ R((t)). Then the same argument as in the L+G case
shows that Xm is representable by a scheme over k. For m < m ′, we have a
natural closed embedding Xm ↪→ Xm ′ , and LG in this case is the inductive limit
lim−→m Xm. For general G, see [2, §1] and [13, §2].

2.1.2. The affine Grassmannian The affine Grassmannian GrG of G is defined as
the sheafification of the presheaf R 7→ LG(R)/L+G(R) in the category of k-algebras
under the fpqc topology. In particular, we have GrG(k) = G(F)/G(OF).

When G = GLn, the affine Grassmannian GrG can be identified with the mod-
uli space of projective R[[t]]-submodules Λ ⊂ R((t))n such that

(2.1.3) (tmR[[t]])n ⊂ Λ ⊂ (t−mR[[t]])n

for some m > 0. Such an R[[t]]-module Λ is called a lattice in R((t))n. For fixed m,
let Xm be the subfunctor of GrG classifying those Λ such that (2.1.3) holds, then
Xm is representable by a projective scheme over k. The natural closed embed-
dings Xm ↪→ Xm+1 make {Xm} into an inductive system of projective schemes,
and GrG is representable by the ind-scheme lim−→m Xm.

Let us elaborate on the bijection between GrG(k) and the lattices in Fn =

k((t))n. Let OnF ⊂ F
n be the standard lattice. Let Ln be the set of lattices in Fn

(in the case R = k a lattice is simply an OF-submodules of Fn of rank n). The
group LG(k) = G(F) acts on Ln by LG 3 g : Λ 7→ gΛ. This action is transitive and
the stabilizer of the standard lattice OnF is L+G(k) = G(OF). Therefore this action
induces a G(F)-equivariant bijection

(2.1.4) GrG(k) = G(F)/G(OF)
∼→ Ln.

For general G, GrG is always representable by an ind-scheme of the form
lim−→m Xm where Xm are projective schemes over k, and the transition maps Xm ↪→
Xm+1 are closed embeddings. We have a canonical exhaustion of GrG by projec-
tive schemes given by the affine Schubert stratification, which we now recall. The
action of L+G on GrG by left translation has orbits indexed by dominant cocharac-
ters λ ∈ X∗(T)+. We denote by GrG,λ the L+G-orbit through λ(t). Let GrG,6λ be
the closure of GrG,λ. Then GrG,6λ is a projective scheme and GrG is the union of
GrG,6λ. For more details on the affine Grassmannian, we refer to [2, §2], [13, §2]
and Zhu’s lectures [56].

2.1.5. Parahoric subgroups The subgroup L+G of LG is an example of a class
of subgroups called parahoric subgroups. Fix a Borel subgroup B ⊂ G and let
I ⊂ L+G be the preimage of B under the map L+G → G given by reduction
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modulo t. Then I is an example of an Iwahori subgroup of LG. General Iwahori
subgroups are conjugates of I in LG. Like L+G, Iwahori subgroups are group
subschemes of LG of infinite type. Parahoric subgroups are connected group
subschemes of LG containing an Iwahori subgroup with finite codimension. A
precise definition of parahoric subgroups involves a fair amount of Bruhat-Tits
theory, which we refer the readers to the original papers of Bruhat and Tits [9],
and the survey paper [50].

Just as the conjugacy classes of parabolic subgroups of G are in bijection with
subsets of the Dynkin diagram of G, the LG-conjugacy classes of parahoric sub-
groups of LG are in bijection with proper subsets of the vertices of the extended
Dynkin diagram D̃yn(G) of G, which has one more vertex than the Dynkin dia-
gram of G. See Kac’s book [18, §4.8], Bourbaki [6, Ch VI] for extended Dynkin
diagrams and the expository paper of Gross [16] for connection with parahoric
subgroups.

Each P admits a canonical exact sequence of group schemes

1→ P+ → P→ LP → 1

where P+ is the pro-unipotent radical of P and LP is a reductive group over k,
called the Levi quotient of P. If P corresponds to a subset J of the vertices of
D̃yn(G), then the Dynkin diagram of the Levi quotient LP is the sub-diagram of
D̃yn(G) spanned by J.

2.1.6. Affine flag varieties For each parahoric subgroup P ⊂ LG we may define
the corresponding affine partial flag variety FlP as the fpqc sheafification of the
functor R 7→ LG(R)/P(R) on the category of k-algebras. This functor is also repre-
sentable by an ind-scheme lim−→m Xm where each Xm is a projective scheme over
k and the transition maps are closed embeddings. The affine Grassmannian GrG
is a special case of FlP for P = L+G.

Consider the special case P = I is an Iwahori subgroup of LG. In this case,
we usually denote FlI by Fl or FlG and call it the affine flag variety of G. To justify
this notation, we argue that FlI is canonically independent of the choice of the
Iwahori subgroup I. When G is simply-connected, I is its own normalizer in LG,
and we may identify FlI as the moduli space of Iwahori subgroups of LG, hence
giving an intrinsic definition of the affine flag variety. In general, for any two
Iwahori subgroups I and I ′ of LG, there exists g̃ ∈ LGsc (where Gsc is the simply-
connected form of G) with image g ∈ LG such that g−1Ig = I ′. Moreover, such
g̃ ∈ LGsc is unique up to left translation by Ĩ and right translation by Ĩ ′ (where
Ĩ, Ĩ ′ are the preimages of I and I ′ in LGsc). Therefore, right multiplication by g
gives an isomorphism FlI

∼→ FlI ′ , which is independent of the choice of g̃ ∈ LGsc

such that g−1Ig = I ′. This shows that the FlI are canonically identified for all
choices of Iwahori subgroups I.

Let P ⊂ Q be two parahoric subgroups of LG. Then we have a natural pro-
jection FlP → FlQ. The fibers of this projection are isomorphic to the partial
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flag variety of LQ corresponding to its parabolic subgroup given by the image of
P → LQ. In particular, there is a natural projection FlG → GrG whose fibers are
isomorphic to the flag variety B.

2.1.7. The case of SLn We have seen in §2.1.2 that the affine Grassmannian of
GLn has an interpretation as the moduli space of lattices. In fact, parahoric sub-
groups of LG and the associated affine partial flag varieties can also be described
using lattices. Here we consider the case G = SLn.

Recall that the set of lattices in Fn is denoted by Ln. For any two lattices
Λ1,Λ2 ∈ Ln we may define their relative length to be the integer

[Λ1 : Λ2] := dimk(Λ1/Λ1 ∩Λ2) − dimk(Λ2/Λ1 ∩Λ2).

Let J ⊂ Z/nZ be a non-empty subset. Let J̃ be the preimage of J under the
projection Z → Z/nZ. A periodic J-chain of lattices is a function Λ : J̃ → Ln
sending each i ∈ J̃ to a lattice Λi ∈ Ln such that

• [Λi : O
n
F ] = i for all i ∈ J̃;

• Λi ⊂ Λj for i < j in J̃;
• Λi = tΛi+n for all i ∈ J̃.

Let LJ be the set of periodic J-chains of lattices. For each {Λi}i∈J̃ ∈ LJ, let
P{Λi}i∈J ⊂ LG to be the simultaneous stabilizers of all Λi’s. Then P{Λi}i∈J is a
parahoric subgroup of LG. We call such a parahoric subgroup of type J. In fact
all parahoric subgroups of LG arise from a unique periodic J-chain of lattices, for
a unique non-empty J ⊂ Z/nZ. Therefore we get a bijection between tJLJ and
the set of parahoric subgroups of LG. In particular, L+G is the parahoric sub-
group corresponding to the periodic {0}-chain of lattices given by Λi = ti/nOnF ,
where i ∈ J̃ = nZ.

The extended Dynkin diagram of G is a loop with n nodes which we index
cyclically by the set Z/nZ, such that 0 corresponds to the extra node compared
to the usual Dynkin diagram. Parahoric subgroups of type J 6= ∅ corresponds to
the proper subset Z/nZ − J of the nodes of the extended Dynkin diagram.

One can find the moduli space FlJ of periodic J-chains of lattices such that
FlJ(k) = LJ. Fixing any parahoric subgroup P of type J, FlJ can be identified
with the affine partial flag variety FlP. In particular, the affine flag variety Fl for
G = SLn can be identified with the moduli space of periodic full chains of lattices,
i.e., a sequence of lattices · · ·Λ−1 ⊂ Λ0 ⊂ Λ1 · · · in Fn with [Λi : OnF ] = i and
Λi = tΛi+n for all i ∈ Z.

2.1.8. The case of Sp2n Now consider G = Sp2n = Sp(V), where V = k2n is
equipped with a symplectic form. We extended the symplectic form on V F-
linearly to a symplectic form 〈−,−〉 on V ⊗k F. For a lattice Λ ∈ L2n, define its
symplectic dual to be the set Λ∨ := {v ∈ V ⊗k F|〈v,Λ〉 ⊂ OF}. Then Λ∨ is again a
lattice in V ⊗k F. The operation Λ 7→ Λ∨ defines an involution on L2n.
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Let J ⊂ Z/2nZ be a non-empty subset stable under multiplication by −1. Let
J̃ ⊂ Z be the preimage of J under the natural projection Z → Z/2nZ. A periodic
self-dual J-chain of lattices in V ⊗k F is a periodic J-chain of lattices (i.e., an element
in LJ in the notation of §2.1.7) satisfying the extra condition that

Λ∨
i = Λ−i, for all i ∈ J̃.

Denote the set of periodic self-dual J-chains of lattices in V ⊗k F by L
Sp(V)
J . This

is a set with an action of G(F) = Sp(V ⊗k F). For any {Λi}i∈J̃ ∈ L
Sp(V)
J , the

simultaneous stabilizer of the Λi’s is a parahoric subgroup of LG, and every
parahoric subgroup of LG arises this way. For a parahoric subgroup P of type J,
the corresponding affine partial flag variety FlP can be identified with the moduli
space of periodic self-dual J-chains of lattices so that FlP(k) ∼= L

Sp(V)
J as G(F)-sets.

The readers are invited to work out the similar story for orthogonal groups, see
Exercise 2.8.1.

2.2. Affine Springer fibers

2.2.1. Affine Springer fibers in the affine Grassmannian For any k-algebra R,
we denote g⊗k R by g(R). In particular, g(F) = g⊗k F is the Lie algebra of the
loop group LG. For g ∈ LG, let Ad(g) denote its adjoint action on g(F).

Let γ ∈ g(F) := g⊗k F be a regular semisimple element 6. We consider the
subfunctor of GrG whose value on a k-algebra R is given by

(2.2.2) X̃γ(R) = {[g] ∈ GrG(R)|Ad(g−1)γ ∈ g(R[[t]])}.

Then X̃γ is a closed sub-ind-scheme of GrG. Let Xγ = X̃red
γ be the underlying

reduced ind-scheme of X̃γ. We call Xγ the affine Springer fiber of γ in the affine
Grassmannian GrG.

2.2.3. Alternative definition in terms of lattices We consider the case G = GLn.
Let γ ∈ g(F) = gln(F) be a regular semisimple matrix. As in 2.1.2 we identify
GrG with the moduli space of lattices in Fn, or more precisely GrG(R) is the set
of lattices in R((t))n. Then X̃γ(R) can be identified with those lattices Λ ⊂ R((t))n

such that γΛ ⊂ Λ, i.e., those stable under the endomorphism of R((t))n given by
γ.

When G = SLn, GrG(R) classifies lattices Λ in R((t))n such that [Λ : R[[t]]n] = 0.
The affine Springer fiber X̃γ in this case is cut out by the same condition γΛ ⊂ Λ.

When G = Sp2n, GrG(R) classifies lattices Λ in R((t))2n such that Λ∨ = Λ,
see §2.1.8. The affine Springer fiber X̃γ in this case is also cut out by the same
condition γΛ ⊂ Λ.

We give the simplest examples of affine Springer fibers.

6Here we are dealing with a Lie algebra g over the non-algebraically-closed field F. An element
γ ∈ g(F) is regular semisimple if it is regular semisimple as an element in g(F), see the footnote in
§1.2.2. Equivalently, γ is regular semisimple if its image in c(F) lies in crs(F).
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2.2.4. Let γ ∈ t(OF) such that the reduction γ ∈ t is regular semisimple. For each
cocharacter λ : Gm → T , the element tλ := λ(t) ∈ T(F) gives a point [tλ] ∈ GrG(k)
which lies in X̃γ since Ad(t−λ)γ = γ ∈ g(OF). The reduced ind-scheme Xγ is
in fact the discrete set {[tλ]} which is in bijection with X∗(T). More canonically,
there is an action of the loop group LT on X̃γ given by its left translation action
on GrG. This action factors through the quotient GrT = LT/L+T and realizes X̃γ

as a GrT -torsor.

2.2.5. Consider the case G = SL2 and γ =

(
t 0

0 −t

)
. Then Xγ is an infinite

chain of P1’s. More precisely, for each n ∈ Z, we consider the subscheme Cn
of GrG classifying lattices Λ ⊂ F2 such that tnOF ⊕ t−n+1OF ⊂ Λ ⊂ tn−1OF ⊕
t−nOF. Then Cn ∼= P1. We have Xγ = ∪n∈ZCn is an infinite chain of P1’s. The
components Cn and Cn+1 intersect at one point t−nOF ⊕ tnOF and otherwise
the components are disjoint.

Here is a way to calculate the k-points of Xγ. We use the Iwasawa decomposition
for G(F):

G(F) =
⊔
n∈Z

N(F)

(
tn 0

0 t−n

)
G(OF).

According to this decomposition, any point in GrG can be represented by

(2.2.6) g =

(
1 x

0 1

)(
tn 0

0 t−n

)
for some x ∈ F and a unique n ∈ Z, and x has a well-defined image in F/t2nOF.
Since

Ad(g−1)γ = g−1γg =

(
t 2t1−2nx

0 −t

)
the condition Ad(g−1)γ ∈ g(OF) is the same as requiring x ∈ t2n−1OF. Therefore
Xγ(k) = tn∈ZYn where Yn consists of elements of the form (2.2.6) with x ∈
t2n−1OF/t

2nOF. Therefore each Yn can be identified with k. It is easy to check
that Yn ⊂ Cn(k).

2.2.7. Consider the case G = SL2 and γ =

(
0 t2

t 0

)
. Then Xγ consists exactly

of those lattices Λ ∈ GrG such that tOF ⊕ OF ⊂ Λ ⊂ OF ⊕ t−1OF. Therefore
Xγ ∼= P1. Details of these calculations are left to the reader, see Exercises 2.8.2.

2.2.8. Invariance under conjugation If γ,γ ′ ∈ g(F) are related by Ad(g)γ =

γ ′ for some g ∈ G(F), then the left multiplication by g on GrG restricts to an
isomorphism X̃γ ∼= X̃γ ′ , hence also Xγ ∼= Xγ ′ . Therefore the isomorphism type
of Xγ is invariant under G(F)-conjugation on γ. Recall we have map χ : g →
c := g �G ∼= t �W. For a regular semisimple point a ∈ crs(F), the fiber χ−1(a)
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is a single G(F)-conjugacy class (here we are using that the residue field of F is
algebraically closed). Therefore, the isomorphism type of Xγ depends only on
a = χ(γ) ∈ crs(F).

Unlike Springer fibers, Xγ can be empty for certain γ. The affine Springer fiber
Xγ is nonempty if and only if a = χ(γ) ∈ c(OF). In fact, if gG(OF) ∈ Xγ(k), then
Ad(g−1)γ ∈ g(OF) hence χ(γ) = χ(Ad(g−1)γ) ∈ c(OF). Conversely, we have a
Kostant section ε : c → g of χ which identifies c with e+ gf, where (e,h, f) is a
regular sl2-triple in g. Therefore, for any a ∈ c(OF) ∩ crs(F), ε(a) ∈ g(OF), and
Xε(a) contains the unit coset in GrG hence nonempty; since Xγ is isomorphic to
Xε(χ(γ)), it is also nonempty.

For a ∈ c(OF)∩ crs(F), we also write Xa for Xε(a). The above discussion shows
that all Springer fibers Xγ are isomorphic to Xa for a = χ(γ).

2.2.9. Parahoric versions For each parahoric subgroup P ⊂ LG, we may simi-
larly define the closed sub-indscheme X̃P,γ ⊂ FlP using the analog of the con-
dition (2.2.2) with g(R[[t]]) replaced by (Lie P)⊗̂kR. The reduced ind-scheme
XP,γ = X̃red

P,γ ⊂ FlP is called the affine Springer fiber of γ of type P. In particular,
when I is an Iwahori subgroup of LG, we denote XI,γ by Yγ.

For P ⊂ Q two parahoric subgroups of LG, the natural projection FlP → FlQ
induces a map XP,γ → XQ,γ. In particular we have a map Yγ → Xγ.

2.3. Symmetry on affine Springer fibers For the Springer fiber Be, the central-
izer CG(e) acts on it. In this subsection we investigate a similar structure for
affine Springer fibers.

2.3.1. Centralizer action LetGγ be the centralizer of γ inGF (the algebraic group
over F obtained from G by base change). Then Gγ is an algebraic group over F.
Since γ is regular semisimple, Gγ is a torus over F. One can define the loop group
LGγ of Gγ as the functor R 7→ Gγ(R((t))) on k-algebras.

We claim that LGγ acts on the ind-scheme X̃γ. This can be seen on the level
of R-points. Suppose h ∈ LGγ(R) = Gγ(R((t))) and [g] ∈ X̃γ(R). Then the coset
[hg] ∈ GrG(R) still satisfies

Ad((hg)−1)γ = Ad(g−1)Ad(h−1)γ = Ad(g−1)γ ∈ g(R[[t]])

using that h is in the centralizer of γ. Therefore [hg] ∈ X̃γ(R). The assignment
[g] 7→ [hg] for h ∈ LGγ and [g] ∈ X̃γ defines an action of LGγ on X̃γ. It induces
an action of LGγ on the reduced structure Xγ.

2.3.2. The split case We consider the case where γ ∈ trs(F). In this case Gγ =

T ⊗k F, and
LGγ = LT ∼= X∗(T)⊗Z LGm

where LGm is the loop group of the multiplicative group Gm. For any k-algebra
R, LGm(R) = R((t))×. It is easy to see that an element a =

∑
i ait

i ∈ R((t)) is
invertible if and only if a starts with finitely many nilpotent coefficients and the
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first non-nilpotent coefficient is invertible in R. When R is reduced, the leading
coefficient of a must be invertible in R, which implies R((t))× = tZ · R[[t]]×, and
R[[t]]× = {(a0,a1, · · · )|a0 ∈ R×,ai ∈ R,∀i > 1}. We see that the reduced ind-
scheme (LGm)red ∼= Z× L+Gm, and that L+Gm ∼= Gm ×AN as schemes, where
AN = Spec k[x1, x2, · · · ]. Therefore, when γ ∈ trs(F), we have (LT)red ∼= X∗(T)×
L+T , and L+T is an affine scheme of infinite type.

2.3.3. The lattice Λγ For a general regular semisimple γ ∈ g(F), let X∗(Gγ) :=

HomF(Gm,Gγ) be the F-rational cocharacter lattice of the torus Gγ. For each λ ∈
X∗(Gγ) viewed as a homomorphism Gm → Gγ defined over F, we may consider
the element λ(t). The assignment λ 7→ λ(t) defines an injective homomorphism

X∗(Gγ) ↪→ Gγ(F).

whose image is denoted by Λγ. It can be shown that the quotient Λγ\(LGγ)red is
an affine scheme that is a finite disjoint union of Gam ×AN for some integer a.

2.3.4. The case G = GLn We continue with the setup of §2.2.3. We assume
that char(k) > n. Then the characteristic polynomial P(x) = xn + a1x

n−1 + · · ·+
an ∈ F[x] of γ is separable. The F-algebra F[x]/(P(x)) is then a product of fields
F1 × · · · × Fm, with

∑m
i=1[Fi : F] = n. Each field extension Fi/F is obtained by

adjoining a root of an irreducible factor Pi(x) of P(x), and Fi is necessarily of the
form k((t1/ei)) since char(k) > n. Then the centralizer Gγ is isomorphic to the
product of induced tori

Gγ ∼=

m∏
i=1

ResFiF Gm.

We have X∗(Gγ) ∼= Zm, and the map X∗(Gγ)→ Gγ(F) is given by

Zm 3 (d1, · · · ,dm) 7→ (td1 , · · · , tdm) ∈ F×1 × · · · × F
×
m

The quotient Λγ\Gγ(F) is isomorphic to
∏m
i=1 F

×
i /t

Z. Since each Fi is isomorphic
to k((t1/ei)), we have an exact sequence 1 → O×Fi → F×i /t

Z → Z/eiZ → 0, and
hence the quotient Λγ\(LGγ)red contains the group scheme

∏m
i=1 L

+
Fi

Gm with
finite index. Here L+FiGm is isomorphic to L+Gm as a scheme, except that we are
renaming the uniformizer t1/ei .

Alternatively, we may fix a uniformizer ti ∈ Fi (for example take ti = t1/ei )
and let Λ̃γ = tZ1 × · · · × t

Z
m ⊂

∏
i F
×
i = Gγ(F). The lattice Λ̃γ will be useful in

calculating orbital integrals, see §3.3.3.

2.3.5. The case G = SL2 Let G = SL2 and γ =

(
0 tn

1 0

)
where n > 1 is odd.

Then Gγ(F) consists of matrices

(
a btn

b a

)
with a,b ∈ F and a2 − tnb2 = 1.

Note that this equation forces a,b ∈ OF, hence Gγ(F) = Gγ(OF). The torus Gγ
is non-split and splits over the quadratic extension E = F(t1/2). The lattice Λγ =
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HomF(Gm,Gγ) = 0. Writing a =
∑
i>0 ait

i and bi =
∑
i>0 bit

i, we see that
a0 = ±1, and once b and a0 are fixed, the higher coefficients of a can be solved
uniquely using the Taylor expansion of (1+ tnb2)1/2. Therefore (LGγ)

red ∼= L+Gγ
is isomorphic to {±1}×AN, given by (a,b) 7→ (a0,b0,b1, · · · ).

2.3.6. Symmetry on affine Springer fibers Ngô has found a more precise state-
ment about the action of LGγ on X̃γ, namely the action factors through a canon-
ical finite-dimensional quotient. We sketch the story following [36, §3.3]. Let
a = χ(γ) ∈ c(F)rs be the image of γ under χ : g → c. We assume a ∈ c(OF) for
otherwise Xγ is empty.

There is a smooth affine group scheme J over c called the regular centralizer
group scheme. It is characterized by the property that its pullback to g via χ,
denoted χ∗J, maps into the universal centralizer group scheme I over g, and this
map is an isomorphism over the regular locus greg. Let Ja be pullback of J under
the map a : Spec OF → c. Then Ja is a smooth affine group scheme over OF

whose F-fiber is the torus Gγ (i.e., Ja is an integral model of Gγ over OF). We
may form the positive loop group L+Ja of Ja as well as its affine Grassmannian
Pa := LGγ/L

+Ja (also called the local Picard group). The reduced group scheme
Pred
a is finite-dimensional and locally of finite type. Ngô showed that the action

of LGγ on X̃γ (and hence on Xγ) factors through the local Picard group Pa, and
it does not factor through any further quotient. For related statement, see §2.5.14.

2.4. Further examples of affine Springer fibers In this subsection we give more
examples illustrating the rich geometry of affine Springer fibers. We omit the
calculations that lead to the geometric descriptions.

In all examples below, the affine Springer fibers are homogeneous in the sense
that Xγ is equipped an extra Gm-action coming from the loop rotation on GrG
by dilation on the uniformizer t. For more information on homogeneous affine
Springer fibers and their application to representation theory, see [37].

2.4.1. When G = SL2 and γ =

(
0 tm+1

tm 0

)
. When m is even, Xγ consists

exactly of those lattices Λ such that

tm/2OF ⊕ tm/2OF ⊂ Λ ⊂ t−m/2OF ⊕ t−m/2OF.

In this case, Xγ coincides with the closure of the L+G-orbit in GrG corresponding
to the coweight mα∨/2.

When m is odd, Xγ consists exactly of those lattices Λ such that

t(m+1)/2OF ⊕ t(m−1)/2OF ⊂ Λ ⊂ t−(m−1)/2OF ⊕ t−(m+1)/2OF.

In this case, consider instead the affine Grassmannian GrG ′ of G ′ = PGL2, which
contains GrG as a component. Then Xγ can be identified with the closure of the
L+G ′-orbit in GrG ′ corresponding to the coweight mα∨/2.

In either case, we have dimXγ = m.
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2.4.2. The Lusztig-Smelt examples Let G = GLn and γ ∈ g(F) with characteris-
tic polynomial P(x) = xn − tm = 0, where (m,n) = 1. If a lattice Λ ⊂ Fn is stable
under γ, it carries an action of the ring R = OF[X]/(X

n − tm). Let K = Frac(R),
then K = k((s)) with x = sm and t = sn. Then the integral closure of R in K is
R̃ := k[[s]]. The action of γ on Fn makes it a one-dimensional K-vector space. We
fix a K-linear isomorphism Fn ∼= K, under which a lattice in Fn stable under R is
simply a fractional R-ideal, i.e., a finitely generated R-submodule of K = Frac(R).
Then Xγ can be identified with the moduli space of fractional R-ideals.

The centralizer Gγ(F) is simply K×, which acts on the set of fractional R-ideals
by multiplication. This action clearly factors through K×/R×, which is the group
of k-points of the local Picard group scheme Pγ.

There is an action of Gm on K (by field automorphisms) given by scaling s (so
si gets weight i under this action). This induces an action of Gm on Xγ. The fixed
points of Gm on Xγ correspond to fractional ideals generated by monomials of
s. More precisely, if a fractional R-ideal Λ ⊂ K = k((s)) is fixed by Gm, define
MΛ = {i ∈ Z|si ∈ Λ} which is a subset of Z stable under addingm and n, because
Λ is an R = k[[sm, sn]]-module. Therefore MΛ ⊂ Z is a finitely generated module
for the monoid Am,n := Z>0m+ Z>0n ⊂ Z>0. The assignment Λ 7→ MΛ gives
a bijection

XGm
γ (k)

∼→ {Am,n-submodules M ⊂ Z}.

Any Am,n-submodule of Z contains all sufficiently large integers. Therefore any
two such Am,n-module M and M ′ differ by finitely many elements, and we can
define [M :M ′] = #(M\M ′) − #(M ′\M). Fox any fixed i ∈ Z, we have a total of

1
n+m

(
n+m
n

)
fixed points with [M : Z>0] = i. For a fixed point pM corresponding

to an Am,n-module M, consider the subvariety CM = {p ∈ Xγ| limGm3z→0 z ·
p = pM}. Then CM is isomorphic to an affine space whose dimension can be
expressed combinatorially in terms of M. The cells CM give a stratification of Xγ.
This gives a way to compute the Poincaré polynomial of connected components
of Xγ. For more details, and the similar picture for Yγ, see [33].

2.4.3. We look at the geometry of Yγ in a special case of §2.4.2. We consider the
case G = GL3 and γ3 − t2 = 0. Introducing the variable s with t = s3 and γ = s2

as before, then R = k[[s2, s3]] with fraction field K = k((s)). The affine Springer fiber
Yγ classifies a chain of fractional R-ideals Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ s−3Λ0. We consider
a component of Y0

γ ⊂ Yγ, classifying chains {Λi} as above with [Λi : k[[s]]] = i,
0 6 i 6 2.

We first study the Gm-fixed points on Y0
γ. For each Gm-fixed R-submodule

of k((s)), we denote its associated module for the monoid A3,2 (see §2.4.2) by a
sequence of integers. For example, (0, 1, 2, · · · ) stands for the standard lattice k[[s]].
Note that the sequence for any Gm-fixed R-fractional ideal is either consecutive
(n,n+ 1,n+ 2, · · · ) or has at most one gap at the second place (n,n+ 2,n+ 3, · · · ).
We have the following four fixed points in Y0

γ:
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(1) q : (0, 1, 2, · · · ) ⊂ (−1, 0, 1, · · · ) ⊂ (−2,−1, 0, · · · );
(2) p0 : (−1, 1, 2, · · · ) ⊂ (−1, 0, 1, · · · ) ⊂ (−2,−1, 0, · · · );
(3) p1 : (0, 1, 2, · · · ) ⊂ (−2, 0, 1, · · · ) ⊂ (−2,−1, 0, · · · );
(4) p2 : (0, 1, 2, · · · ) ⊂ (−1, 0, 1, · · · ) ⊂ (−3,−1, 0, · · · ).

Our indexing scheme is that pi is obtained from q by changing the lattice Λi.
Then Y0

γ is the union of three irreducible components C0 ∪C1 ∪C2, and each
component Ci is isomorphic to P1. They all contain q and that is the only inter-
section between any two of them. We have pi ∈ Ci for i = 0, 1, 2.

There is a natural way to index affine partial flag varieties of G by subsets
J ⊂ {0, 1, 2}, as we saw in §2.1.7. Let XJ,γ be the affine Springer fiber of γ in FlJ.
Under the projection Yγ → XJ,γ, the curves Ci for i /∈ J collapse to a point, and
the other curves map isomorphically onto their images.

2.4.4. Let G = Sp(V) where V is a symplectic space of dimension 2n over k,
and assume char(k) 6= 2. Fix a decomposition V = U ⊕ U∗ into Lagrangian
subspaces of V , such that the symplectic form restricts to the natural pairing on

U × U∗. Consider γ =

(
0 tX

Y 0

)
∈ g(F) where X ∈ Sym2(U) (viewed as a

self-adjoint map ξ : U∗ → U) and Y ∈ Sym2(U∗) (viewed as a self-adjoint map
η : U → U∗). The condition that γ is regular semisimple is equivalent to that:
(1) both ξ and η are isomorphisms; (2) ξη ∈ GL(U) is regular semisimple, or
equivalently ηξ ∈ GL(U∗) is regular semisimple.

The affine Springer fiber Xγ classifies self-dual lattices Λ ⊂ V ⊗k F which are
stable under γ (see §2.2.3). Consider the action of Gm on V ⊗k F = U⊗k F⊕
U∗ ⊗k F such that Uti has weight 2i− 1 and U∗ti has weight 2i. This induces a
Gm-action on GrG and on Xγ. We first consider the fixed points GrGm

G . A lattice
Λ ∈ GrG is fixed under Gm if and only if it is the t-adic completion of

Span{(Ai ⊕Bi)ti; i ∈ Z}

where · · · ⊂ A−1 ⊂ A0 ⊂ A1 ⊂ · · · ⊂ U is a filtration of U such that AN = 0 for
N � 0 and AN = U for N � 0, and · · · ⊂ B−1 ⊂ B0 ⊂ B1 ⊂ · · · ⊂ U∗ is a similar
filtration of U∗, such that

(2.4.5) Bi−1 = A⊥−i,∀i ∈ Z

under the duality pairing between U and U∗. The last condition reflects the fact
that Λ is self-dual under the symplectic form.

A lattice Λ ∈ XGm
γ is then determined by two filtrations A• of U and B• of U∗,

dual in the sense (2.4.5), with the extra condition that

ηAi ⊂ Bi; ξBi ⊂ Ai+1, ∀i ∈ Z.
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We summarize the data into the following diagram

A−1
� � //

η

!!C
CC

CC
CC

C
A0
� � //

η

  B
BB

BB
BB

B
A1

η

  B
BB

BB
BB

B
· · ·

· · · A⊥0
� � //

ξ
>>}}}}}}}}

A⊥−1
� � //

ξ
>>||||||||

A⊥−2

For example, when dimV = 4, hence dimU = 2, there are two possibilities.
The first possibility is A−1 = 0 ⊂ A0 = U, which corresponds to the standard
lattice V ⊗k OF. The second possibility is A−1 = 0 ⊂ A0 ⊂ A1 = U, and A0 ⊂
U is a line satisfying ξA⊥0 ⊂ A0, i.e., A⊥0 ⊂ U∗ is an isotropic line under the
quadratic form X. There are two such lines A⊥0 , giving two other Gm-fixed points.
Therefore, XGm

γ consists of 3 points. We have Xγ = C1 ∪C2 where Ci ∼= P1, the
two components intersect at the standard lattice, and each Ci contains one of the
remaining Gm-fixed points.

2.4.6. The Bernstein-Kazhdan example In [20, Appendix], Bernstein and Kazh-
dan gave the first example of an irreducible component of an affine Springer fiber
which was not a rational variety. We keep the same notation as in §2.4.4. Let FlP
be the partial affine flag variety of G = Sp(V) classifying pairs of lattices Λ ′ ⊂ Λ
such that Λ∨ = Λ and Λ ′∨ = t−1Λ. Let γ be as in §2.4.4. Then the same Gm

acts on XP,γ, and the fixed points Λ ′ ⊂ Λ can be described by two pairs of fil-
trations (A•,B•) and (A ′•,B ′•), where (A•,B•) is the kind of filtration of U and
U∗ as described in §2.4.4, and (A ′•,B ′•) is similar except that (2.4.5) is replaced by
B ′i = A

′⊥
−i. Moreover, the inclusion Λ ′ ⊂ Λ is equivalent to A ′i ⊂ Ai and B ′i ⊂ Bi,

for all i.
Consider for example dimV = 6 and we fix the dimension of the filtrations:

A−1 = 0, dimA0 = 2, A1 = U; dimA ′0 = 1, A ′1 = U.

Such filtrations (A•,B•;A ′•,B ′•) are determined by the complete flag 0 ⊂ A ′0 ⊂
A0 ⊂ U satisfying ξA⊥0 ⊂ A0 and that ηA ′0 ⊂ A ′⊥0 . In other words, A⊥0 is an
isotropic line in U∗ under the quadratic form X, and A ′0 is an isotropic line in
U under the quadratic form Y. The pair (A⊥0 ,A ′0) determines a point in Q(X)×
Q(Y) ⊂ P(U)×P(U∗), the product of conics defined by X and Y. The incidence
relation A ′0 ⊂ A0 defines a curve of bidegree (2, 2) in Q(X)×Q(Y) ∼= P1 × P1,
which is then a curve of genus one. Therefore, a connected component of XGm

P,γ is
a curve of genus one. Consider the points in XP,γ that contract to this curve, and
take its closure Z. One can show that dimZ = 3 = dimXP,γ. Hence XP,γ contains
an irreducible component Z which is irrational. We refer to the appendix of [20]
for more details.

2.4.7. “Subregular” affine Springer fibers When Xγ or Yγ is one-dimensional,
we may call them subregular affine Springer fibers, by analog with subregular
Springer fibers discussed in §1.3.8. If dimYγ = 1, it is a union of P1’s, hence we
can define its dual graph. In [20, Prop 7.7], the dual graphs of the subregular
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affine Springer fibers in Fl are classified, and they are almost always the extended
Dynkin diagrams of simply-laced groups, except that they can also be infinite
chains in type A (see Example 2.2.5).

2.5. Geometric Properties of affine Springer fibers

2.5.1. Non-reducedness The ind-scheme X̃γ is never reduced if G is nontrivial
and γ is regular semisimple in g(F). For example, in the case considered in §2.2.4,
X̃γ is isomorphic to GrT = LT/L+T . We have seen in §2.3.1 that for non-reduced
rings R, elements in LT(R) = R((t))× can have nilpotent leading coefficients. There-
fore GrT (R) is not just X∗(T), which is Grred

T . This shows that GrT is non-reduced,
hence X̃γ is non-reduced.

The next theorem is the fundamental finiteness statement about Xγ.

2.5.2. Theorem (Essentially Kazhdan and Lusztig [20, Prop 2.1]). Let γ ∈ g(F) be a
regular semisimple element. Then

(1) There exists a closed subscheme Z ⊂ Xγ which is projective over k, such that
Xγ = ∪`∈Λγ` ·Z.

(2) The ind-scheme Xγ is a scheme locally of finite type over k.
(3) The action of Λγ on Xγ is free, and the quotient Λγ\Xγ (as an fppf sheaf on

k-algebras) is representable by a proper algebraic space over k.

We sketch a proof of this theorem below in three steps.

2.5.3. First reduction We show that part (1) of the theorem implies (2) and (3).
Let Z be a projective subscheme as in (1). To show (2), we would like to show
that any x ∈ Xγ(k) has an open neighborhood which is a scheme of finite type.
By the Λγ-action we may assume x ∈ Z(k). Since Z is of finite type, the set
Σ := {` ∈ Λγ|Z ∩ ` · Z 6= ∅} is finite. Let U = Xγ − ∪`/∈Σ` · Z, then U is an open
neighborhood of Z, hence an open neighborhood of x. Moreover, U is contained
in the finite union ∪`∈Σ` · Z, hence contained in some Schubert variety GrG,6λ.
Hence U is an open subset of the projective scheme Xγ ∩ GrG,6λ, therefore U
is itself a scheme of finite type. To show (3), note that the fppf sheaf quotient
Λγ\Xγ is a separated algebraic space because it is the quotient of Xγ by the étale
equivalence relation Λγ × Xγ ⊂ Xγ × Xγ (given by the action and projection
maps). By (1), there is a surjection Z → Λγ\Xγ from a projective scheme Z,
which implies that Λγ\Xγ is proper.

2.5.4. Proof of (1) when γ lies in a split torus We first consider the case where
γ lies in a split torus. By G(F)-conjugation, we may assume γ ∈ t(F). In this case
Λγ ∼= X∗(T). Fix a Borel subgroup B containing T and let N be the unipotent
radical of B. The Iwasawa decomposition of LG gives

GrG = LN ·ΛγL+G/L+G = tλ∈X∗(T)LN · λ(t)L
+G/L+G.

Let X := Xγ ∩ (LN · L+G/L+G) ⊂ Xγ. It is enough to show that X lies in some
affine Schubert variety Gr6λ, for then its closure Z := X in Gr6λ satisfies the
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condition in (1). For later use, we note that the translations ` · X for ` ∈ Λγ are
disjoint and cover Xγ.

Fixing an ordering of the positive roots of T with respect to B, we may write
an element u ∈ N(F) uniquely as

(2.5.5) u =
∏
α>0

xα(cα)

where cα ∈ F and xα : Ga → N is the root group corresponding to α. To show
that X is contained in an affine Schubert variety, it suffices to give a lower bound
for the valuations of cα appearing in (2.5.5) for any u ∈ N(F) such that [u] ∈ X(k).
We may expand Ad(u−1)γ ∈ b(F) in terms of the root decomposition

Ad(u−1)γ = γ+
∑
α>0

Pα(γ; c)eα

where eα ∈ gα is a fixed basis for each root space and Pα(γ; c) is an F-valued
polynomial function in {cα}α>0 and linear in γ. Induction on the height of α
shows that Pα(γ; c) takes the following form

(2.5.6) Pα(γ; c) = 〈α,γ〉cα +
∑
β<α

〈β,γ〉Pβα(c)

where Pβα(c) is a polynomial involving only {cα ′ }α ′<α, and homogeneous of de-
gree α (we define deg cα ′ := α ′ ∈ X∗(T)).

Let n = maxα>0{valF〈α,γ〉}. This is finite because γ is regular semisimple. If
[u] ∈ X(k), i.e., Ad(u−1)γ ∈ g(OF), then induction on the height of α shows that

valF(cα) > −(2ht(α) − 1)n,

which gives the desired lower bound and shows that X lies in an affine Schubert
variety.

2.5.7. Proof of (1) in the general case In the general case, we give a simplified
argument compared to the original one in [20], following the same idea. We make
a base change to F ′ = k((t1/m)) over which γ can be conjugated into a split torus.
Let Gr ′G be the affine Grassmannian of G defined using the field F ′ in place of F
(so that Gr ′G(k) = G(F ′)/G(O ′F)), and let X ′γ ⊂ Gr ′G be the corresponding affine
Springer fiber. Then both Gr ′G and X ′γ carry an action of Γ := Gal(F ′/F) ∼= µm

induced from its action on F ′, and we have a closed embedding Xγ ↪→ (X ′γ)
Γ .

Let Λ ′γ = X∗(Gγ ⊗ F ′) ↪→ Gγ(F
′) be the lattice constructed using the field

F ′. There is an action of Γ on X∗(Gγ ⊗ F ′) with fixed points X∗(Gγ) ∼= Λγ.
This action induces an action of Γ on Λ ′γ, but it does not respect the embedding
X∗(Gγ ⊗ F ′) ↪→ Gγ(F

′). The fixed points (Λ ′γ)
Γ = X∗(Gγ ⊗ F ′)Γ may not lie in

Gγ(F), however it always contains Λγ with finite index.
From the proof in the split case in §2.5.4 we have a finite type locally closed sub-

scheme X ′ ⊂ X ′γ coming from the Iwasawa decomposition, such that X ′γ can be
decomposed as the disjoint union t`∈Λ ′γ` ·X

′ (not as schemes but as constructible
sets). We identify ` ∈ Λ ′γ with an element in X∗(Gγ ⊗ F ′) then σ(`) makes sense
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for σ ∈ Γ . One checks that σ(` · X ′) = σ(`) · X ′ for ` ∈ Λ ′γ even though σ does
not respect the embedding Λ ′γ → Gγ(F

′). Therefore (X ′γ)
Γ ⊂ (Λ ′γ)

Γ · X ′. Choos-
ing representatives C for the finite coset space (Λ ′γ)

Γ/Λγ, we see that (X ′γ)
Γ is

contained in Λγ · (C · X ′). Since C · X ′ is of finite type, Z ′ = C ·X ′ ∩ (X ′γ)
Γ is a

projective subscheme of X ′γ whose Λγ-translations cover (X ′γ)
Γ . Finally the pro-

jective subscheme Z = Z ′ ∩Xγ of Xγ satisfies the requirement of (1). This finishes
the proof of Theorem 2.5.2. �

2.5.8. Reduction to Levi The proof of Theorem 2.5.2 in the split case in §2.5.4
gives more information. In the Iwasawa decomposition, let Sλ ⊂ GrG be the
LN-orbit of λ(t), for λ ∈ X∗(T). This is called a semi-infinite orbit, because it has
infinite dimension and also has infinite codimension in GrG. Let Cλ := Xγ ∩ Sλ,
then Cλ = λ(t) · X in the notation of §2.5.4. The formula (2.5.6) implies that
Cλ 6= ∅ (or equivalently X 6= ∅, or Xγ 6= ∅) if and only if 〈α,γ〉 ∈ OF for all
roots α, and if so, Cλ is isomorphic to an almost affine space (namely an iterated
A1-bundle) of dimension

dimCλ =
∑
α>0

valF(〈α,γ〉) = 1
2

valF∆(γ)

Here ∆(γ) is the determinant of the adjoint action of γ on g(F)/t(F). Therefore Xγ

can be decomposed into almost affine spaces of the same dimension indexed by
X∗(T). However, this decomposition is not a stratification: the closure Cλ of Cλ
will intersect other Cλ ′ but certainly not a union of such Cλ ′ ’s.

The decomposition Xγ = tCλ in the split case has a generalization. Suppose P
is a parabolic subgroup of G with unipotent radical NP and a Levi subgroup MP.
Let mP = Lie MP and suppose γ ∈ mP(F) is regular semisimple as an element in
g(F). Using the generalized Iwasawa decomposition G(F) = NP(F)MP(F)G(OF),
there is a well-defined map GrG(k)→ GrMP

(k) sending nmG(OF) to mMP(OF),
for n ∈ NP(F) and m ∈ MP(F). However this map does not give a map of ind-
schemes. Nevertheless the fibers of this map have natural structure of infinite
dimensional affine spaces. Restricting this map to Xγ we get

τ : Xγ(k)→ X
MP
γ (k)

where X
MP
γ ⊂ GrMP

is the affine Springer fiber for γ and the group MP. The
fibers of τ, if non-empty, are almost affine spaces of dimension 1

2 valF∆GMP
(γ),

where

(2.5.9) ∆GMP
(γ) := det(ad(γ)|g(F)/mP(F)).

Assume T ⊂ MP, then the connected components of GrMP
are indexed by

X∗(T)/R∨MP
where R∨MP

is the coroot lattice of MP. If we decompose X
MP
γ into

connected components X
MP
γ (λ) for X∗(T)/R∨MP

and taking their preimages un-
der τ, we get a decomposition Xγ = tXγ,λ into locally closed sub-ind-schemes
indexed also by λ ∈ X∗(T)/R∨MP

. One can show that Xγ,λ, if non-empty, is an
almost affine space bundle over XMP

γ (λ) with fiber dimension 1
2 valF∆GMP

(γ).
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2.5.10. Connectivity and equidimensionality WhenG is simply-connected, Fl is
connected, and in this case the affine Springer fiber Yγ is also connected. See [20,
§4, Lemma 2]. As a consequence, when G is simply-connected, XP,γ is connected
for all parahoric P because the natural projection Yγ → XP,γ is surjective.

In [20], it is also shown that Yγ is equidimensional. The argument there is
similar to Spaltenstein’s the proof of the connectivity and equidimensionality for
Springer fibers in [44].

2.5.11. The dimension formula By Theorem 2.5.2, the dimension of Xγ is well-
defined, and is the dimension of Λγ\Xγ as an algebraic space. To state a formula
for dimXγ, we need some more notation.

Consider the adjoint action ad(γ) : g(F)→ g(F). The kernel of this map is gγ(F),
and the induced endomorphism ad(γ) on g(F)/gγ(F) is invertible. Let ∆(γ) ∈ F×

be the determinant of ad(γ). This is consistent with our earlier definition of ∆(γ)
in the case γ lies in a split torus t(F).

On the other hand, recall X∗(Gγ) is the group of F-rational cocharacters of Gγ,
which is also the rank of the maximal F-split subtorus of Gγ. Let

c(γ) = r− rkZX∗(Gγ).

Then c(γ) is also the rank of the maximal F-anisotropic subtorus Gγ.

2.5.12. Theorem (Bezrukavnikov [4], conjectured by Kazhdan-Lusztig [20]). Let
γ ∈ g(F) be a regular semisimple element. Then we have

(2.5.13) dimXγ =
1
2
(valF∆(γ) − c(γ)).

2.5.14. Sketch of proof A key role in the proof is played by the notion of regular
points of Xγ. We have an evaluation map ev : Xγ → [g/G] sending [g] ∈ Xγ ⊂ GrG
to the reduction of Ad(g−1)γ modulo t, which is well-defined up to the adjoint
action by G. We say [g] ∈ Xγ is a regular point if ev([g]) lies in the open substack
[greg/G] of [g/G]. Let X

reg
γ ⊂ Xγ be the open sub-ind-scheme of Xγ consisting

of regular points. It can be shown that Xreg
γ is non-empty. Denote the preimage

of X
reg
γ in Yγ by Y

reg
γ , then the projection map Y

reg
γ → X

reg
γ is an isomorphism.

Since Y
reg
γ is equidimensional as mentioned in §2.5.10, we see that dimX

reg
γ =

dimY
reg
γ = dimYγ. Of course we have dimXγ 6 dimYγ, therefore we must have

dimX
reg
γ = dimXγ = dimYγ. It remains to calculate the dimension of Xreg

γ .
Recall we have defined the local Picard group Pa in §2.3.6. The action of Pa

on Xγ preserves X
reg
γ , and in fact Xreg

γ is a torsor under Pa. Therefore it suffices
to compute the dimension of Pa = LGγ/L

+Ja.
Consider the projection χt : t → c = t �W. Pullback along a = χ(γ) :

Spec OF → c we get a finite morphism χa : χ−1
t (a) = Spec A → Spec OF, for

a finite flat OF-algebra A. There is a close relationship between the group scheme
Ja and J ′a = (ResAOF(T ⊗kA))

W , where the Weyl groupW acts diagonally on both
T and A. In fact Ja and J ′a are equal up to connected components in their special
fibers. In particular, dimPa = dimP ′a, where P ′a = LGγ/L

+J ′a. It is not hard to
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see that

dimP ′a = dim(t⊗ Ã)W − dim(t⊗A)W = dim(t⊗ (Ã/A))W

where Ã is the normalization of A. From this one deduces the dimension formula
(2.5.13). �

2.5.15. Remark. Using the relation between affine Springer fibers and Hitchin
fibers, Ngô [36, Cor 4.16.2] showed that Xreg

γ is in fact dense in Xγ. In particular,
each irreducible component of Xγ is a rational variety. However, this rational-
ity property is false for affine Springer fibers in more general affine partial flag
varieties, as we saw in Bernstein-Kazhdan’s example in §2.4.6.

2.5.16. Purity It was conjectured by Goresky, Kottwitz and MacPherson [14] that
the cohomology of affine Springer fibers should be pure (in the sense of Frobe-
nius weights if k = Fp, or in the sense of Hodge structures if k = C). The purity
of affine Springer fibers would allow the authors of [14] to prove the Fundamen-
tal Lemma for unramified elements using localization techniques in equivariant
cohomology. This purity conjecture is still open in general. In [15], a class of
affine Springer fibers called equivalued were shown to be pure.

2.5.17. Invariance under perturbation Suppose a,a ′ ∈ c(OF) ∩ crs(F). We say
a ≡ a ′ mod tN if a and a ′ have the same image under the map c(OF) →
c(OF/t

N). In [36, Prop 3.5.1], it is shown that for fixed a ∈ c(OF) ∩ crs(F), there
exists some N (depending on a) such that whenever a ′ ≡ a mod tN, we have
isomorphisms

X̃a ∼= X̃a ′ and Pa ∼= Pa ′

in a way compatible with the actions. Therefore, we may say that Xa varies locally
constantly with a under the t-adic topology on c(OF).

For example, consider the case G = GLn and let a ∈ c(OF) correspond to
a characteristic polynomial P(x) = xn + a1x

n−1 + · · · + an whose roots are in
OF and are distinct modulo t. Then for any a ′ ≡ a mod t, the characteristic
polynomial of a ′ also has distinct roots modulo t. In this case, X̃a and X̃a ′ are
both torsors under Pa ∼= Pa ′ ∼= GrT .

2.6. Affine Springer representations In this subsection we introduce an analog
of Springer’s W-action on H∗(Be) in the affine situation.

2.6.1. The affine Weyl group We view W as a group of automorphisms of the
cocharacter lattice X∗(T), where T is a fixed maximal torus of G. The extended
affine Weyl group W̃ is the semidirect product

W̃ = X∗(T)oW.

When G is simply-connected, so that X∗(T) is spanned by coroots, W̃ is a Coxeter
group with simple reflections {s0, s1, · · · , sr} in bijection with the nodes of the
extended Dynkin diagram of G. In general, W̃ is a semidirect product of the
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affine Weyl group Waff = (ZR∨)oW (where ZR∨ is the coroot lattice), which is a
Coxeter group, and an abelian group Ω ∼= X∗(T)/ZR∨. The group W̃ naturally
acts on the affine space X∗(T)R by affine transformations, where X∗(T) acts by
translations.

2.6.2. Theorem (Lusztig [34], Sage [39]). There is a canonical action of W̃ on H∗(Yγ).

Since Yγ is not of finite type, the `-adic homology H∗(Yγ) is understood as the
inductive limit lim−→nH∗(Yγ,n), whenever we present Yγ as a union of projective
subschemes Yγ,n.

2.6.3. Sketch of the construction of the W̃-action We consider only the case G
is simply-connected so that W̃ = Waff is generated by affine simple reflections
s0, · · · , sr. For each parahoric subgroup P ⊂ LG we have a corresponding affine
Springer fiber X̃P,γ. For P containing a fixed Iwahori subgroup I, we have a
projection πP,γ : Ỹγ → X̃P,γ.

Let LP be the Levi quotient of P and lP = Lie LP. We have an evaluation map
evP,γ : X̃P,γ → [lP/LP] defined as follows. For [g] ∈ FlP such that Ad(g−1)γ ∈
Lie P, we send the coset [g] = gP to the image of Ad(g−1)γ under the projection
Lie P→ lP. This is well-defined up to the adjoint action of LP. We have a Cartesian
diagram

Ỹγ

πP,γ

��

evI,γ // [̃lP/LP]

πlP

��
X̃P,γ

evP,γ // [lP/LP]

where πlP is the Grothendieck alteration for the reductive group lP. By the
Springer theory for LP, we have a W(LP)-action on the direct image complex
RπlP,∗D (where D stands for the dualizing complex for [̃lP/LP]). By proper base
change, we get an action of W(LP) on RπP,γ,∗DỸγ

, and hence on H∗(Yγ). Taking
a standard parahoric P corresponding to the i-th node in the extended Dynkin
diagram, then W(LP) = 〈si〉, and we get an involution si acting on H∗(Yγ). To
check the braid relation between si and sj for neighboring nodes i and j, we may
choose a standard parahoric P such that W(LP) = 〈si, sj〉 and the braid relation
holds because W(LP) acts on H∗(Yγ). This shows that W̃ acts on H∗(Yγ). �

Despite the simplicity of the construction of the W̃-action on the homology of
affine Springer fibers, the calculation of these actions are quite difficult. One new
feature here is that the action of W̃ on H∗(Yγ) may not be semisimple, as we shall
see in the next example.

2.6.4. An example in SL2 Consider the case G = SL2 and the element γ =(
0 t2

t 0

)
. This is a subregular case. The affine Springer fiber Yγ has two ir-

reducible components C0 and C1 both isomorphic to P1. Here C0 parametrizes
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chains of lattices {Λi} where Λ0 is the standard lattice O2
F and Λ−1 ⊂ Λ0 is

varying. The other component C1 parametrizes chains of lattices {Λi} where
Λ−1 = tOF ⊕ OF and Λ0 is varying. The fundamental classes [C0], [C1] give a
natural basis for the top homology group H2(Yγ). One can show that the action
of the affine Weyl group W̃ = 〈s0, s1〉 on H2(Yγ) takes the following form under
the basis [C0] and [C1]:

s0 =

(
−1 2

0 1

)
; s1 =

(
1 0

2 −1

)
.

We see that H2(Yγ) is a nontrivial extension of the sign representation of W̃ by the
trivial representation spanned by [C0] + [C1]. One can also canonically identify
the W̃-module H2(Yγ, Z) with the affine coroot lattice of the loop group LG.

2.7. Comments and generalizations

2.7.1. Relation with orbital integrals As we will see in §3, the cohomology and
point-counting of affine Springer fibers are closely related to orbital integrals on
p-adic groups G(Fq((t))).

2.7.2. Extended symmetry The W̃-action on H∗(Yγ) can be extended to an ac-
tion of the wreath product Sym(X∗(T))o W̃. For homogeneous affine Springer
fibers Yγ (those admitting a torus action coming from loop rotation), the equivari-
ant cohomology group H∗Gm(Yγ) admits an action of the graded double affine Hecke
algebra, which is a deformation of Sym(X∗(T))o W̃. For details we refer to [37].
Vasserot and Varagnolo [51] [52] constructed an action of the double affine Hecke
algebra on the K-groups of affine Springer fibers.

2.7.3. The group version Taking γ ∈ G(F) instead of in g(F), one can similarly
define the group version of affine Springer fibers, which we still denote by X̃γ

with reduced structure Xγ. For a k-algebras R, we have

(2.7.4) X̃γ(R) = {[g] ∈ GrG(R)|g−1γg ∈ L+G(R)}.

However, in the group version, the definition above admits an interesting gener-
alization. Recall the L+G-double cosets in LG are indexed by dominant cocharac-
ters λ ∈ X∗(T)+. For λ ∈ X∗(T)+ we denote the corresponding double coset by
(LG)λ, which is the preimage of the Schubert stratum GrG,λ under the projection
LG → GrG. Similarly we may define (LG)6λ to be the preimage of the closure
GrG,6λ of GrG,λ. One can replace the condition g−1γg ∈ L+G(R) in (2.7.4) by
g−1γg ∈ (LG)λ(R) or g−1γg ∈ (LG)6λ(R), and take reduced structures to obtain
reduced generalized affine Springer fibers Xλ,γ and X6λ,γ. We have an open
embedding Xλ,γ ↪→ X6λ,γ, whose complement is the union of Xµ,γ for domi-
nant coweights µ 6 λ. The motivation for introducing X6λ,γ is to give geometric
interpretation of orbital integrals of spherical Hecke functions on G(F).
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A.Bouthier has established the fundamental geometric properties of Xλ,γ, par-
allel to Theorem 2.5.2 and Theorem 2.5.12.

2.7.5. Theorem (Bouthier [7]). Let γ ∈ G(F) be regular semisimple, and let λ ∈
X∗(T)+.

(1) The generalized affine Springer fiber Xλ,γ is non-empty if and only if [νγ] 6 λ,
where [νγ] ∈ X∗(T)

+
Q

is the Newton point of γ, see [21, §2].
(2) The ind-scheme Xλ,γ is locally of finite type.
(3) We have

dimXλ,γ = 〈ρ, λ〉+ 1
2
(valF∆(γ) − c(γ))

where ρ ∈ X∗(T)Q is half the sum of positive roots, and ∆(γ) and c(γ) are
defined similarly as in the Lie algebra situation.

The proof of this theorem uses the theory of Vinberg semigroups, which is a
kind of compactification of G.

2.7.6. In [21], Kottwitz and Viehmann defined two generalizations of affine
Springer fibers for elements γ in the Lie algebra g(F).

2.7.7. As an analog of Hessenberg varieties, one can also consider the following
situation. Let (ρ,V) be a linear representation of a reductive group G over k. Let
Λ ⊂ V ⊗ F be an OF-lattice stable under G(OF). For v ∈ V ⊗ F we may define a
sub-ind-scheme X̃v of GrG

X̃Λ,v(R) = {[g] ∈ GrG(R)|ρ(g−1)v ∈ Λ⊗̂kR}.

Let XΛ,v be the reduced structure of X̃Λ,v. The cohomology of these ind-schemes
are related to orbital integrals that appear in relative trace formulae.

2.8. Exercises

2.8.1. Let G = SO(V ,q) for some vector space V over k equipped with a qua-
dratic form q. Give an interpretation of the parahoric subgroups and affine partial
flag varieties of LG in terms of self-dual lattice chains in V ⊗k F, in the same style
as in §2.1.8.

2.8.2. Verify the descriptions of the affine Springer fibers for G = SL2 given in
§2.2.5 and §2.2.7.

2.8.3. Let G = SL2 and γ =

(
0 tn

1 0

)
∈ g(F). Describe Yγ.

2.8.4. Let G = SL2 and γ =

(
0 tn

1 0

)
∈ g(F). Construct a nontrivial Gm-

action on Xγ involving loop rotations (i.e., the action scales t) and determine its
fixed points.
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2.8.5. Let G = SL2 and γ =

(
tn 0

0 −tn

)
∈ g(F). Let T ⊂ G be the diagonal

torus, then Gγ = T ⊗k F. What is the regular locus X
reg
γ (see §2.5.14)? Study the

L+T -orbits on Xγ.

2.8.6. In the setup of §2.3.3, show that the action of Λγ on GrG is free, which
implies that its action on Xγ is free. Show also that the permutation action of Λγ
on the set of irreducible components of Xγ is free.

2.8.7. For G = GLn, let L ⊂ G be the Levi subgroup consisting of block diagonal
matrices with sizes of blocks n1, · · · ,ns,

∑
i ni = n. Let γ = (γ1, · · · ,γs) ∈ l(F)

be regular semisimple as an element in g(F). What is the invariant ∆GL (γ) (see
(2.5.9)) in terms of familiar invariants of the characteristic polynomials of the γi?

2.8.8. Let G = SL3 and γ = diag(x1t, x2t, x3t) ∈ g(F), with xi ∈ k pairwise
distinct and x1 + x2 + x3 = 0. Describe the affine Springer fibers Xγ and Yγ.

Note: this is a good exercise if you have a whole day to kill.

2.8.9. For G = Sp6 and γ =

(
0 tX

Y 0

)
as in Example 2.4.4, describe the Gm-

fixed points on Xγ and Yγ.

2.8.10. Verify the calculations in §2.6.4.

2.8.11. Let G = SL2 and let γ =

(
t 0

0 −t

)
. Describe the affine Springer fiber

Yγ. What is the action of W̃ = 〈s0, s1〉 on H2(Yγ) in terms of the basis given by
the irreducible components of Yγ?

3. Lecture III: Orbital integrals

The significance of affine Springer fibers in representation theory is demon-
strated by their close relationship with orbital integrals. Orbital integrals are
certain integrals that appear in the harmonic analysis of p-adic groups. Just as
conjugacy classes of a finite group are fundamental to understanding its repre-
sentations, orbital integrals are fundamental to understanding representations of
p-adic groups. In certain cases, orbital integrals can be interpreted as counting
points on affine Springer fibers.

3.1. Integration on a p-adic group

3.1.1. The setup Let F be a local non-archimedean field, i.e., F is either a finite
extension of Qp or a finite extension of Fp((t)). Then F has a discrete valuation
val : F× → Z which we normalize to be surjective. Let OF be the valuation ring of
F and k be the residue field. Therefore, unlike in the previous sections, k is a finite
field. We assume that char(k) is large with respect to the groups in question.
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3.1.2. Haar measure and integration Let G be an algebraic group over F. The
topological group G(F) is locally compact and totally disconnected. It has a right
invariant Haar measure µG which is unique up to a scalar. For a measurable
subset S ⊂ G(F), we denote its volume under µG by vol(S,µG). Fixing a compact
open subgroup K0 ⊂ G(F), we may normalize the Haar measure µG so that K0

has volume 1. For example, if we choose an integral model G of G over OF, we
may take K0 = G(OF).

With the Haar measure µG one can integrate smooth (i.e., locally constant)
compactly supported functions on G(F) with complex values. We denote this
function space by S(G(F)) (where S stands for Schwarz). For f ∈ S(G(F)), the
integral ∫

G(F)
fµG

can be calculated as follows. One can find a subgroup K ⊂ K0 of finite index
such that f is right K-invariant, i.e., f(gx) = f(g) for all g ∈ G(F) and x ∈ K (see
Exercise 3.7.1). Then the integral above becomes a weighted counting in the coset
G(F)/K: ∫

G(F)
fµG = vol(K,µG)

∑
[g]∈G(F)/K

f(g) =
1

[K0 : K]

∑
[g]∈G(F)/K

f(g).

It is easy to check that the right side above is independent of the choice of K as
long as f is right K-invariant and K has finite index in K0.

3.1.3. Variant Let H ⊂ G be an algebraic subgroup defined over F together with
a Haar measure µH on H(F). Consider a function f ∈ S(H(F)\G(F)), i.e., f is a
left H(F)-invariant, locally constant function on G(F) whose support is compact
modulo H(F), we may define the integral

(3.1.4)
∫
H(F)\G(F)

f
µG
µH

.

This integral is calculated in the following way. Again we choose a finite index
subgroup K ⊂ G(F) such that f is right K-invariant. Then the integral (3.1.4) can
be written as a weighted sum over double cosets H(F)\G(F)/K:∫

H(F)\G(F)
f
µG
µH

=
1

[K0 : K]

∑
[g]∈H(F)\G(F)/K

f(g)

vol(H(F)∩ gKg−1,µH)
.

3.2. Orbital integrals

3.2.1. Definition of orbital integrals We continue with the setup of §3.1. We
denote the Lie algebra of G by g(F) to emphasize that it is a vector space over
F. Let ϕ ∈ S(g(F)) and γ ∈ g(F). Consider the map G(F) → g(F) given by
g 7→ Ad(g−1)γ. Then the composition f : g 7→ ϕ(Ad(g−1)γ) is a smooth function
on G(F). Then f is locally constant, left invariant under the centralizer Gγ(F) of γ
in G(F), and has compact support modulo Gγ(F).
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Fix Haar measures µG on G(F) and µGγ on Gγ(F). The following integral is
then a special case of (3.1.4) (except that we write the integration variable g ∈
Gγ(F)\G(F) explicit below while not in (3.1.4))

Oγ(ϕ) :=

∫
Gγ(F)\G(F)

ϕ(Ad(g−1)γ)
µG
µGγ

.

Such integrals are called orbital integrals on the Lie algebra g(F). We may similarly
define orbital integrals on the group G(F) by replacing γ with an element in G(F)
and ϕ with an element in S(G(F)).

3.2.2. Specific situation For the rest of the section we will restrict to the follow-
ing situation. Let G be a split reductive group over F. We may fix an integral
model of G by base changing the corresponding Chevalley group scheme from Z

to OF. In the following we will regard G as a reductive group scheme over OF.
We normalize the Haar measure µG on G(F) by requiring that K0 = G(OF) have
volume 1.

The Lie algebra g(F) contains a canonical lattice g(OF) coming from the inte-
gral model over OF. We will be most interested in the orbital integral of the
characteristic function ϕ = 1g(OF) of the lattice g(OF).

3.2.3. The centralizer of γ Suppose γ is regular semisimple so that its centralizer
Gγ is a torus over F. Let Fur = F⊗̂kk, which is a complete discrete valuation
field whose residue field is algebraically closed. We continue to let t denote a
uniformizer of F, which is also a uniformizer in Fur. Using t, the construction
in §2.3.3 gives an embedding X∗(Gγ ⊗F Fur) ↪→ Gγ(F

ur) whose image we still
denote by Λγ. This embedding being Gal(k/k)-equivariant, Λγ carries an action
of Gal(k/k). We think of Λγ as an étale group scheme over k, then the notation
Λγ(k) makes sense, and it is just the Gal(k/k)-invariants in Λγ if we regard
the latter as a plain group. Then Λγ(k) ⊂ Gγ(F) is a discrete and cocompact
subgroup.

3.2.4. Centralizers in GLn Let G = GLn and let γ be a regular semisimple
element in g(F) which is not necessarily diagonalizable over F. Assume either
char(F) = 0 or char(k) > n. As in §2.3.4, the characteristic polynomial P(x) =

xn + a1x
n−1 + · · ·+ an ∈ F[x] of γ is separable, hence the F-algebra F[x]/(P(x)) is

isomorphic to a product of fields F1 × · · · × Fm. We have

Gγ(F) ∼= F×1 × · · · × F
×
m.

In this case, the lattice Λγ(k) ⊂ Gγ(F) = F×1 × · · · × F
×
m consists of elements of

the form (td1 , · · · , tdm) for (d1, · · · ,dm) ∈ Zm. The quotient Λγ(k)\Gγ(F) is
isomorphic to

∏m
i=1 F

×
i /t

Z. Each F×i /t
Z fits into an exact sequence

(3.2.5) 0→ O×Fi → F×i /t
Z → Z/eiZ→ 0

where ei is the ramification degree of the extension Fi/F, therefore the quotient
Λγ(k)\Gγ(F) is compact.
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3.2.6. Orbital integrals in terms of counting Consider the following subset of
G(F)/G(OF)

Xγ := {[g] ∈ G(F)/G(OF)|Ad(g−1)γ ∈ g(OF)}.

This is a set-theoretic version of the affine Springer fiber.
The group Gγ(F) acts on Xγ by the rule Gγ(F) 3 h : [g] 7→ [hg]. For any

free abelian group L ⊂ Gγ(F), its action on G(F)/G(OF) by left translation is free
(because the stabilizers are necessarily finite), hence it acts freely on Xγ.

More generally, for any discrete cocompact subgroup L ⊂ Gγ(F), the quotient
groupoid L\Xγ is finitary, i.e., it has finitely many isomorphism classes and the
automorphism group of each object is finite. For a finitary groupoid Y, we define
the cardinality of Y to be

(3.2.7) #Y :=
∑

y∈Ob(Y)/∼=

1
#Aut(y)

The next lemma follows directly from the definitions, whose proof is left to the
reader as Exercise 3.7.2.

3.2.8. Lemma. Let γ be a regular semisimple element in g(F). Let L ⊂ Gγ(F) be any
discrete cocompact subgroup. We have

Oγ(1g(OF)) =
1

vol(Gγ(F)/L,µGγ)
# (L\Xγ)

with the cardinality on the right side interpreted as in (3.2.7).

3.2.9. The case G = GLn and fractional ideals We continue with the situation
in §3.2.4. Under the identification of G(F)/G(OF) with the set of OF-lattices in Fn

(see (2.1.4)), we have

Xγ ∼= {lattices Λ ⊂ Fn|γΛ ⊂ Λ}.

The bijection sends [g] ∈ Xγ to the lattice Λ = gOnF .
We give another interpretation of Xγ. Let P(x) = xn + a1x

n−1 + · · ·+ an be
the characteristic polynomial of γ. Let

A = OF[x]/(P(x))

be the commutative OF-subalgebra of g(F) generated by γ. The ring of total
fractions Frac(A) is a finite étale F-algebra of degree n, and A is an order in it.
The canonical action of A on Fn realizes Fn as a free Frac(A)-module of rank 1.
Recall a fractional A-ideal is a finitely generated A-submodule M ⊂ Frac(A). If we
choose an element e ∈ Fn as a basis for the Frac(A)-module structure, we get a
bijection

(3.2.10) {fractional A-ideals}↔ Xγ

which sends M ⊂ Frac(A) to the OF-lattice M · e ⊂ Fn.
Using the algebra A, we have a canonical isomorphism

Gγ(F) ∼= Frac(A)×.
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This isomorphism intertwines the action of Gγ(F) on Xγ by left translation and
the action of Frac(A)× on the set of fractional A-ideals by multiplication.

When A happens to be a product of Dedekind domains (i.e., A is the maxi-
mal order in Frac(A)), all fractional A-ideals are principal, which is the same as
saying that the action of Gγ(F) ∼= Frac(A)× on Xγ is transitive. In general, princi-
pal fractional ideals form a homogeneous space Frac(A)×/A× under Gγ(F); the
difficulty in counting Xγ in general is caused by the singularity of the ring A.

We normalize the Haar measure µGγ on Gγ(F) ∼=
∏
i F
×
i so that

∏
i O
×
Fi

gets
volume 1. Choose a uniformizer ti ∈ Fi, we may form the lattice L0 = tZ1 × · · · ×
tZm ⊂ Gγ(F). Now Gγ(F)/L0 ∼=

∏
i O
×
Fi

has volume 1. Therefore Lemma 3.2.8
gives

(3.2.11) Oγ(1g(OF)) = #(L0\Xγ).

Using (3.2.10), we may interpret (3.2.11) as saying that Oγ(1g(OF)) is the number
of fractional A-ideals up to multiplication by the powers of the ti’s.

3.3. Relation with affine Springer fibers From this subsection we restrict to the
case F is a local function field, i.e., F = k((t)) for a finite field k = Fq. Let γ ∈ g(F)

be regular semisimple. The definitions of the affine Grassmannian and the affine
Springer fiber Xγ we gave in §2 make sense when the base field k is a finite field,
so we have a sub-ind-scheme Xγ of GrG, both defined over k.

The following lemma is clear from the definitions.

3.3.1. Lemma. The set of k-rational points Xγ(k) is the same as the set Xγ defined in
§3.2.6, both as subsets of GrG(k) = G(F)/G(OF).

3.3.2. If we base change from k to k, by Theorem 2.5.2 we know that Λγ\Xγ,k is
a proper algebraic space over k. The proof there actually shows that this algebraic
space is defined over k, which we denote by Λγ\Xγ. We emphasize here that Λγ
is viewed as an étale group scheme over k whose k-points is the plain group used
to be denoted Λγ.

In view of Lemma 3.2.8 and Lemma 3.3.1, it is natural to expect that the orbital
integral Oγ(1g(OF)) can be expressed as the number of k-points on the quotient
Λγ\Xγ. Such a relationship takes its cleanest form when G = GLn.

3.3.3. The case of GLn In the situation of §3.2.9, upon choosing uniformizers
ti ∈ Fi, we defined the lattice L0 = tZ1 ×· · ·× t

Z
m. Base change from k to k, we may

similarly define a lattice Λ̃γ as in §2.3.4, using the same choice of uniformizers
ti ∈ Fi (note that Fi⊗̂kk may split into a product of fields, but ti ⊗ 1 will project
to a uniformizer in each factor). The Gal(k/k)-action on Λ̃γ gives it the structure
of an étale group scheme over k, just as Λγ. We have Λ̃γ(k) = L0. There is
an analog of Theorem 2.5.2 if we replace Λγ with Λ̃γ. In particular, Λ̃γ\Xγ
is a proper algebraic space over k admitting a surjective map from a projective
scheme.
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3.3.4. Theorem. Let G = GLn. Let γ be a regular semisimple element in g(F). We
fix the Haar measure on Gγ(F) such that its maximal compact subgroup gets volume 1.
Then we have

(3.3.5) Oγ(1g(OF)) = #(Λ̃γ\Xγ)(k) =
∑
i

(−1)iTr
(

Frobk, Hi(Λ̃γ\Xγ,k, Q`)
)

.

The second equality in (3.3.5) follows from the Grothendieck-Lefschetz trace
formula. Comparing (3.3.5) with (3.2.11), we only need to argue that L0\Xγ =

Λ̃γ(k)\Xγ(k) is the same as (Λ̃γ\Xγ)(k). Let us first make some general remarks
about k-points on quotient stacks.

3.3.6. k-points of a quotient We consider a quotient stack Y = [A\X] where X
is a scheme over k and A is an algebraic group over k acting on X. Then, by
definition, Y(k) is the groupoid of pairs (S, f) where S→ Spec k is a left A-torsor,
and f : S → X is an A-equivariant morphism. The isomorphism class of the A-
torsor S is classified by the Galois cohomology H1(k,A) := H1(Gal(k/k),A(k)).
For each class ξ ∈ H1(k,A), let Sξ be an A-torsor over k with class ξ. We may
define a twisted form of X over k by Xξ := A\(Sξ × X). We also have the inner
form Aξ := AutA(Sξ) of A acting on the k-scheme Xξ. It is easy to see that A-
equivariant morphisms f : Sξ → X are in bijection with Xξ(k). Therefore we get
a decomposition of groupoids

(3.3.7) Y(k) = [A\X](k) ∼=
⊔

ξ∈H1(k,A)

Aξ(k)\Xξ(k).

3.3.8. Proof of Theorem 3.3.4 We have reduced to showing that (Λ̃γ\Xγ)(k) =
Λ̃γ(k)\Xγ(k). By (3.3.7), it suffices to show that H1(k, Λ̃γ) = 0. We use the
notation from §3.3.3. From the definition of Λ̃γ we see that, as a Gal(k/k)-module,
it is of the form

Λ̃γ ∼=

m⊕
i=1

IndGal(k/k)
Gal(k/ki)

Z

where ki is the residue field of Fi. Therefore

H1(k, Λ̃γ) ∼=

m⊕
i=1

H1(ki, Z) = 0.

�

3.4. Stable orbital integrals The setup is the same as §3.3. For general G, the
generalization of the formula (3.3.5) is not straightforward. Namely, the orbital
integral Oγ(1g(OF)) by itself does not have a cohomological interpretation. The
problem is that we may not be able to find an analog of Λ̃γ with vanishing
first Galois cohomology so that (Λ̃γ\Xγ)(k) is simply Λ̃γ(k)\Xγ(k). In view
of formula (3.3.7), a natural fix to this problem is to consider the twisted forms of
Xγ altogether. This suggests taking not just the orbital integral Oγ(1g(OF)) but a
sum of several orbital integrals Oγ ′(1g(OF)).
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3.4.1. Stable conjugacy The notion of stable conjugacy and stable orbital inte-
grals was introduced by Langlands, see [22, II.3].

Fix a regular semisimple element γ ∈ g(F). An element γ ′ ∈ g(F) is called
stably conjugate to γ if it is in the same G(F)-orbit of γ. Equivalently, γ ′ is stably
conjugate to γ if χ(γ ′) = χ(γ) ∈ c(F). For γ ′ stably conjugate to γ, one can
attach a Galois cohomology class inv(γ,γ ′) ∈ H1(F,Gγ) which becomes trivial
in H1(F,G). In fact, if g ∈ G(F) is such that Ad(g)γ = γ ′, and σ ∈ Gal(F/F),
then Ad(σ(g))γ = γ ′, hence g−1σ(g) ∈ Gγ. The assignment σ 7→ g−1σ(g) is
a cocycle valued in Gγ(F) (which is a coboundary viewed as valued in G(F) by
construction), and its class in H1(F,Gγ) is independent of the choice of g. This
defines a class inv(γ,γ ′) ∈ H1(F,Gγ).

The assignment γ ′ 7→ inv(γ,γ ′) gives a bijection of pointed sets

(3.4.2) {γ ′ ∈ g(F) stably conjugate to γ}/G(F) ∼= ker(H1(F,Gγ)→ H1(F,G)).

3.4.3. The case of GLn When G = GLn, we use the notation from §2.3.4. We
have

H1(F,Gγ) ∼=

m∏
i=1

H1(Fi, Gm) = 〈1〉.

Therefore, by (3.4.2), all elements stably conjugate to γ are in fact G(F)-conjugate
to γ. Of course this statement can also be proved directly using companion ma-
trices.

3.4.4. The case of SL2 We consider the case G = SL2. Let a ∈ k× − (k×)2. Let

γ =

(
0 at

t 0

)
, γ ′ =

(
0 at2

1 0

)
be two regular semisimple elements in sl2(F). Since they have the same determi-
nant −at2, they are stably conjugate to each other. However, they are not conju-
gate to each other under SL2(F). One can show that the stable conjugacy class of
γ consists of exactly two SL2(F)-orbits represented by γ and γ ′, see Exercise 3.7.3.

3.4.5. Definition of stable orbital integrals Let ϕ ∈ S(g(F)). We define the stable
orbital integral of ϕ with respect to γ to be

(3.4.6) SOγ(ϕ) =
∑
γ ′

Oγ ′(ϕ)

where γ ′ runs over G(F)-orbits of elements γ ′ ∈ g(F) that are stably conjugate
to γ. For γ ′ stably conjugate to γ, we have a canonical isomorphism Gγ ∼= Gγ ′ as
F-groups. Therefore, once we fix a Haar measure on Gγ(F), we get a canonical
Haar measure on the other centralizers Gγ ′(F). It is with this choice that we
define Oγ ′(ϕ) in (3.4.6).

3.4.7. Stable part of the cohomology The quotient group scheme LGγ/Λγ acts
on Λγ\Xγ. The component group π0(LGγ/Λγ) is an étale group scheme over k



Zhiwei Yun 43

whose k-points acts on H∗(Lγ\Xγ,k, Q`). We define the stable part of this coho-
mology group to be the invariants under this action

H∗(Λγ\Xγ,k)st = H∗(Λγ\Xγ,k)
π0(LGγ/Λγ)(k).

It turns out that if we replace Λγ with any other Gal(k/k)-stable free abelian
subgroup Λ ⊂ Gγ(Fur) commensurable with Λγ, the similarly defined stable part
cohomology is canonically isomorphic to the above one.

3.4.8. Theorem (Special case of Goresky-Kottwitz-MacPherson [14, Th 15.8] and
Ngô [36, Cor 8.2.10]). We have

(3.4.9) SOγ(1g(OF)) =
1

vol(Kγ,µGγ)

∑
i

(−1)iTr
(

Frobk, Hi(Λγ\Xγ,k, Q`)st

)
.

Here Kγ ⊂ Gγ(F) is the parahoric subgroup of the torus Gγ.

This cohomological interpretation of the stable orbital integral is the starting
point of the proof of the Fundamental Lemma (see [14] and [36]).

3.4.10. Let us briefly comment on the definition of the parahoric subgroup Kγ.
Let K̃γ ⊂ Gγ(F) be the maximal compact subgroup. Then there is a canonical
smooth group scheme Gγ over OF whose F-fiber is Gγ and whose OF points is
K̃γ. This group scheme Gγ is the finite type Néron model for the torus Gγ. Now
let G◦γ ⊂ Gγ be the open subgroup scheme obtained by removing the non-neutral
component of the special fiber of Gγ. Then, by definition, Kγ = G◦γ(OF). The
positive loop group L+G◦γ is, up to nilpotents, the neutral component of LGγ.

3.4.11. Sketch of proof of Theorem 3.4.8 We sketch an argument which is closer
to that of [14] than that of [36]. One can show that there exists an étale k-subgroup
Λ̃ ⊂ LGγ commensurable with Λγ, which maps onto the étale group scheme
π0(LGγ) over k (and the kernel is necessarily finite). The group Λ̃ is an analog
of Λ̃γ defined in §3.3.3. We form the quotient stack [Λ̃\Xγ]. Then we have an
isomorphism

(3.4.12) H∗(Λγ\Xγ,k, Q`)st ∼= H∗([Λ̃\Xγ,k], Q`).

In fact, by the discussion in the end of §3.4.7, the left side above does not change
if we replace Λγ by a commensurable lattice, so by shrinking Λγ we may as-
sume Λγ ⊂ Λ̃. On the other hand, the right side above can be computed by the
Leray spectral sequence associated with the map Λγ\Xγ,k → [Λ̃\Xγ,k] which is
a torsor under the finite discrete group (Λ̃/Λγ)(k), therefore H∗([Λ̃\Xγ,k], Q`) =

H∗(Λγ\Xγ,k, Q`)
(Λ̃/Λγ)(k). Since (Λ̃/Λγ)(k) surjects onto π0(LGγ/Λγ)(k) by the

choice of Λ̃, we see that

H∗(Λγ\Xγ,k, Q`)
π0(LGγ/Λγ)(k) = H∗(Λγ\Xγ,k, Q`)

(Λ̃/Λγ)(k),

from which (3.4.12) follows.
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By the discussion in §3.3.6 and (3.3.7), we have

(3.4.13) [Λ̃\Xγ,k](k)
∼=

⊔
ξ∈H1(k,Λ̃)

Λ̃(k)\Xγ,ξ(k).

The inclusion Λ̃ ⊂ LGγ gives

θ : H1(k, Λ̃)� H1(k,LGγ) ∼= H1(F,Gγ).

The first surjection follows from Lang’s theorem because the quotient LGγ/Λ̃ is
connected; the second follows from another theorem of Lang which says that
H1(Fur,Gγ) vanishes 7. For each ξ ∈ H1(k, Λ̃) such that Xγ,ξ(k) 6= ∅, one can
show that the image of θ(ξ) in H1(F,G) is trivial. Therefore, by (3.4.2), to each
ξ ∈ H1(k, Λ̃) we can attach an element γ ′ stably conjugate to γ, unique up to
G(F)-conjugacy, such that inv(γ,γ ′) = θ(ξ). One can show that Xγ,ξ(k) is in
bijection with the set Xγ ′ . Therefore, (3.4.13) implies

(3.4.14) #[Λ̃\Xγ](k) = # ker(θ)
∑
γ ′

#(Λ̃(k)\Xγ ′)

where the sum is over the G(F)-orbits of those γ ′ stably conjugate to γ. Applying
Lemma 3.2.8 to the discrete cocompact subgroup Λ̃(k), we have

Oγ ′(1g(OF)) =
1

vol(Gγ(F)/Λ̃(k),µGγ)
#(Λ̃(k)\Xγ ′).

Plugging this into the right side of (3.4.14), we get

(3.4.15) SOγ(1g(OF)) =
1

# ker(θ)vol(Gγ(F)/Λ̃(k),µGγ)
#[Λ̃\Xγ](k).

By the Grothendieck-Lefschetz trace formula, #[Λ̃\Xγ,k](k) is equal to the alter-
nating Frobenius trace on H∗([Λ̃\Xγ,k], Q`), which, by (3.4.12), can be identified
with H∗(Λγ\Xγ,k, Q`)st. Therefore the theorem follows from the identity (3.4.15)
together with the volume identity

(3.4.16) # ker(θ)vol(Gγ(F)/Λ̃(k),µGγ) = vol(Kγ,µGγ).

To show this, let C = L+G◦γ ∩ Λ̃ (where G◦γ is the connected Néron model of Gγ
whose OF points is Kγ, see §3.4.10). This is a finite étale group over k. We have a
short exact sequence of group ind-schemes over k

1→ C→ L+G◦γ × Λ̃→ (LGγ)
red → 1

The associated six term exact sequence for Gal(k/k)-cohomology gives

1→ C(k)→ Kγ × Λ̃(k)→ Gγ(F)→ H1(k,C)→ ker(θ)→ 1

from which we get (3.4.16), using that #C(k) = #H1(k,C). �

7See [40, Ch.X, §7, p.170, Application and Example (b)]. Let K be a complete discrete valuation field
with perfect residue field, and Kur its maximal unramified extension. Then Lang’s theorem asserts
that Kur is a C1-field. Therefore H1(Kur,A) = 0 for any torus A over K.
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3.5. Examples in SL2 By Theorem 3.4.8, in order to calculate orbital integrals,
we need to know not just the geometry of the affine Springer fiber Xγ, but also
the action of Frobenius on its cohomology. Having already seen many examples
of affine Springer fibers over an algebraically closed field in §2.4, our emphasis
here will be on the Frobenius action.

In this subsection we let G = SL2 and assume char(k) > 2. We will compute
several orbital integrals in this case and verify Theorem 3.4.8 in these cases by
explicit calculations.

3.5.1. Unramified case: γ Let γ =

(
0 at

t 0

)
∈ sl2(F) be a regular semisimple

element with a ∈ k× − (k×)2.
Let E ⊂ gl2(F) be the centralizer of γ in gl2(F). Then E = {u+ vγ|u, v ∈ F} is an

unramified quadratic extension of F obtained by adjoining
√
a. Therefore we have

E = kE((t)), with kE = k(
√
a). We have Gγ(F) = (E×)Nm=1 = ker(Nm : E× → F×),

which is compact. We fix a Haar measure on Gγ(F) with total volume 1.
Let Xγ be the affine Springer fiber of γ, which is a scheme over k. Lemma 3.2.8

implies that
Oγ(1g(OF)) = #Xγ = #Xγ(k).

In §2.2.5 we have shown that Xγ,k is an infinite union of rational curves Cn ∼= P1

indexed by the integers n ∈ Z. Since γ is diagonalizable over E, each component
Cn is in fact defined over kE = k(

√
a). The lattice Λγ ⊂ Gγ(Fur) is contained in

Gγ(E) ∼= E×, and is generated by the uniformizer t ∈ E. We label the components
Cn so that t ∈ Λγ sends Cn to Cn+1. Let xn+1/2 := Cn ∩ Cn+1, which is a
kE-point of Xγ.

The action of the nontrivial involution σ ∈ Gal(kE/k) on Gγ(E) is by inversion,
hence it also acts on Λγ by inversion. The standard lattice O2

F lies in both C0 and
C1, hence it is the point x1/2. Therefore the point x1/2 is fixed by σ since it is
defined over k. Since the action of σ on Xγ,kE is compatible with its action on Λγ
(by inversion), the only possibility is that

σ(Cn) = C1−n, σ(xn+1/2) = x−n+1/2, ∀n ∈ Z.

The action of σ can be represented by the picture
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σ ,,
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C2
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x1/2 x5/2

x−1/2
σ 55 x3/2

Here each double line represents a P1. From this we see that Xγ = Xγ(k) consists
of only one point x1/2, namely the standard lattice O2

F. This implies that

(3.5.2) Oγ(1g(OF)) = 1.
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3.5.3. Unramified case: γ ′ Now consider the element γ ′ =

(
0 at2

1 0

)
∈ sl2(F).

In Exercise 3.7.3 we see that γ ′ is stably conjugate to γ but not conjugate to
γ under SL2(F). However, γ ′ is conjugate to γ under SL2(E). Therefore, the
affine Springer fiber Xγ ′ still looks the same as Xγ over kE, but the action of
σ ∈ Gal(kE/k) is different.

Consider the component of Xγ ′,kE whose kE-points consist of γ ′-stable lattices
Λ ⊂ E2 such that tOE ⊕ OE ⊂ Λ ⊂ OE ⊕ t−1OE. This component is cut out by
conditions defined over k, so it is stable under σ, and we call this component C ′0.
We label the other components of Xγ ′,kE by C ′n (n ∈ Z) so that the generator
t ∈ Λγ ′ sends C ′n to C ′n+1. Let x ′

n+1/2 = C ′n ∩ C ′n+1 ∈ Xγ ′(kE). Since the
action of σ on Xγ,kE is compatible with its action on Λγ ′ (by inversion), the only
possibility is that

σ(C ′n) = C
′
−n, σ(x ′n+1/2) = x

′
−n−1/2, ∀n ∈ Z.

The action of σ can be represented by the picture
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σ
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x ′−5/2

σ
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C ′2
x ′−3/2 σ

33 x ′3/2 x ′5/2

Therefore no point x ′
n+1/2 is defined over k. The component C ′0 is the only one

that is defined over k, and it has to be isomorphic to P1 over k because it is so
over kE (there are no nontrivial Brauer-Severi varieties over a finite field). We see
that Xγ ′(k) = C ′0(k) ∼= P1(k) has q+ 1 elements. Therefore

(3.5.4) Oγ ′(1g(OF)) = q+ 1.

Adding up (3.5.2) and (3.5.4) we get

SOγ(1g(OF)) = q+ 2.

3.5.5. Unramified case: cohomology The quotient Λγ\Xγ is a nodal rational
curve obtained from P1 by glueing two k-points into a nodal point.

Now let us consider the quotient Λγ ′\Xγ ′ . Over kE this is also a nodal ra-
tional curve consisting of a unique node y which is image of all xj. While
y is a k-point of the quotient Λγ ′\Xγ ′ , none of its preimages xj are defined
over k. Therefore, the q + 1 points in C ′0(k) still map injectively to the quo-
tient, in addition to the point y. We conclude that (Λγ ′\Xγ ′)(k) consists of
q + 2 points. Since LGγ ′/Λγ ′ is connected, the stable part of the cohomology
of Λγ ′\Xγ ′ is the whole H∗(Λγ ′\Xγ ′), and the alternating sum of Frobenius
trace on it is the cardinality of (Λγ ′\Xγ ′)(k). In this special case we have verified
the formula (3.4.9). We remark that the action of σ on the 1-dimensional space
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H1(Λγ ′\Xγ ′,k, Q`) is by −1, and the Grothendieck-Lefschetz trace formula for
Frobenius reads #(Λγ ′\Xγ ′)(k) = 1 + 1 + q instead of 1 − 1 + q = q, the latter
being the number of k-points on a nodal rational curve obtained by identifying
two k-points on P1.

3.5.6. Ramified case: orbital integrals Consider the elements γ =

(
0 t2

t 0

)

and γ ′ =

(
0 at2

a−1t 0

)
where a ∈ k× − (k×)2. Again γ and γ ′ are stably

conjugate but not conjugate in SL2(F).
Let E be the centralizer of γ in gl2(F). Then E is a ramified quadratic extension

of F, and Gγ(F) = (E×)Nm=1. Similarly, let E ′ be the centralizer of γ ′ in gl2(F).
Then E ′ is another ramified quadratic extension of F, and Gγ ′(F) = (E ′×)Nm=1.
We choose Haar measures on compact groups Gγ(F) and Gγ ′(F) with total vol-
ume 1.

In both cases, Xγ and Xγ ′ are isomorphic to P1 as varieties over k. In fact
we have shown in §2.2.7 that these varieties are isomorphic to P1 over k, hence
they must be isomorphic to P1 over k as well. Both Xγ(k) and Xγ ′(k) consist of
lattices tOF ⊕OF ⊂ Λ ⊂ OF ⊕ t−1OF, therefore Xγ = Xγ ′ as subvarieties of GrG.
By Lemma 3.2.8, we have

Oγ(1g(OF)) = Oγ ′(1g(OF)) = #Xγ(k) = q+ 1.

Therefore

(3.5.7) SOγ(1g(OF)) = 2(q+ 1).

3.5.8. Ramified case: cohomology In the setup of §3.5.6, Λγ = 0. The compo-
nent group of LGγ is Z/2Z, but its action on Xγ is trivial. Therefore the stable
part of the cohomology is the whole H∗(Xγ, Q`), on which the alternating sum of
the Frobenius gives the cardinality of Xγ(k) ∼= P1(k). However, the parahoric sub-
group of Gγ(F) = (E×)Nm=1 has index 2 in it (Kγ consists of those e ∈ (E×)Nm=1

whose reduction in k is 1). Therefore, the right side of formula (3.4.9) gets a factor
2 = vol(Kγ,dγg)−1 in front of #Xγ(k). This is consistent with (3.5.7), and we have
checked the formula (3.4.9) in our special case.

3.6. Remarks on the Fundamental Lemma Let us go back to the situation in
§3.5.1. What happens if we take the difference of Oγ ′(1g(OF)) and Oγ(1g(OF))
instead of their sum? Is there a geometric interpretation of this difference analo-
gous to Theorem 3.4.8?

3.6.1. The κ-orbital integral The linear combinationOγ(1g(OF))−Oγ ′(1g(OF)) is
an example of κ-orbital integrals. More generally, let κ be a character of H1(F,Gγ),
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then we define the κ-orbital integral of ϕ ∈ S(g(F)) to be

Oκγ(ϕ) =
∑
γ ′

κ(inv(γ,γ ′))Oγ ′(ϕ)

where the sum is over the G(F)-orbits in the stable conjugacy class of γ.

3.6.2. Statement of the Fundamental Lemma The Langlands-Shelstad conjec-
ture, also known as the Fundamental Lemma, states that the κ-orbital integral of
1g(OF) for γ ∈ g(F) is equal to the stable orbital integral of an element γH ∈ h(F)

for a smaller group H, up to a simple factor. In formula, the Fundamental Lemma
is the identity

Oκγ(1g(OF)) = ∆(γ,γH) · SOγH(1h(OF)).

The smaller group H depends on both G and κ, and is called the endoscopic group
of (G, κ). The number ∆(γ,γH) is called the transfer factor, which turns out to be
an integer power of q (depending on γ and γH) if γ is chosen appropriately from
its stable conjugacy class, and the measures on Gγ and HγH are chosen properly.

3.6.3. A simple case In the situation of §3.5.1, take the nontrivial character κ on
H1(F,Gγ) ∼= Z/2Z, the corresponding endoscopic group H is isomorphic to the
torus Gγ; but in general it is not always isomorphic to a subgroup of G. The
Fundamental Lemma in this case is the identity

Oγ ′(1g(OF)) −Oγ(1g(OF)) = q = q · SOγH(1h(OF))

where γH = γ if we identify H with Gγ.
On the other hand, in the ramified situation §3.5.6, the κ-orbital integral of

γ for the nontrivial κ vanishes. This maybe explained without calculating the
orbital integrals explicitly, for in general, κ must factor through a further quotient
of H1(F,Gγ) for Oκγ(1g(OF)) to be possibly nonzero. For the precise statement,
see [36, Prop 8.2.7].

3.6.4. Comments on the proof The Fundamental Lemma for general G and func-
tion field Fwas established by B-C. Ngô [36]. There is a generalization of Theorem
3.4.8 to κ-orbital integrals, in which we replace the stable part of the cohomology
of Λγ\Xγ by the κ-isotypic part. Using this generalization, Goresky, Kottwitz and
MacPherson [14] reformulated the Fundamental Lemma as a relation between co-
homology groups of the affine Springer fiber Xγ and its endoscopic cousin XHγH .
They were also able to prove the Fundamental Lemma in some special but highly
nontrivial cases. Ngô’s proof builds on this cohomological reformulation, but also
uses a new ingredient, namely Hitchin fibers, which can be viewed as a “global”
analog of affine Springer fibers. This will be the topic of the next lecture.

3.7. Exercises In these exercises, k = Fq denotes a finite field with char(k) 6= 2,
and F = k((t)).
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3.7.1. Let H be an algebraic group over F and let f ∈ S(H(F)). Show that there
exists a compact open subgroup K ⊂ H(F) such that f is both left and right
invariant under K.

3.7.2. Prove Lemma 3.2.8.

3.7.3. Let a ∈ k× − (k×)2 and G = SL2. Consider the matrices γ,γ ′ as in §3.4.4.
Show that γ and γ ′ are stably conjugate but not conjugate under SL2(F).

3.7.4. Let G = GLn over F and let γ = diag(γ1, · · · ,γm) be a block diagonal
matrix in g(F)rs, where γi ∈ glni(F)

rs. Consider the asymptotic behavior of the
orbital integral Oγ(1g(OF)) as q = #k tends to∞. Find the smallest integer d such
that

Oγ(1g(OF)) = O(q
d)

as q → ∞. Note that the O(·) on the right side is analysts’ O while on the left
side it means orbital integral. Can you interpret d in terms of the characteristic
polynomials of the γi’s?

For an explicit estimate of Oγ(1g(OF)), see [54].

3.7.5. Let G = SL3 and γ =


0 0 t4

1 0 0

0 1 0

 ∈ g(F). Compute Oγ(1g(OF)).

Hint: use the cell decomposition introduced in §2.4.2.

3.7.6. Let G = SL2. Let f be the characteristic function of elements X ∈ g(OF)

such that the reduction X in g(k) is regular nilpotent. Let γ ∈ g(F) be a regular
semisimple element.

(1) Show that Oγ(f) = 0 unless det(γ) ∈ tOF.
(2) When det(γ) ∈ tOF, show that

Oγ(f) = Oγ(1g(OF)) −Ot−1γ(1g(OF)).

3.7.7. Let G = GL2 and γ =

(
0 tn

1 0

)
for n > 1 odd. Let G(F)d be the set

of g ∈ G(F) with valF(detg) = d. Fix the Haar measure on G(F) such that G(OF)
has volume 1. Show that, for any integer d > 0,∫

G(F)d

1g(OF)(g
−1γg)1O2

F
((0, 1)g)dg

is the same as the number of closed subschemes Z of the plane curve y2 − tn = 0
satisfying: (1) the underlying topological space of Z is the point (y, t) = (0, 0); (2)
dimk OZ = d.

Note: this exercise relates orbital integrals to Hilbert schemes of points on
curves. This relationship has been used in [54] to provide an estimate for orbital
integrals for GLn. See also §4.2.6 and §4.3.7 for an global analog.



50 Lectures on Springer theories and orbital integrals

4. Lecture IV: Hitchin fibration

During the second half of 1980s, Hitchin introduced the famous integrable sys-
tem, the moduli space of Higgs bundles, in his study of gauge theory. Around
the same time, Kazhdan and Lusztig introduced affine Springer fibers as natu-
ral analogs of Springer fibers. For more than 15 years these two objects stayed
unrelated until B-C.Ngô saw a connection between the two. Ngô’s fundamental
insight can be summarized as saying that Hitchin fibers are global analogs of
affine Springer fibers, while affine Springer fibers are local versions of Hitchin
fibers. Here “global” refers to objects involving a global function field, or an
algebraic curve, rather than just a local function field, or a formal disk. This
observation, along with ingenious technical work, allowed Ngô to prove the Fun-
damental Lemma for orbital integrals conjectured by Langlands and Shelstad.
We will review Hitchin’s integrable system in a slightly more general setting, and
make precise its connection to affine Springer fibers.

4.1. The Hitchin moduli stack

4.1.1. The setting We are back to the setting in §1.1. In addition, we fix an alge-
braic curve X over k (assumed algebraically closed) which is smooth, projective
and connected.

4.1.2. The moduli stack of bundles There is a moduli stack Bunn classifying
vector bundles of rank n over X. For any k-algebra R, Bunn(R) is the groupoid of
rank n vector bundles (locally free coherent sheaves) on XR := X×Spec k Spec R.
The stack Bunn is algebraic, see [31, Th 4.6.2.1]. Moreover, it is smooth and locally
of finite type over k.

4.1.3. G-torsors Recall a (right) G-torsor over X is a scheme E over X with a fiber-
wise action of G, such that locally for the étale topology of X, E becomes the G×X
and the G-action becomes the right translation action of G on the first factor.

For general reductive G, We have the moduli stack BunG of G-torsors over X.
For a k-algebra R, the R-points of BunG is the groupoid of G-torsors over XR.
Then BunG is also a smooth algebraic stack locally of finite type over k.

4.1.4. Associated bundles Let (V , ρ) be a k-representation of G. Let E be a G-
torsor over X. Then there is a vector bundle ρ(E) of X whose total space is

Tot(ρ(E)) = G\(E× V)

where G acts on (e, v) ∈ E×V by g · (e, v) = (eg−1, ρ(g)v). The vector bundle ρ(E)
is said to be associated to E and ρ.

When G = GLn, there is an equivalence of groupoids

(4.1.5) {vector bundles V of rank n over X} ∼= {GLn-torsors E over X}.

The direction V 7→ E sends a vector bundle V to the GLn-torsor of framings of
V, namely take E = IsomX(O

n
X,V), with the natural action of GLn on the trivial
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bundle OnX. The other direction E 7→ V sends a GLn-torsor E over X to the vector
bundle St(E) associated to E and the standard representation St of GLn. The
equivalence (4.1.5) gives a canonical isomorphism of stacks Bunn ∼= BunGLn .

4.1.6. For other classical groups G, G-torsors have more explicit descriptions in
terms of vector bundles. For example, when G = SLn, a G-torsor over X amounts
to the same thing as a pair (V, ι) where V is a vector bundle over X of rank n and
ι is an isomorphism of line bundles ∧nV ∼= OX.

WhenG = Sp2n, the groupoid ofG-torsors E on X is equivalent to the groupoid
of pairs (V,ω) where V is a vector bundle of rank 2n over X and ω : ∧2V→ OX is
an OX-linear map of coherent sheaves that gives a symplectic form on geometric
fibers. The map in one direction sends a Sp2n-torsor E to the pair (V,ω), where
V = St(E) is the vector bundle associated to E and the standard representation
St of Sp2n, and the symplectic form ω on V comes from the canonical map of
Sp2n-representations ∧2(St)→ 1 (where 1 is the trivial representation).

4.1.7. Higgs bundles Fix a line bundle L over X. An L-twisted Higgs bundle of
rank n over X is a pair (V,ϕ) where V is a vector bundle over X of rank n, and
ϕ : V → V⊗L is an OX-linear map. The endomorphism ϕ is called a Higgs field
on V.

There is a moduli stack Mn,L classifying L-twisted Higgs bundles of rank n
over X. The morphism Mn,L → Bunn forgetting the Higgs field is representable.
Therefore Mn,L is also an algebraic stack over k.

4.1.8. G-Higgs bundles An L-twisted G-Higgs bundle is a pair (E,ϕ) where E is
a G-torsor over X and ϕ is a global section of the vector bundle Ad(E)⊗L over X.
Here, Ad(E) is the vector bundle associated to E and the adjoint representation
(g, Ad) of G, in the sense of §4.1.4. We call ϕ an L-twisted Higgs field on E.

When G = GLn, the notion of L-twisted G-Higgs bundle is equivalent to that
of an L-twisted Higgs bundle of rank n. In fact, to each L-twistedG-Higgs bundle
(E,ϕ), we get a Higgs bundle (V = St(E),φ), where φ : V → V⊗L viewed as a
global section of End(V)⊗L corresponds to ϕ under the canonical isomorphism
End(V) ∼= Ad(E).

We also have the moduli stack MG,L of L-twisted Higgs G-torsors over X. The
R-points of MG,L is the groupoid of LR-twisted G-Higgs bundles on XR, where
LR denotes the pullback of L to XR. The forgetful morphism MG,L → BunG is
representable, hence MG,L is an algebraic stack over k. When G = GLn, we have
a canonical isomorphism of stacks Mn,L ∼= MGLn,L.

4.1.9. Examples When G = SLn, an L-twisted G-Higgs bundle over X amounts
to the same thing as a triple (V, ι,ϕ) where V is a vector bundle over X of rank n,
ι : ∧nV

∼→ OX and ϕ : V→ V⊗L satisfies Tr(ϕ) = 0.
When G = Sp2n, an L-twisted G-Higgs bundle over X amounts to the same

thing as a triple (V,ω,ϕ) where V is a vector bundle over X of rank 2n,ω : ∧2V→
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OX is nondegenerate fiberwise, and ϕ : V→ V⊗L such that for all local sections
u and v of V, ω(ϕ(u), v) +ω(u,ϕ(v)) = 0 as a local section of L.

4.1.10. Hitchin moduli stack as a cotangent bundle In Hitchin’s original pa-
per [17], he considered the case where L = ωX is the sheaf of 1-forms on
X. This case is particularly important because MG,ωX is closely related to the
cotangent bundle of BunG. For a point E ∈ BunG(R) which is a G-torsor over
XR, the cotangent complex of BunG at E is given by the derived global sec-
tions of the complex Ad(E)∨ ⊗ ωX over XR. Using a Killing form on g we
may identify Ad(E)∨ with Ad(E), therefore the cotangent complex of BunG at
E is RΓ(XR, Ad(E)⊗ωX), which lives in degrees 0 and 1. In particular, when
E ∈ BunG(k) has finite automorphism group (e.g., E is stable), the Zariski cotan-
gent space at E is H0(X, Ad(E)⊗ωX), i.e., a cotangent vector of BunG at E is
the same thing as a ωX-twisted Higgs field on E. Therefore, T∗BunG (properly
defined) and MG,ωX share an open substack T∗BunsG, where BunsG is the open
substack of stable G-bundles.

4.2. Hitchin fibration

4.2.1. Hitchin fibration for GLn For an L-twisted Higgs bundle (V,ϕ) on X,
locally on X we may view ϕ as a matrix with entries which are local sections of
L, and we may take the characteristic polynomial of this matrix. The coefficients
of this polynomial are well-defined global sections of L⊗i, 1 6 i 6 n. More
intrinsically, ϕ induces a map ∧iϕ : ∧iV→ ∧iV⊗L⊗i, and we may take

ai(ϕ) := Tr(∧iϕ) ∈ H0(X,L⊗i).

This way we have defined a morphism

f : Mn,L → An,L :=

n∏
i=1

H0(X,Li)

sending (V,ϕ) to (a1(ϕ), · · · ,an(ϕ)). We view An,L as an affine space over k.
The morphism f is called the Hitchin fibration in the case G = GLn.

4.2.2. Hitchin fibration in general For general connected reductive G as in §1.1,
the coefficients of the characteristic polynomial in the case of GLn are replaced
with the fundamental G-invariant polynomials on g. Recall that c = g � G =

Spec Sym(g∗)G. Chevalley’s theorem says that Sym(g∗)G ∼= Sym(t∗)W , and
the latter is a polynomial ring in r variables. We fix homogeneous generators
f1, · · · , fr of Sym(g∗)G as a k-algebra, whose degrees d1 6 · · · 6 dr are canoni-
cally defined although fi are not canonical. When G is almost simple, the num-
bers ei = di − 1 are the exponents of G. Viewing fi as a symmetric multilinear
function g⊗di → k invariant under G, for any G-torsor E over X, fi induces a map
of the associated bundles

fi : Ad(E)⊗di → OX.
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This further induces
fLi : (Ad(E)⊗L)⊗di → L⊗di .

If ϕ is an L-twisted Higgs field on E, we may evaluate fLi on the section ϕ⊗di of
(Ad(E)⊗L)⊗di to get

ai(ϕ) := f
L
i (ϕ

⊗di) ∈ H0(X,L⊗di), i = 1, 2, · · · , r.

The assignment (E,ϕ) 7→ (ai(ϕ))16i6r defines the Hitchin fibration for MG,L

f = fG,L : MG,L → AG,L :=

r∏
i=1

H0(X,L⊗di).

The target AG,L is again viewed as an affine space over k, and is called the Hitchin
base.

A more intrinsic way to define the Hitchin base AG,L is the following. The
affine scheme c = Spec Sym(g∗)G is equipped with a Gm-action inducing the
grading on its coordinate ring. Let Tot×(L) → X be the complement of the zero
section in the total space of L. Consider the L-twisted version of c over X:

cX,L := (c× Tot×(L))/Gm

where λ ∈ Gm acts by λ : (c, x̃) 7→ (λc, λ−1x̃) on the two coordinates. This is an
affine space bundle over X whose fibers are isomorphic to c. Then AG,L can be
canonically identified with the moduli space of sections of the map cX,L → X. In
particular, every point a ∈ AG,L gives a map a : X→ [c/Gm].

4.2.3. The generically regular semisimple locus Trivializing L at the generic
point η of X and restricting ai to η, we have a polynomial Pa(y) = yn−a1y

n−1 +

a2y
n−2 + · · ·+ (−1)nan ∈ F[y], where F = k(X) is the function field of X. When

Pa(y) is a separable polynomial in F[y], we call such an a generically regular
semisimple. The generic regular semisimplicity of a is equivalent to the nonva-
nishing of the discriminant ∆(Pa) ∈ H0(X,Ln(n−1)) and therefore it defines an
open subscheme A♥n,L ⊂ An,L.

For general G, viewing a ∈ AG,L as a map a : X → [c/Gm] (see the end of
§4.2.2), we call a generically regular semisimple if a sends the generic point of X
into the open substack [crs/Gm]. This defines an open subscheme A♥G,L ⊂ AG,L

generalizing the construction of A♥n,L above.

4.2.4. Geometric properties When degL > 2g− 2, the stack M|
A♥G,L

is smooth,

see [36, Th 4.14.1]. In this situation, the morphism fG,L is flat over A♥G,L, see
[36, Cor 4.16.4]. When G is semisimple, there is a further open dense subset
Aani
G,L ⊂ A♥G,L over which M is a Deligne-Mumford stack and the map fG,L is

proper, see [36, Prop 6.1.3]. Comparing to the infinite-dimensionality involved
in the geometry of affine Springer fibers, the Hitchin fibration has much nicer
geometric properties, and yet it is closely related to the affine Springer fibers, as
we shall see in §4.4.
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4.2.5. Generalization Let H be a reductive group over k that fits into an exact
sequence of reductive groups

1→ H1 → H→ A→ 1.

Let (V , ρ) be a representation of H. Then we may consider pairs (E,ψ) where E is
an H-torsor over X and ψ is a section of the associated bundle ρ(E). Alternatively,
such a pair is the same as a morphism X→ [V/H]. One can prove that there is an
algebraic stack MH,ρ classifying such pairs. Every H-torsor induces an A-torsor,
hence we have a morphism α : MH,ρ → BunA. Fix an A-torsor EA over X, we
denote the preimage α−1(EA) by MH,ρ,EA .

To recover the Hitchin moduli stack, we consider the case H = G×Gm with
H1 = G and A = Gm. Let V = g with the action ρ of H defined as follows: G
acts by the adjoint representation and Gm acts by scaling on V . An H-torsor is a
pair consisting of a G-torsor and a line bundle L on X. Fixing the line bundle L

(which is equivalent to fixing an A = Gm-torsor), we get an isomorphism

MH,ρ,L ∼= MG,L.

For general (1 → H1 → H → A → 1,V , ρ,EA) as above, we may define the
analog of the Hitchin base as follows. Let cH,ρ = V �H1. This is the analog of c,
and it carries an action of A. Then we form the twisted version of cH,ρ over X

cH,ρ,EA := EA
A
× cH,ρ

Then we define AH,ρ,EA to be the moduli space of sections to the map cH,ρ,EA →
X. The morphism [V/H]→ [cH,ρ/A] then induces the analog of the Hitchin fibra-
tion

fH,ρ,EA : MH,ρ,EA → AH,ρ,EA

4.2.6. Example Consider H = GL(U)×Gm ×Gm, and V = End(U)⊕U∗. The
action ρ(g, s1, s2) on V is given by (A,u∗) 7→ (s1gAg

−1, s2gu
∗). The moduli stack

MH,ρ then maps to Pic(X) × Pic(X) by remembering only the two Gm-torsors.
Fixing (L1,L2) ∈ Pic(X)× Pic(X), its preimage in MH,ρ classifies triples (U,ϕ,β)
where (U,ϕ) is a Higgs bundle over X of rank n = dimV , β is an OX-linear
map U → L2. The Hitchin base in this case is the same as the classical Hitchin
base An,L1 . Later in §4.3.7 we will relate this moduli space to Hilbert schemes of
curves.

4.3. Hitchin fibers An important observation made by Hitchin is that the fibers
of the Hitchin fibration f can be described in “abelian” terms, namely by line
bundles on certain finite coverings of X. We elaborate on this observation for
G = GLn and G = Sp2n.

4.3.1. The case of GLn and the spectral curve For a = (a1, · · · ,an) ∈ An,L,
one can define a curve Ya equipped with a degree n morphism πa : Ya → X.
The construction is as follows. The total space of L can be written as a relative
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spectrum over X

Σ := Tot(L) = Spec (O⊕L⊗−1 ⊕L⊗−2 ⊕ · · · ) = Spec Sym(L⊗−1)

Let π : Σ→ X be the projection. Consider the map of coherent sheaves on X

ιa : L⊗−n → π∗OΣ = O⊕L⊗−1 ⊕L⊗−2 ⊕ · · ·

given in coordinates by ((−1)nan, (−1)n−1an−1, · · · ,−a1, 1, 0, · · · ). By adjunc-
tion ιa induces a map ι ′a : π∗L⊗−n → OΣ, whose image we denote by Ia. Then
Ia is an ideal sheaf on Σ. Define the spectral curve Ya to be the closed subscheme
of Σ defined by Ia

Ya = Spec (O⊕L⊗−1 ⊕L⊗−2 ⊕ · · · )/Ia

If we trivialize L on some open subset U ⊂ X, and view ai as functions on U,
then Ya|U is the subscheme of U×A1 defined by one equation yn − a1y

n−1 +

a2y
n−2 + · · ·+ (−1)nan = 0 (where y is the coordinate on A1). The projection

πa : Ya → X is finite flat of degree n. The curve Ya is called the spectral curve of a
since the fibers of πa are the roots of the characteristic polynomial yn−a1y

n−1 +

a2y
n−2 + · · ·+ (−1)nan.

When a ∈ A♥n,L, the curve Ya is reduced and therefore smooth on a Zariski
dense open subset, there is a moduli stack Pic(Ya) classifying torsion-free coher-
ent OYa -modules that are generically of rank 1, see [1]. The usual Picard stack
Pic(Ya) classifying line bundles on Ya is an open substack of Pic(Ya), and it acts
on Pic(Ya) by tensoring.

4.3.2. Proposition. Suppose a ∈ A♥n,L(k). Let Ma be the fiber of f : Mn,L → An,L

over a. Then there is a canonical isomorphism of stacks

Pic(Ya) ∼= Ma.

4.3.3. Sketch of proof We give the morphism Pic(Ya) → Ma. For any coherent
sheaf F on Ya, the direct image πa,∗F is a coherent sheaf on X equipped with a
map ϕF : πa,∗F ⊗L−1 → πa,∗F because F is an OYa -module and OYa contains
L−1 as the second direct summand. When F is torsion-free and generically rank
1, V := πa,∗F is torsion-free over X (hence a vector bundle) of rank n, and the
map ϕF induces a Higgs field ϕ : V→ V⊗L. The assignment F 7→ (V,ϕ) defines
the morphism Pic(Ya)→Ma, which can be shown to be an isomorphism. �

4.3.4. The case G = Sp2n In this case a ∈ AG,L is a tuple (a1, · · · ,an) with
ai ∈ H0(X,L⊗2i). For a ∈ AG,L, we can similarly define a spectral curve Ya as
the closed subscheme of the total space of L cut out by the ideal locally generated
by

Pa(y) = y
2n + a1y

2n−2 + · · ·+ an.

Note that Ya carries an involution σ(y) = −y under which the projection πa :

Ya → X is invariant. Now suppose Pa(y) is separable when restricted to the
generic point of X, so that Ya is reduced. The involution σ induces an involution
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σ on the compactified Picard Pic(Ya). Let (−)∨ be the relative Serre duality
functor on coherent sheaves on Ya, i.e., F∨ = HomOX

(F,OX) viewed as an OYa -
module in a natural way. Let Prym(Ya;σ) be the moduli stack of pairs (F, ι) where
F ∈ Pic(Ya) and ι is an isomorphism ι : σ∗F ∼= F∨ satisfying that (σ∗ι)∨ = −ι. We
called Prym(Ya;σ) the compactified Prym stack of Ya with respect to the involution
σ. Similar to the case of GLn, we have the following description of Ma.

4.3.5. Proposition. Suppose a ∈ AG,L such that Ya is reduced. Then there is a canoni-
cal isomorphism of stacks

Prym(Ya) ∼= Ma.

4.3.6. Sketch of proof For a ∈ AG,L, points in Ma are triples (V,ω,ϕ) where
V is a vector bundle of rank 2n on X, ω : ∧2V → OX is a symplectic form on
V as in §4.1.6, and ϕ : V → V ⊗ L satisfies ω(ϕu, v) +ω(u,ϕv) = 0 for local
sections u, v of V, and the characteristic polynomial of ϕ is Pa(y). By Proposition
4.3.2, the Higgs bundle (V,ϕ) gives a point F ∈ Pic(Ya). The symplectic form can
be viewed as an isomorphism  : (V,ϕ) ∼→ (V∨,−ϕ∨) such that ∨ = −. Note
that the Higgs bundle (V∨,−ϕ∨) corresponds to σ∗F∨ under the isomorphism
in Proposition 4.3.2. The isomorphism  then turns into ι : σ∗F ∼→ F∨ satisfying
(σ∗ι)∨ = −ι. �

4.3.7. Example 4.2.6 continued Fix two line bundles L1 and L2 on X, and let
HL1,L2 be the fiber of the moduli stack MH,ρ in §4.2.6 over (L1,L2). Then HL1,L2

classifies (V,ϕ,β) where V is a vector bundle of rank n over X, ϕ : U → U⊗L1

is a Higgs field and β : U → L2. We have a Hitchin-type map HL1,L2 → An,L1

sending (V,ϕ,β) to the (ai(ϕ))16i6n. Let a ∈ A♥n,L1
and let HL1,L2,a be the

fiber of HL1,L2 over a. Consider the same spectral curve Ya as in §4.3.1. Using
Proposition 4.3.2 we may identify (U,ϕ) with a point F ∈ Pic(Ya). The map
β : πa,∗F = U → L2 gives a map b : F → π!

aL2 by adjunction. Here π!
aL2 ∼=

π∗aL2 ⊗ωYa/X, and the relative dualizing complex ωYa/X = ωYa ⊗ π∗aω
−1
X is

a line bundle on Ya because Ya is a planar curve hence Gorenstein. Since F

is torsion-free and generically a line bundle, b is an injective map of coherent
sheaves. Hence the data (U,ϕ,β) turns into the data of a coherent subsheaf F of
the line bundle π!

aL2. Since π!
aL2 is a line bundle, the subsheaf F is determined

by the support of the quotient (π!
aL2)/F, which is a zero-dimensional subscheme

of Ya. We conclude that there is a canonical isomorphism

HL1,L2,a ∼= Hilb(Ya)

where Hilb(Ya) is the disjoint union of Hilbert schemes of zero-dimensional sub-
schemes of Ya of various lengths.

To conclude, the Hilbert scheme of points of a family of planar curves can be
realized as a Hitchin-type moduli space in the framework of §4.2.5.

4.3.8. Symmetry on Hitchin fibers In the case G = GLn and a ∈ A♥n,L, we
have identified the Hitchin fiber Ma with the compactified Picard stack Pic(Ya)
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of the spectral curve Ya. The usual Picard stack Pic(Ya) acts on Pic(Ya) by tensor
product. Therefore we have an action of Pic(Ya) on Ma. This action is simply
transitive if Ya is smooth.

In the case G = Sp2n and a ∈ A♥G,L, the Prym stack Prym(Ya;σ) is defined as
the moduli stack of pairs (L, ι) where L ∈ Pic(Ya) and ι : σ∗L ∼= L−1 satisfying
(σ∗ι)∨ = ι. Then Prym(Ya;σ) acts on Ma ∼= Prym(Ya;σ) by tensoring.

For general G and a ∈ A♥G,L, one can similarly define a commutative group
stack Pa that acts on the corresponding Hitchin fiber Ma. In fact, via the map
a : X→ [c/Gm], the regular centralizer group scheme J in §2.3.6, which descends
to [c/Gm], pulls back to a smooth group scheme Ja over X which is generically a
torus. The stack Pa then classifies Ja-torsors over X.

4.4. Relation with affine Springer fibers In this subsection we will state a pre-
cise relationship between Hitchin fibers and affine Springer fibers, observed by
Ngô.

4.4.1. Fix a point a ∈ A♥G,L(k). Viewing a as a map X → [c/Gm], let Ua ⊂ X
be the preimage of [crs/Gm] under a. Since a ∈ A♥G,L, Ua is non-empty hence
the complement X−Ua consists of finitely many k-points of X. For each point
x ∈ X − Ua, let Ox be the completed local ring of X at x, with fraction field
Fx and residue field k(x) = k. We fix a trivialization of L near x and we may
identify ax = a|Spec Ox as an element in c(Ox) ∩ crs(Fx). Let ε(ax) ∈ grs(Fx) be
the corresponding point in the Kostant section, then we have the affine Springer
fiber Xax := Xε(ax) in the affine Grassmannian GrG,x = LxG/L

+
xG (we put x in

the subscript to emphasize that the definition of the loop groups uses the field Fx,
which is isomorphic to k((t))). The loop group of the centralizer LGε(ax) acts on
Xax , and the action factors through the local Picard group Pax as in §2.3.6. On
the other hand, we have the action of the global Picard stack Pa on the Hitchin
fiber Ma mentioned in §4.3.8. The product formula of Ngô roughly says that,
modulo the actions of the local and global Picard stacks, Ma is the product of the
affine Springer fibers Xax for all points x ∈ X−Ua.

4.4.2. Theorem (Product Formula, Ngô [35, Th 4.6] and [36, Prop 4.15.1]). For
a ∈ A♥(k), there is a canonical morphism

Pa

∏
x∈X−Ua Pax
×

 ∏
x∈X−Ua

Xax

→Ma

which is a homeomorphism of stacks. Here the notation P
H
× Y (where H acts on P on the

right and acts on Y on the left) means the quotient of P× Y by the action of H given by
h · (p,y) = (ph−1,hy), p ∈ P,y ∈ Y and h ∈ H.

In the case G = GLn, the product formula can be reinterpreted in more familiar
terms using the compactified Picard stack of spectral curves, which in fact makes
sense for all reduced curves. Let C be a reduced and projective curve over k. For
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each point x ∈ C(k), one can define a local Picard group Px(C) whose k points
are F×x /O×x , where Ox is the completed local ring of C at x and Fx its ring of total
fractions (which is a product of fields in general). There is also a local analog
Px(C) of Pic(C) whose k-points are the fractional Ox-ideals of Fx, compare §3.2.9.
Then the following variant of the product formula holds, whose proof is similar
to that of Theorem 4.4.2.

4.4.3. Proposition. Let C be a reduced and projective curve over k. Let Z = C−Csm

be the singular locus of C. Then there is a canonical morphism

Pic(C)
∏
x∈Z Px(C)

×

(∏
x∈Z

Px(C)

)
→ Pic(C)

which is a homeomorphism of stacks.

The product formula provides a link between the geometry of Hitchin fibers
and that of affine Springer fibers, the latter is closely related to orbital integrals as
we have already seen. This link makes it possible to approach the Fundamental
Lemma by studying the cohomology of Hitchin fibers. The advantage of using
Hitchin fibers instead of affine Springer fibers is that the Hitchin fibration has
nicer geometric properties, as we have seen in §4.2.4.

4.5. A global version of the Springer action The product formula in Theorem
4.4.2 suggests that there should be a global analog of affine Springer theory where
affine Springer fibers are replaced by Hitchin fibers. Such a theory was developed
in a series of papers of the author starting with [53].

4.5.1. Iwahori level structure We now define a Hitchin-type analog of the affine
Springer fibers Yγ. We fix the curve X and a line bundle L on it as before. Let
M

par
G,L be the moduli stack classifying (x,E,ϕ,EBx ) where x ∈ X, (E,ϕ) is an L-

twisted Higgs G-bundle, and EBx is a reduction of the fiber Ex at x to a B-torsor
EBx (here B ⊂ G is a Borel subgroup of G) compatible with ϕ.

When G = GLn, Mpar
G,L classifies, in addition to an L-twisted Higgs bundle

(V,ϕ), a point x ∈ X and a full flag of the fiber Vx. Such a full flag is the same
data as a chain of coherent subsheaves Vi ⊂ V

V(−x) = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V

such that Vi/Vi−1 has length 1 supported at x. The compatibility condition be-
tween ϕ and the full flag requires that ϕ restrict to a map Vi → Vi ⊗L for each
0 6 i 6 n.

We have an analog of the Hitchin fibration

f
par
G,L : M

par
G,L → AG,L ×X

that records also the point x ∈ X in the data, in addition to a = fG,L(E,ϕ) ∈ AG,L.
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4.5.2. Theorem (See [53, Th 3.3.3]). Suppose degL > 2g− 1, then there is a natural
action of W̃ = X∗(T)oW on the restriction of the complex Rfpar

! Q` to a certain open
subset (A♥G,L ×X)

′ of A♥G,L ×X. 8

4.5.3. Extended symmetry Just as in the case of affine Springer fibers, the W̃-
action in Theorem 4.5.2 may be extended to an action of the graded version of the
double affine Hecke algebra, see [53, Th 6.1.6]. Also, there is a product formula re-
lating the fiber Mpar

a,x over (a, x) ∈ A♥G,L×X and the product of the affine Springer
fiber Yax with affine Springer fibers Xay for y 6= x. The induced W̃-action on the
stalk (Rfpar

! Q`)a,x ∼= H∗(Mpar
a,x) is compatible with the affine Springer action on

H∗(Yax) in Theorem 2.6.2. This connection between W̃-actions on the cohomol-
ogy of Hitchin fibers and affine Springer fibers can be used to prove results about
affine Springer actions. See [55] for such an application.

4.6. Exercises

4.6.1. Suppose G = SLn. Describe the Hitchin fibers over A♥G,L in terms of
spectral curves.

4.6.2. Suppose G = SLn. Compute the dimension of AG,L and of a Hitchin fiber
Ma. When L = ωX, check that they have the same dimension. This is a numerical
evidence that the Hitchin fibration in this case is a Lagrangian fibration.

4.6.3. Describe the Hitchin base for G = SOn.

4.6.4. For G = SOn, describe Hitchin fibers in terms of spectral curves.

4.6.5. Let C be a rational curve over k with a unique singularity x0 which is
unibranched (i.e., the preimage of x0 in the normalization C̃ ∼= P1 is a single
point). Let Px0 be the moduli space of fractional ideals for the completed local
ring ÔC,x0 . Show that there is a canonical homeomorphism

Px0 → Pic(C).

Explain why this is a special case of Proposition 4.4.3.
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