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Abstract. The affine Weyl group acts on the cohomology (with compact support)
of affine Springer fibers (local Springer theory) and of parabolic Hitchin fibers (global
Springer theory). In this paper, we show that in both situations, the action of the center
of the group algebra of the affine Weyl group (the spherical part) factors through the
action of the component group of the relevant centralizers. In the situation of affine
Springer fibers, this partially verifies a conjecture of Goresky-Kottwitz-MacPherson
and Bezrukavnikov-Varshavsky.

We first prove this result for the global Springer action, and then deduce from it
the result for the local Springer action. This gives an application of global Springer
theory to more classical problems.
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1. Introduction

Let k£ be an algebraically closed field. Let G be a reductive algebraic
group over k. We assume either char(k) = 0 or char(k) is large with
respect to G (see §1.4). Let g be the Lie algebra of G. Let B be the flag
variety of G. For v € g(k), the Springer fiber of v is the closed subvariety
B, C B consisting of all Borel subgroups of G whose Lie algebras contain
v. Classical Springer theory [?] gives an action of the Weyl group W of
G on the cohomology of B,. One the other hand, the centralizer G, of v
in G acts on B, hence on the cohomology of B, via its component group
m0(Gy). These two symmetries commute with each other:

W ~ H*(B,) ~ m(Gy).
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However, there is no obvious way to recover the 7y(G,)-action on H*(1,)
solely from the W-action.

Now we consider the affine situation. Let F' = k((w)) be the field of
formal Laurent series in one variable and Op = k[[w]]. Let LG be the
loop group of G. This is an ind-scheme over k whose k-points are G(F').
Let Flg = LG/I be the affine flag variety of G, where I is a fixed Iwahori
subgroup of LG. This is an infinite union of projective varieties. For any
regular semisimple element v € g(F'), Kazhdan and Lusztig [?] defined a
closed sub-ind-scheme Spr, C Flg, called the affine Springer fiber of ~.
The set Sprv(k:) consists of those Iwahori subgroups whose Lie algebras
contain 7. The ind-scheme Spr, is a possibly infinite union of projective
varieties of dimension expressible in terms of «y (see [?7]).

In [?], Lusztig defined an action of the affine Weyl group W,g on the
homology of affine Springer fibers Spr.,. We will review this construction
in §2, and extend it to an action of the extended affine Weyl group W=
X«(T) x W on both H.(Spr,) and H7(Spr,). On the other hand, the
centralizer group LG (the centralizer of v in the loop group LG) acts
on Spr.,, hence induces an action of its component group mo(LG) on the
homology of Spr,. These two symmetries on H.(Spr,) again commute

with each other: .
W ~ Hi(Spr,) < mo(LG).
Similar statement holds for H(Spr., ).
A priori, the definition of the W-action and the mo(LG-)-action has

nothing to do with each other. However, as opposed to the situation
in classical Springer theory, we expect that the mo(LG)-action be com-
pletely determined by the “central character” of the W-action. The center
of the group algebra Qy [W] is Q¢[X«(T)]" (superscript W means taking
W-invariants). If one views Qy [/VIV/] as the specialization of the affine Hecke
algebra at ¢ = 1, then Qu[X,(T)]" is the specialization of the spherical
Hecke algebra at ¢ = 1. For this reason, we shall call Qu[X,(7)]" the

spherical part of the group algebra QK[W]. We shall see that there is a
canonical algebra homomorphism (see §2.7)

o+ QuXu(T)]Y = Qelmo(LG-)]. (1)

Conjecture 1 (Goresky, Kottwitz and MacPherson [?]; indepen-
dently Bezrukavnikov and Varshavsky [?]). For any regular semisim-

ple element v € g(F) and any i € Z>o, the spherical part of the W -action
on H;(Spr,) and Hy(Spr,)

QX ()Y = End(Hi(Spr,)),  QuX.(T)]" — End(HL(Spr,))
factors through the action of mo(LG) via the homomorphism (1).
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In fact, the mo(LG)-action factors through a further quotient 7o (Fy(,)),
where Py, is a certain quotient of LG (see §2.6).

The difficulty in proving this conjecture lies in the fact that we do not
know an effective way of computing the action of Qy[X,(7)]": Lusztig’s
construction of the Wyg-action only tells us how each simple reflection
acts, but elements in Q[X,(T)]" are in general sums of complicated
words in simple reflections.

The main purpose of this paper is to prove

Theorem 1 (Local Main Theorem). Conjecture 1 holds for Hi(Sprv).
For the homology part of the conjecture, we prove a weaker statement.

Theorem 2. Under the conditions of Conjecture 1, there exists a fil-
tration Fil’ on H;(Spr, ), stable under both W and mo(LG.), such that
the action of Qu[X.(T)]W on GrpgHi(Spr,)) factors through the action of
mo(LG) via the homomorphism (1).

Moreover, one may choose FilP such that GrgﬂHi(Ser) = 0 unless
0 <p <, where r is the split rank of the F-torus G(F),.

The above conjecture and results have a parahoric version. For each
parahoric subgroup P C LG we have the affine partial flag variety Flp =
LG /P and affine partial Springer fibers Sprp .. The subalgebra 1PQ4[W]1P =
Qu[X.(T)]"P acts on H.(Sprp ) and HZ(Sprp ) (see §2.5).

Proposition 1. Let P C LG be any parahoric subgroup. Let v € g(F') be
a regular semisimple element. If Conjecture 1 holds for H;(Spr,) (resp.

Hi(Spr,y)), then, the action of Q¢[X.(T)]" C 1pQy[W]1p on H;(Sprp ~)
(resp. Hé(SprPﬁ)) factors through the action of mo(LG~) via the homo-
morphism (1).

In fact, the natural projection Spr, — Sprp . induces a surjection

H.(Spr.,) — H«(Sprp ) and an znjectzon H(Sprp 7) — HZ(Spr,,) , which
are easily seen to be equivariant under both Qu[X,(7)]" and mo(LG.,) by
construction in §2.5.

Surprisingly, Theorem 1 is deduced from its global counterpart, which
we state next. Fix a connected smooth projective algebraic curve X over
k. In [?, Definition 2.1.1] we have defined the parabolic Hitchin moduli
stack MP¥ classifying quadruples (z,&, p,EP) where x € X, £ is a G-
bundle over X, ¢ is a section of the twisted adjoint bundle Ad(£)®Ox (D)
(D is a fixed divisor on X with large degree) and £Z is a Borel reduction
of £ at x preserved by the Higgs field . We have the parabolic Hitchin
fibration

fpar . MPar _)AHit % X
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recording the characteristic polynomial of ¢ and the point z. One of the
main results of [?] is that there exists a natural action of the extended

affine Weyl group W on the derived direct image complex R Qg| gani» x
where A C ANt is the anisotropic locus (see [?, §4.10.5]). In this pa-
per, we will extend this construction to a larger locus AY x X, where
AY c AT is the hyperbolic locus (see [?, §4.5]), containing A as an
open subset.

On the other hand, Ng6 defined a Picard stack P over AY which acts
on MP¥ fiber-wise over A" x X. This action induces an action of the sheaf
of groups mo(P/AY) (which interpolates the component groups m(P,) for
a € AY) on Rf!par(@g. The study of this action in the case of the usual
Hitchin moduli space Mt leads to the geometric theory of endoscopy,
which plays a crucial role in Ngo’s proof of the Fundamental Lemma [?].
The idea of relating the mo(P /A" )-action and the Q[X.(T")]"-action on
R /" Qq was also suggested to the author by Ngo.

Theorem 3 (Global Main Theorem). For any i € Z>o, the spherical

part of the W-action on the cohomology sheaves of the parabolic Hitchin
complezx R P Qy:

QX ()Y — End(R' £ Qi 40 xy)

factors through the action of the sheafﬂ'o(P/Ao) via a natural homomor-
phism of sheaves of algebras on A :

0 : QX (DY ® Qpuo — Qelmo(P/A”)]. (2)

Here, (AY x X)' ¢ A” x X is any open subset on which a certain
codimension estimate holds (see [?, Proposition 2.6.3, Remark 2.6.4]). If
char(k)=0, we may take (AY x X)" = A% x X (see [?, p.4]).

A consequence of Theorem 3 is

Corollary 1. For any geometric point (a,x) € (AY x X)', the action of
QX (D™ on HL(MEL) factors through the action of mo(P,) via the
stalk of the homomorphism (2) at a.

We also have a version of Theorem 3 for parahoric Hitchin fibrations.
Let us spell out the case of the usual Hitchin fibration fHit : MHit 5 AHit,
In [?, Theorem 6.6.1], we constructed an action of Q[X.(T)]" on the
restriction of complex R f!Hith X Qy.x to A X . We will also extend
this action to an action of Q,[X,(7")]" on the same complex over A% x X.

Theorem 4. The action of Q,[X.(T))V on the sheaf R fF*Q, K Qp x
factors through the action of the sheaf of algebras Qu[mo(P/AV)] via the
homomorphism (2).
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Note that this theorem is valid on the whole of AY x X, rather than just
(A” x X)" as in Theorem 3. In the preprint [?], Theorem 3 and 4 were
proved over (A*™ x X)'.

1.1. Application

In recent work of Bezrukavnikov, Kazhdan and Varshavsky [?], they con-
struct new examples of stable distributions on p-adic groups using an
affine analog of the relation between character sheaves and the center of
the Hecke algebra. When the local field is a function field, a key step in
checking the stability of their distributions is Theorem 1 and Theorem 2,
see [?, Theorem 5.4].

1.2. Idea of the proof

The main idea of proving Theorem 1 is to view Of as the completed local
ring of an algebraic curve at one point x, and try to deform the point x
along the curve X. For this, we also need to extend v € g(F') to a g-valued
meromorphic function on X. This naturally leads to the consideration of
the (parabolic) Hitchin moduli stack, hence leading to Theorem 3.

To prove Theorem 3, we first prove Theorem 4. The Qy[X,(T)]" -action
on Rf!Hith X Qg x can be thought of as a family of Q¢[X,(T)]W -actions
on R f!Hith indexed by x € X. Homotopy invariance guarantees that the
effect of this action on R’ f!Hith is independent of x. Then we only need
to check that the Q[X,(T)]"-action at a general point € X does factor
through mo(P/.A"), which is clear from the construction in [?].

We then deduce Theorem 3 from a variant of Theorem 4, i.e., Propo-
sition 4. We simultaneously deform the point of Borel reduction (which is
contained in the moduli problem of MP?") and the point of Hecke mod-
ification (which gives the Q[X.(T)]"-action). This way we get a result
about the Q[X,(T)]"-action on Rf’*Q, X Q, x analogous to Theorem
4, but this time our complex lives on AY x X2. Restricting to the di-
agonal AY x A(X), we get the desired factorization in Theorem 3. The
idea behind this argument is reminiscent of Gaitsgory’s construction of
the center of the affine Hecke algebra via nearby cycles (see [?]).

Finally, we deduce Theorem 1 from Theorem 3. We argue that for
every affine Springer fiber Spr., its compactly supported cohomology ap-
pears inside the compactly supported cohomology of a certain rigidified
parabolic Hitchin fiber, and this inclusion respects the various symme-
tries. This fact follows from a detailed analysis of Ngo’s product formula.

We remark that using a parabolic version of Ngo’s Support Theo-
rem (see [?]), one can deduce a weaker version of Theorem 3, namely the
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semisimplification of the Qu[X,(T")]" -action factors through the o (P /A*")-
action on RfP Q| ganix x -

The proof described above shows that the global Springer theory de-
veloped in [?] can be useful in solving more classical problems about affine
Springer fibers.

1.3. Convention

Throughout the paper, k£ will be an algebraically closed field. The stacks
on which we talk about sheaves are of the form [X/A], where X is an
algebraic space, locally of finite type over k, and A is a linear algebraic
group over k which acts on X. All complexes of sheaves will be objects in
the derived category of Qg-complexes in the étale topology. See [?, §1.1]
for the case of schemes of finite type and [?] for the case of stacks. See
Appendix 77 for the convention for sheaves on algebraic spaces which are
locally of finite type over k. All sheaf-theoretic functors are under-
stood to be derived without putting R or L in the front. For a
morphism f : X — J between stacks, we use Dy/y or Dy to denote the
relative dualizing complex f !@m;. The homology complex of f is defined
as

H.(X/Y) = fiDx/y.
In particular, if J = Speck, we write H,(&X') for H, (X' /Speck).

1.4. Notations for G

Let G be a reductive algebraic group over k. Fix a maximal torus T of G
and a Borel B containing 7T'. Let g, b, t be the Lie algebras of G, B, T re-
spectively. Let (X*(T),®,X,(T),®") be the based root and coroot systems
determined by (G, B,T'). Let W be the Weyl group. Let c =g /G =t W
be the adjoint quotient of g in the GIT sense.

We now make precise the assumption on char (k). Let h be one plus
the sum of coefficients of the highest root of G written in terms of simple
roots. We assume either char(k) = 0 or char(k) > 2h. We impose this
condition because we would like to make sure that the Kostant section
€:¢— g exists, see [?, §1.2].

The extended affine Weyl group and the affine Weyl group are defined
as

W =X, (T) x W; W := Z&" x W

where Z&Y C X, (T) is the coroot lattice. The affine Weyl group W is
a Coxeter group with the set of simple reflections A,g. There is an exact
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sequence .
1l=>Wag—>W—>02—1 (3)
with 2 = X, (T')/Z®" an abelian group (which is finite if G is semisimple).

2. Local Springer action

In this section, we will explain all the ingredients that go into the state-
ment of Conjecture 1.

2.1. Loop group

Let F' = k((w)) and O = k[[w]] C F. For a scheme X over F', we use LX
(the formal loop space of X') to denote the functor {k-algebras}—{Sets}:

(LX)(R) = X(R((=)))-

Similarly, if X is defined over Op,we define LT X (the formal arc space of
X) to be the functor

(LTX)(R) = X (R[[=]).

For notational brevity, we denote L(G ®y F') by LG. It is known that LG
is represented by an ind-scheme over k, called the loop group of G (see [?,
Discussion following Definition 1]). Similarly we denote LT (G @ OF) by
LTG.

For each parahoric subgroup P C LG there is a smooth Op-model Gp
of G®y F, the Bruhat-Tits group scheme, such that Gp(Op) = P. We may
form the functor L™Gp, which is represented by a scheme. By abuse of
notation, we denote this group scheme (of infinite type over k) by P, and
call them parahoric subgroups of LG. For example, LTG is a parahoric
subgroup of LG corresponding to the parahoric subgroup G(OF) of LG.
The standard Iwahori subgroup I C LG is the preimage of B under the
evaluation map LTG — G. Standard parahoric subgroups P D I are in
bijection with proper subsets of A,g.

The Lie algebra Lie P of P is, by definition, the Lie algebra of Gp,
hence a finite free Op-module. Let Lp be maximal reductive quotient of
the special fiber of Gp. This is a connected reductive group over k. The
affine partial flag variety of type P is the ind-scheme

Flp = LG/P.
Having fixed an Iwahori I, the exact sequence (3) admits a section
2 — W whose image (21 is the stabilizer of the fundamental alcove cor-

responding to I in the reduced building of LG. The group 2y C W can
also be identified with N(I)/I where N(I) is the normalizer of I in LG.
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2.2. Affine Springer fibers

Let v € g(F) be a regular semisimple element. The sub-ind-scheme
Sprp ., C LG is defined to have R-points

Sprp(R) = {g € G(R((w)))|Ad(g71)y € R®y LieP}.

The right P-action on LG preserves ch;Pﬂ/, hence we can define the
quotient

SpI‘P7,,/ = EB‘P,’Y/P C FIP

As defined above Sprp ., is highly non-reduced. Its reduced structure
Sprp , is a scheme locally of finite type, see [?7]. We call Sprp , the affine
Springer fiber of v with type P. When P = I, we often omit I from
subscripts.

2.3. Lusztig’s construction of the Wag-action in [?]

Let Ip be the Lie algebra of Lp and Tp be the Grothendieck simultaneous
resolution of [p. We have a Cartesian diagram

Spr,, — [ip/ Lp] (4)

evp,
Sprp,, —> [lp/Lp]
Apply proper base change to the diagram (4), we get
|
1/p*]D)Spr7 = evPNWP*D[Tp/Lp]'

By classical Springer theory for the Lie algebra [p, there is a Wp-action

on 7TP7*]DEP/LP] (to see this, we may identify D[Tp/Lp] with the constant

sheaf on [[p/Lp]). Therefore Vp*]]])SprW also carries a Wp-action. Since vp
is proper, H.(Spr,) = RI¢(Sprp , vp«Dgpr, ) also carries a Wp-action.
For P C Q, Lusztig then argues that the Wq-action on H.(Spr,)
restricts to the Wp-action defined both as above. Therefore, these Wp-
actions generate a Wag-action on H.(Spr,).
Replacing the dualizing complexes by the constant sheaves in the
above discussion, we obtain an action of Wag on H;(Spr,).
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2.4. The 2y-action

Viewing (21 as the quotient N(I)/I, we get a natural action of (21 on
FI = Fli by right multiplication. We denote this action by w — R, for
w € 1. This action preserves Spr, (because Ad(g)I = Ad(gw)I for any
w € N(I)), hence w € (1 acts on H,(Spr,) from the left:

R;; : H.(Spr,) — H.(Spr,).

Similarly, right multiplication by w € N(I) sends one standard para-
horic P to another standard parahoric w™'Pw, and gives an isomorphism
Flp ., = Fl,-1p, . We have a commutative diagram

Ry,
Spr., ——— Spr, (5)

J(VP \Lywlpw

R,
SprP,'y ’ Sprw—le,'y

for any w € (1. This implies that R;# intertwines the action of W, -1p,,

and of Wp on H.(Spr,), via the isomorphism Ad(w) : W,-1p, — Wp.
Similar remarks apply to Hz(Spr.,). Summarizing, we get

Theorem 5. Lusztig’s construction in §2.5 and the {21-action in §2.4 to-
gether generate a W action on both H«(Spr,) and Hz(Spr.).

2.5. The parahoric version

For each standard parahoric P, let Wp C Wg be the finite Weyl group of
the Levi quotient Lp. The Cartesian diagram (4) and proper base change
implies that

H.(Sprp ) = H*(Spry)wp, Hz(Sprp ) = H;(Sprv)wp.

In fact, the constant sheaf on tp is the Wp-invariants of the Springer
sheaf ﬂp,*(@ﬂp. Let

1

1 =
P awp

> we QW)

weWp

be an idempotent. Then the subalgebra 1pQ[W]1p acts on H.(Sprp )
and HZ (Sprp ).
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2.6. Local Picard

We follow [?, §3.3] in this subsection. For v € g(Op), let a(v) be its image
in ¢(OF). Let Gp, be the centralizer group scheme of v in G @ F. In
particular, G, is a torus over I'. We denote the loop space of G, by
LG, which is a subgroup of LG. From the definition of Spr., we see that
LG, acts on Sprp , via its left translation action on Flp.

The F-torus G, admits a smooth model J,,) over SpecOp which
canonically only depends on a(y). This is the regular centralizer group
scheme defined in [?, §3]. Let Py, be the affine Grassmannian of the
SpecOp-group scheme J, () (see [7, §3.8]):

Pa(y) := Ly /L+Ja( LG, /L+Jam.

v) =

For a k-algebra R, P,,)(R) is the set of isomorphism classes of J,(,)-

torsors over SpecR[[w]] together with a trivialization over SpecR((w)).
Since Jy(,) is commutative, P, has a group ind-scheme structure. The
action of LG+ on Sprp , factors through Py ,).

We have the finite type Néron model ‘]2(7) of Jy(y) (see [?, §3.8]). We
define PZ(V) similarly using Jz(v) instead of J,(,). By [?, Lemme 3.8.1], the
reduced structure of PZ(V) is a free abelian group A,(,y. Let Py(y) < Po(y)

be the preimage of A,(,) — sz, then we have an exact sequence
1— Ra(.y) — Pa(,y) — Aa(’y) — 1.

where the kernel R,
type.

a(y) is an affine commutative group scheme of finite

2.7. Definition of the map o~ in (1)

Consider the following diagram

Specép — SpecOp, —t. (6)

]

SpecOp ——¢

where the square on the right is Cartesian by definition. The morphism
SpecOF,, — SpecOr is called the local cameral cover. The ring OF is

the normalization of Of,. Choose a component Spec@iF C Specép. Let
W' C W be the stabilizer of SpecO%. According to [?, Prop. 3.9.2] (or
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rather its dual statement), the choice of Spec@lF allows us to define a
surjection

Xu(T) = Xu(Twr = m0(LG) = mo(Fy(y))- (7)

If we change the choice of (’5}, the above map will differ by an action of W
on X, (7). In particular, taking the group algebras in (7) and restricting
to Q¢[X.(T)]", the map

o+ QeXu(T)]Y = Qe[LG5] = Qelmo(Pagy))]
is independent of any choice. The first of map above is the map in (1).

Proposition 2 (Local constancy). Fiz a regular semisimple v € g(F')
with a(y) € ¢(Of). There is an integer N > 0 such that for any v € g(F)
with a(y') € ¢(OF) and a(y') = a(y) mod @V, there are isomorphisms

vp 1 Py 5 Pos

v: Spr, 5 Spry

such that v is equivariant under the P, and P actions via vp. Moreover,
the isomorphism ¢ can be chosen so that both * : Hy(Spr,) — HZ(Spr./)

and v, : H.(Spr.)) = H.(Spr.,) are W -equivariant.

Proof. We first deal with the case a(y) = a(y’). Since the field F' has
dimension < 1, HY(F, A) = 0 for any torus A over F (see [?, Ch. X, end
of §7]). In particular, if v and 4/ have the same image in ¢"*(F), they
are conjugate by an element g € LG, and the required isomorphisms are
given by Ad(g).

By the above discussion, we may assume -y is the Kostant section of
a(vy) (see [?, §1.2]); similarly we may assume ~' is the constant section of
a(y').

We need a variant of [?, Lemme 3.5.3] with g(Or) = LieG replaced by
Liel. For this, one only needs to use [?, Lemme 2.4.3] in place of [?, Lemme
2.1.1] in the argument. This variant of [?, Lemme 3.5.3] shows that Spr,
depends only on the centralizer Op-group scheme Goy , = Ju() (recall
v € g(OF) comes from the Kostant section).

By [?, Lemme 3.5.2], there is an integer N > 0 such that the local
cameral covers Op ) and Op 4,y are W-equivariantly isomorphic as
Op-modules. By [?, Lemme 3.5.4], there exists ¢ € G(Op) such that
Ad(9)Gopy = Gop, as subgroups of G ®, Op. The isomorphism tp
is induced from Ad(g). The left translation ¢ : F1 — F1 then induces an
isomorphism ¢ : Spr, = Spr.,, intertwining the actions of Py(y) and Py(y).
This proves the first statement of the Proposition.

Y
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To prove that ¢, and (* are W-equivariant, one only needs to notice
that under the left translation by g € G(Op), the diagrams (4) and (5) for
~ map isomorphically to the corresponding diagrams for 7/, at least after
replacing the Spr’s by their reduced structures Spr. For the diagram (4),
we remark that Sprp , maps isomorphically to Sprp ., under g, since they
are images of Spr., and Spr., under the projection F1 — Flp. Since these
diagrams determine the W-action by construction, the W-equivariance
follows.

3. Global Springer action: extension to the hyperbolic locus

In this section, we extend the W-action on JP Qe gani x constructed in
[?] from the anisotropic locus A*™ to the hyperbolic locus A°.

3.1. The Hitchin moduli stack

We first recall the definition of the Hitchin moduli stack. Fix a divisor
D =2D" on X with deg(D) > 2gx. The Hitchin moduli stack MHE =
Mg{(lt@ p assigns to a k-scheme S the groupoid of Hitchin pairs (£, )
where

— £ is a (right) G-torsor over X x S;
— ¢ is a section of the vector bundle Ad(€) ® Ox (D), where Ad(&) =

G
£ x g is the adjoint bundle over X x S.

It is well-known that MMt is an algebraic stack.

Gm
Let ¢p be the affine space bundle Tot*(D) x ¢ where Tot™ (D) is the
Gn-torsor associated to the line bundle Ox (D). Let ATt = HY(X, cp)
be the Hitchin base. We have the Hitchin fibration

int . MHit —>AHit

which assigns (€, ) the “invariant polynomials” of ¢. Recall from [?,
§4.5] that there is an open subset AY C AM* consisting of those sections
a : X — c¢p which generically lies in the regular semisimple locus ¢75. We
call AY the hyperbolic locus of AHt,

3.2. Rigidified Hitchin moduli space

Fix a point z € X (k)\D. Let A* C A™® be the open subset consisting of
sections a : X — ¢p such that a(z) € ¢"* (since z ¢ D, O(D) is canonically
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trivialized at z and a(z) is a well-defined element in ¢). Clearly A* C A”.
Evaluating at z gives a morphism ev, : A* — ¢"5. Define the W-torsor
B — A? by the Cartesian diagram

BHtT’S

L

A* €Vz s

Let MHit be the functor which assigns to a k-scheme S the groupoid
of tuples (€, p,t,,t,) where
- (57 SO) € MHlt(S)7
— Let a : X x S — ¢p be the image of (£,¢) under fHi* and a(z) :
{z} x S — ¢. We require that the image of a(z) lies in ¢"*. Moreover,
t,: S — t" is a lifting of a(z).
— 121 (£,9)|{z3xs = (G x S, t) is an isomorphism of Hitchin pairs over
{z} x S.
Forgetting t, and ¢, we get a morphism MHit MUY 2 which can
be factored as

Mt X e M = B 1o (MP) 42) = MY 4 (8)

The space in the middle B x 4u: MM classifies triples (£, p,t,) as de-
scribed in the definition of M. Therefore the first arrow in (8) is a
T-torsor: T acts on MHit by changing the trivialization ¢,, and the cen-
tralizer of ¢, in G is exactly T". The last arrow in (8) is a W-torsor because
B — A? is. It is easy to see that Mt — MUY 42 is a Ng(T)-torsor.

Lemma 1. The functor MHit g represented by an algebraic space which
18 locally of finite type and smooth over k.

Proof. Since the forget morphism MMt — MU 4. is a Ng(T)-torsor, it
is in particular of finite type. Since M is an algebraic stack which is
locally of finite type and smooth over k, so is MHiE,

It remains to show that the automorphism group of any geometric
point (€, ¢,t,,t,) € M\[{it(K) is trivial (K D k being any algebraically
closed field). In fact, in [?, Proposition 4.11.2] it is shown that

Aut(E,p) € HO(Xg, J2).

where J? is the (finite type ) Néron model of the regular centralizer group
scheme J, over Xg. Let q, : X, — Xg be the cameral cover of X, then
by [?, Corollaire 4.8.1], we have

HO(Xre, Jg) = HO(Xa0, TV C (g7 (2) x T) = T, . = Aut((€,)2)
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the last equality holds because a(z) € ¢"*(K). Therefore there is no non-
trivial automorphism of (€, ¢) which preserves ¢,. This shows that the
automorphism group of the triple (€, ¢, t.,¢,) is trivial.

We still have the Hitchin fibration (which is no longer proper even
over the anisotropic locus)

int : M\Hit — B.

3.8. Rigidified parahoric Hitchin moduli space

For each standard parahoric subgroup P C LG, we have defined in [?,
Definition 4.3.3] an algebraic stack Mp classifying Hitchin pairs (&, ¢)
together with a P-level structure £F of £ at a varying point » € X
such that ¢ is compatible with £F. For the precise meaning of “P-level
structure” and “compatible” we refer the readers to [?, §4.3].

A particular case is when P = I, then MP?" := My is called the
parabolic Hitchin moduli stack, which classifies quadruples (£, ¢,z,EP)
where (£,¢p) € MUt 2 € X and £F is a B-reduction of £ at z such
that p(r) € Ad(EP) ® O(D),. Another special case is when P = G, then
Mg = M1 x X For each P, we have the parahoric Hitchin fibration

fp ZMP%AHit x X.

We now introduce the rigidified version ./T/l\p of Mp similar to

Let Mp be the stack classifying data (&,0,2,EP t,,1,) where

- (&,¢,2,EF) € Mp;

— x is disjoint from z and a(z) € ¢ (a = fHY(E, ) € AT ¢, € s
lifts a(z);

— 1, is an isomorphism (€, )|, = (G, t,) of Hitchin pairs at {z} (cf. the
definition of M\[{it).

The forgetful morphism

Mp = B x 4= (Mp|a:) = Mp| 4

is again an Ng(T')-torsor. Parallel to Lemma 1, M\p is represented by an
algebraic space which is locally of finite type and smooth over k. We also
have morphisms

fp: Mp — B x X* (9)
where X? = X\{z}. When P = I, we usually write the morphism (9) as
foor . K B X,

For two parahorics Q C P, we have a forgetful morphism over B x X*:

P —
Forg : Mq — Mp
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8.4. Construction of the W -action

In this subsection we construct a W-action on the direct image complex
A!p ' Qy. Since T acts on MP¥ and fP& is T-invariant, we can view ﬁpang
as an object in ind D&(B x X*?), where D4.(B x X#) is the T-equivariant
derived category of Qg-complexes on B x X# (with trivial T-action). The
construction of the W-action is completely parallel to the case of fP?3"
treated in [?, §5.1] and the affine Springer fiber case in §2.3.

For each standard parahoric P, we have a Cartesian diagram

Mpar —L [[P/LP] (10)
T o

evp

Mp —% lp/LplpD

Here Lp is a group scheme over X which is an inner form of Lp. For
precise definition, see [?, Equation (4.1)]. Similarly, we have the twisted

versions [p and [P of the Lie algebra Ip and its Grothendieck resolution

Ip. So [[P/LP] and [lp/Lp] are stacks over X with natural G,,-actions

by dilation. Adding a subscript D means applying the twisted product
Gm

(=) x x Tot™(D) to these stacks.

With this diagram, we can define a Wp-action on fo\ri*(@g € Db(ﬂp)
similarly as in §2.3 or [?, Construction 5.1.1]. Therefore we get a Wp-
action on the ind-object ﬁpang = fp,lf&i@g. As in the proof of [?,
Theorem 5.1.2], these actions for various P are compatible, and they
together give an action of W,g on f!par(@g.

On the other hand, {2 still acts on MPar on the right, lifting its action
on MP? in [?, Corollary 4.3.4]. This glves an {r-action on f, "Qy. Putting

together with the Wg-action, we get a W-action on fp Qy.
The diagram (10) implies

fpaQe = (FPQn)">.

Therefore we get an action of 1p@g[ |1p on fp 1Qy.

3.5. Hecke correspondences

n [?, §3], we also have a construction of the W-action on fPHQy via
Hecke correspondences. Here we extend the construction to the case of

P Q.
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Recall we have a Hecke correspondence HeckeP?', which is a self-

correspondence of MP* over AM x X Over the locus (AY x X)™, there
is a W-action on MPH[ 4o xyrs. For each w € W, the closure Hg of the
graph of the w-action is a closed subspace of HeckeP?".

Let h be the second projection from HeckeP*' or Hg to MP?. Let

HeckeP? = HeckeP?” X Mpar MPar
T T A fpar
i = Has X5y guue M

Then HeckeP™ and ﬁ@ can be viewed as self-correspondences of Mpar
over B x X?. In fact, HeckeP* parametrizes two Hitchin pairs with Borel
reductions at a point z # z, an isomorphism of these Hitchin pairs on
X\{z} and a rigidification ¢, of the second Hitchin pair at z (which then
automatically gives a rigidification of the first Hitchin pair at z).

3.6. The subset (B x X*)

On the scheme AY x X, we have an upper semi-continuous function &
given by the local d-invariants d(a, x), see [?, §2.6]. Let (AY x X);s be the
level set of this function. By [?, Proposition 2.6.3], for each dy > 0, as
long as deg(D) is large enough, we have

codim 4o x (AY x X)s > 8 + 1, for all § < &.

Fix such a D (depending on &) in the definition of M. Let (A% x
X)' = Us<s, (AY x X)s, which is an open subscheme of AY x X. Let
(Bx X?) = (A” x X' X (49 xx) (B x X?).

We will need the notion of Property (G-2) of a correspondence, as
defined in [?, Definition A.6.1] and recalled in Appendix ??. The following
fact is an easy consequence of [?, Lemma 3.1.4]

Lemma 2. Any algebraic subspace H C ﬁeckepar|(gxxz)/ which is of
finite type over MP vig both projections satisfies Property (G-2) with

respect to (B x X*)™®  as a self-correspondence of ./T/l\par‘(BXXz)/.

Using the formalism of cohomological correspondences in Appendix
7?7, the fundamental class of Hg gives a map

[Hals : [PQ — FP"Qy.

in the category ind D4 (B x X?) (with T' acting trivially on B x X?).
Completely parallel to [?, Theorem 3.3.3] and [?, Proposition 5.2.1],
we have
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Proposition 3. The assignment w [ﬁ@]# for @ € W gives a left

action ofW on the restriction ﬁparQﬂ(BxXz)/. Moreover, this action co-
incides with the action constructed in §3.4.

3.7. Global Picard stack

We recall some facts from [?, §4.8]. For a point a € A% (k), we have a
smooth commutative group scheme J, over X, called the reqular central-
izer group scheme. The global Picard stack P, is defined as the mod-
uli stack of J,-torsors on X. It acts on both Mt and ME% (for any
x € X(k)).

Because we work with the rigidified moduli spaces, it is more rele-
vant to consider the group subscheme J? C J, which fits into the exact
sequence

1= J: = Jy—izade. =1 (11)

Here J, . is the fiber of J, at z and i, : {z} — X is the inclusion. Let 73@ be

the Picard stack of JZ?-torsors over X. One may also view P, as classifying
a Jq-torsor over X together with a trivialization at 2. Similar argument
as in Lemma 1 shows that P, is in fact a group scheme, locally of finite
type and smooth over k. The exact sequence (11) gives a homomorphism
of group schemes J, , — 7/5a, and an isomorphism of Picard stacks

Pa = [Po/ Jaz)-
As a varies in A%, {73,1} form a group scheme P 4- over A?. Let
73 =B X Az 7/5_,42.

For b = (a,t,) € B, the choice of t, gives an isomorphism J,, — 7.
Therefore we have an isomorphism of Picard stacks over B:

B x4 P =[P/T]

The group scheme P acts on both Mt and its parahoric variants M\p
over B.
Let J? be the finite-type Néron model of J, over X (see [?, §4.8]), then

there is an exact sequence

1= J; == Jaz % [[ Rex—1.
z€Sing(a)

Here R, is an affine group scheme of finite type over Speck = Speck(x),
and Sing(a) C X is the locus where a(z) ¢ ¢75. Let P be the Picard
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stack of J2-torsors on X, and let P be its coarse moduli space. From the
above sequence we deduce an exact sequence

15 H(X, ) = Jazx [[ Rae—Pa—Pi—1.  (12)
z€Sing(a)
3.8. Definition of the map o in (2)

Recall from [?, Definition 2.2.2] we have the universal cameral cover de-
fined by the Cartesian diagram

AVHit ev tp

A

AHit x X SR cD
For a € Aﬁit(k),ﬁh.e preimage X, := q_l({a}.x X) is the cameral curve
of a. Let A™ c AT (resp. (AY x X)"* ¢ AH x X) be the preimage of

t75 (vesp. ¢73). Then ¢"* : A™ — (AY x X)" is a W-torsor.

Recall from [?, Second line of the proof of Proposition 3.2.1] that for
each A € X, (T), there is a canonical morphism sy : A" — P (in [?] this

map was defined over a larger open subset A% but we do not need this
fact). Putting the various {sx}ex, () together we get a morphism

s: X, (T) x A™ = P. (13)
This gives a push-forward map on homology complexes
se: QX (T)] © H(A/AY) = HL(P/A7)

which is W-invariant (W acts diagonally on the two factors on the LHS
and acts trivially on the RHS). Therefore, it factors through the W-

coinvariants of Q¢[X,(T)] @ H,(A™/A). In particular, if we restrict to
Q¢[X.(T)], the map s, factors through a map

sl QuX(T)]W © Ho(A™ /A% — H(P/AY) (14)

Since ¢"* is a W-torsor, we have H,(A™ /A% )y = H,((AY x X)) A9).
Since (AY x X)™ — A" has connected fibers, we get

Ho (A" /A ) = Ho((AY x X)"*/AY) = Q0. (15)
On the other hand,
Ho(P/AY) = Qe[ro(P/AY)]. (16)
Therefore, the degree zero part of (14) gives the desired map o in (2).
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3.9. Rigidified version of the map s

In [?], the map s in (13) was used to describe the action of X, (7") on the
regular semisimple locus MP""% explicitly. We shall in this subsection
define a rigidified version of the map s and use it to describe the action

o~

of X,(T') on the regular semisimple locus of MP?". This construction will
be used in the proof of Theorem 4 in §4.1.

When we work with the rigidified versions of Hitchin moduli spaces,
we may similarly define a rigidified version of s

5:Xu(T) x A5 2 Grylx- — P,

The last map is defined as follows: a point in Gry over x € X* is a J-
torsor over X with a trivialization over X — {z}; since z € X — {z}, this
trivialization restricts to a trivialization at z, and hence defines a point in
P. Analogous to the map o in (2), we obtain from this a homomorphism

o5 : QX (T)]" — Qulmo(P/B)). (17)

Since P — P X 4o B is a T-torsor, To(P/B) is the pullback of 7o (P/AY),
and the map og is simply the pullback of ¢ from AY to B.
When (b,y) € B x X* is such that its image (a,y) € (A* x X*)"*
(a € A* is the image of b), we have an action of X,(T) on M\gzr, see
[?, Proof of Proposition 3.2.1, especially equation (3.4)]. On the level of
points, for m € ./{/l\g,ayr with image @ € A*"%, the action of \ € X, (T') on
it is given by
A(m) =35\, a)-m (18)
where the right side means the action of 731, on ./T/l\gzr. By the construction
of Hy (A € Xu(T)) in §3.5, Hy restricted to (A% x X7)™* is given by the
graph of the A-action given above. Therefore the action of X, (T") C W on
H; (M\Ezr), as part of the action constructed in Proposition 3, is induced

from the geometric action of X, (7') on /\//Y};’Zr by formula (18).

4. Proof of the global main theorem
4.1. Proof of Theorem /4

We first set up some notation. Fix § C T to be any algebraic subgroup.
Then T, hence S acts on Mt The complex ]?!Hith (as an ind-object of
D®(B)) carries a canonical S-equivariant structure, and can be viewed as
an ind-object in the S-equivariant derived category D%(B) = D*([B/95]),
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where S acts trivially on B. Let pg : [B/S] — B be the projection. Then we
have the derived functor pg. : D%(B) — DT (B) of taking S-equivariant
cohomology. We briefly recall the definition of pg .. An object K € D%(B)
is, by definition, a Cartesian complex of sheaves (K}, ),>0 on the simplicial
scheme (S™ x B), > 0. Using the natural projection (py)n>o from (S™ x
B)n>0 to the constant simplicial scheme (B),>0, we obtain a simplicial
object (pn«Kp)n>0 in DP(B). We then define ps K € D (B) as the total
complex associated with the simplicial object (pp Ky )n>0. For details,
see [?] and [?]. The functor pg . naturally extends to the ind-completions
ind D%(B) — ind D*(B). Fix i and S, we define

K = Rips. " Q.
For each geometric point b € B, the stalk of K at b is
K, = Hy([M}/S)).

Let p: B x X? — B be the projection. We would like to show that the
action of Q[X.(T)]" on p*K = K W Qy x- factors through the action of

Q¢[mo(P/B)] via the homomorphism (17). This is the same as saying that
the homomorphism

ker(Qe[X.(T)]" 25 Qu[mo(P/B)]) — R%p.End(p*K)

is zero. Since both the source and the target are sheaves, to show it is
zero it suffices to show it stalkwise, i.e., we have to show the following
result.

Lemma 3. For any geometric point (b, z) € BxX?, the action of Q,[X.(T)]"
on the stalk (p*K)p, = z([.//\/TII]{it/S]) is independent of v € X*, and it

factors through the action of mo(Py) = mo(Ps) (where a is the image of b
in AH®).

Proof. By adjunction we have
p«+End(p"K) = Hom(K, p.p”K) = Hom(K,H"(X*) ® K).
Taking H°, using the fact that H°(X?) = Q, we conclude that
Rp, End(p*K) = H°End(K).

The above isomorphism can be explicitly given as the restriction to Bx {y}
for any y € X*:

R, End(p*K) — ROp.iyEnd(ilp* K) = H°End(K)

where i, : B x {y} — B x X7 is the inclusion.



The spherical part of the local and global Springer actions 21

Therefore, for any given geometric point (b,z) € B x XZ*, in order
to show that the Qu[X,(T")]"-action on (p*K)pr = Ky factors through
the mo(Py)-action on K, it suffices to show that the Qy[X,(T)]" -action
on (p*K)y, = K factors through the ﬂo(ﬁb)—action on Kj, for some
y € X?. In particular we may choose y such that (a y) € € Ars. We identify
Ky, = H’([//\/TE“/S]) as the W-invariants of Hl([Mpar/S]) By construc-
tion, the action of Qu[X,(T)]" on Kj is the restriction of its action on
Hi (M par , /51). Therefore it suffices to show that the Q¢[X, (T))W -action
on H;([Mbpzf /5]) factors through o (Ps).

For A € X, (T), let |A| be~the W-orbit of \. Let Av()\)/:\: Dvepn N €
Q¢[X4(T))W. Since (a,y) € A™, the group X, (7)) acts on Mlb)zr by the for-
mula (18), from which we deduce that the action of Av()\) on H%([M par/S])

is the same as the action of op(Av(A)) € Qq[mo(Py)] on HL(IM par/S])
This shows that the Q¢[X,(T)]"-action on (p*K ) = K}, factors through
the 7o (Pp) = mo(Pq)-action on K.

For the original statement of Theorem 4, we take S = T'. In this case,

we have o ' _

Ky = (R 1™ Q0)p = HUM™).
The above discussion shows that the action of Qu[X.(T)]" on (p*K)p . =
H (M%) factors through 7o(Py) = mo(P,) for any = € X7, therefore
the action of Qu[X.(T)]" on the stalk (R!f1Q, K Qq x)q,. = HL(MLI)
factors through mo(P,) whenever a € A* and z € X*.

For an arbitrary geometric point (a,z) € AY x X, one can find a
point z € X — {z} such that a(z) is in the regular semi-simple locus of .
Therefore (a,z) € A% x X* for some z € X, and over A* x X* we already
know the factorization result from the previous paragraph. Theorem 4 is
proved.

4.2. Plan of the proof of Theorem 3

The rest of the section is devoted to the proof of Theorem 3. We shall
consider another action of Q[X,(7)]" on par(@g given by restricting the
Q[X.(T)]W-action on fP*"Q,RQy x- to the diagonal Bx X* < Bx (X?)2.
This latter action will be constructed using the Hecke modification at
two points, see §4.3. This new action is easier seen to factor through the
action of m(P/B), as we shall prove in Proposition 4 (and the proof is
similar to that of Theorem 4). Finally we show that the original action of
Qe[X (T on ﬁpang coincides with the new one, finishing the proof.
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4.8. Hecke modification at “another” point

This subsection provides preparatory tools for proving Theorem 3.
Consider the correspondence

Heckes (19)

BTN

MPT 5 X7 —> B x (X7)2 =— MP™ x X*

Fearxid FParxid

For any scheme S, ﬁeckeg(S ) is the isomorphism classes of tuples
(1'7 Yy, 817 L1, tl,z, L1z, €5x7 827 Y2, t2,2a 12,2, gfx? T)

where

— (@, & Pisties e, EB) € MPH(S), for i = 1,2

— y € X(S) with graph I'(y);
— 7 is an isomorphism of objects on S x X?* — I'(y):

T (E1,01, 2, 0,2) s — ) = (E2,902, T2z, t2.2)[sx x=—1(y)-

For a point (b,z,y) € (B x (X?)?)(k) such that = # y, the fibers
of hy and hy over (b,z,y) are isomorphic to the product of SPrG 4.,
and a Springer fiber in G/B corresponding to the image of 7,, in g
(here v,2 € 9(0;) and v,y € g(O,) are Kostant sections of a in the
formal neighborhood of x and y; see the discussion in §?7). If we restrict
to the diagonal Ax: : B x X? C B x (X?)?, ’ﬁeckegmxz is the same
as HeckeP?. The reader may notice the analogy between our situation
and the situation considered by Gaitsgory in [?], where he uses Hecke
modifications at two points to deform the product Grg x G/B to Flg.

Let _ _ _

B = A"t x e B, B = A" X e B.

The morphism fpar admits an enhancement f: MPar 5 B analogous to
the enhanced Hitchin vibration f: MP¥ — Ain [?, Eq.(2.2)]. Therefore
we have a morphism

’ﬁeckeg — M\par X (Bx X?) M\par M g X(BxX*) g
Let ﬁeckezy[e} be the preimage of the diagonal B C B xpxx- B. One the

other hand, we have the Hecke correspondence HeckeHit of MHIE x X2
which modifies the Hitchin pair at one point. We have a commutative
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diagram of correspondences where the horizontal maps are given by for-
getting the B-reductions.

If we restrict the left column above to B™ x X # all squares in the
above diagram are Cartesian. Recall from [?, Construction 6.6.3] that for
each W-orbit || in X (7'), we have a graph-like closed substack |y C
Hecke™®. Similarly, in the rigidified setting, we have ’ﬁ| z C Heckeit,
Denote by ;B%S : ﬁeckez[e” Braxxz — Hecke™® the restriction of ]’57_7 to
B x X*. Let ﬁllz\\ C ﬁeckeg,[e} be closure of f)%s’_l(??[w). Using the
formalism of cohomological correspondences in Appendix ?7?, the funda-
mental class [Hy || induces a map

[ﬁ2,|,\|]# L P QR Qe xs — QR Qy x- (20)

and an endomorphism of S-equivariant cohomology sheaves (in the nota-
tion set up in the beginning of §4.1)

[Hoals : REPT QR Qpx- — REFPQp K Qp - (21)

Proposition 4. The endomorphism [7/-227|>\|}# on Rgﬁpar(@g X Qux: in

(21) factors through the action of o(Av(\)) € Qqmo(P/B)] on the first

factor of R A!par(@g X Qy x=. Here Av(\) = Z/\’EI/\I N € QX (T)W.
Equivalently, for any geometric point (b, x,y) iB x (X*#)2, the effect of

(21) on the stalk (RY A!par(@g X Qr,x=)bzy = HZC([MS?/S]) is independent

of y, and factors through the action of wo(Py) = mo(Pa) (where a € A% is
the image of b).

Proof. The argument is completely analogous to that of Lemma 3. We
first use the adjunction for the projection onto the first two coordinates
p: (B x (X?)?) — (B x X?) to show that the action of Qu[X,(7)]" on
the stalk (R " Q¢ B Qp x=)p sy = Hé([Mgzr/S]) is independent of y.
Then we choose y € X? such that (a,y) € A" and calculate the action
of Av(\) on (R Qe ® Qg x= )b,y using the formula (18).

Remark 1. One can show that the assignment Q[X.(T)]" > Av()\) —
[Ha,5] extends by linearity to an algebra action of Qu[X.(T)]" on
(f!par@(IXQK’XZN(BX(XZ)Z)/, where (B X (XZ)2)/ = (B X XZ)/ XB (B X XZ)/.
This can be deduced from the (G-2) property of the correspondence
Heckes. We shall not use this fact.
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4.4. Proof of Theorem 3

We consider two actions of Av(\) on ﬁpangl(Bsz)/:

— Action «q: this is given by the restriction of the W-action constructed
in §3.4. This is the action involved in the statement of Theorem 3.
— Action ax: this is given by restricting the action [7—[2 P\l]# in (20) to

the diagonal Ax: : (B x X?) < (B x (X?#)?)". Note that fpang =

A% (77 Qe R Qyx).

We claim that the actions a; and axa are the same. Recall from
[?, Appendix A.4] the notion of the pullback of a cohomological corre-
spondence, which extends to the situation of cohomological correspon-

dences over algebraic spaces locally of finite type. See the discussion
at the end of Appendix ??. By [?, Lemma A.4.1], the action aa of

Awv(]) is given by the pullback class A% [Hg ) € Corr(?—[ Qr, Qy), where
H' C HeckeP™ is a large enough closed sub-correspondence with both

maps to Mpar proper. For the notation Corr(—;—, —), see Appendix 77.

Let A%, : (B x X'Z)rs (B x (X#)?)" be the restriction of Ax=. Over
(B x (X#)?)s, ;SIAI is finite étale over MP x X7 via both projections,

therefore A’“st*[ A P\I] [H 27|)\‘| ars, ], the fundamental class of the base
change of 7—[2 A via A'Y.. However, restricting the left column of the dia-

gram (??) to B"® < B x X7 (as the graph of the projection B — X?),
we get
AT Ay = | A (22)
NeE|
On the other hand, the action a1 of Av(A) is given by the class
> ovep[Hy] € Corr(H';Qp, Q) (enlarge the correspondence H' defined
before to contain all the H with X € |A]). Over (B x X*), both classes
A%:[Han] and 305 ¢\ [Ha] are supported on ‘H’, which has property
(G-2) by Lemma 2. Applying Lemma ?7, the equality (22) implies
(A [Hop s = > [Ho]y
Ae|A|
as endomorphisms of ﬁpaer(BX x=y- This proves the claim.
By Proposition 4, the action ax of Av()\) on R f, "QilBxxey =
A% (R par(@g X Qr,x=|(Bx (x7)2)) factors through (17). Since the action
a; on RE f, Qg|(Bsz)/ is the same as an, it also factors through (17).

To ﬁmsh the proof of Theorem 3, we take S = T and argue as in the
final part of §4.1. Taking the stalk at a point of (B x X*)', we conclude:
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Corollary 2. Let S C T be an algebraic subgroup and (b,x) € (B x
X?)'(k). Then for each i the action of Qo[X(T)|" on HL(IM}Y/S]) fac-

, T

tors through the action of 7o(Py) = mo(Pa) via o.

5. From global to local

In this section, we prove the local main theorem (Theorem 1) and Theo-
rem 2.

5.1. Initial reduction

We use the notations from §2.7. Suppose G — G’ is a central isogeny with
finite kernel. Let v € g(F) be a regular semisimple element and +' its
image in ¢g'(F'). We claim that the validity of Theorem 1 for +/ implies its
validity for +. For a notation (—) attached to G, we use the notation (—)’
to denote its counterpart for G’. The induced morphism between affine
flag varieties Flg — Flg identifies Flg homeomorphically with a union
of connected components of Flg/. This morphism restricts to a morphism
¢ : Spr, — Spr,,, which also identifies Spr, with a union of connected
components of Spr.,. Note that W can be identified with a subgroup of
W', under which the surjective map 6* : H*(Spr,,) — H*(Spr,), and its
H} analog, are both W-equivariant. Finally, the construction in §2.7 gives
a commutative diagram

Qo[Xu ()] —— Q¢[mo(LG-)]

| |

QX (T)W' — Qulmo(LG.,)]

Therefore, if the action of Qy[X,(7")]"" on H*(Spr.,/) or HZ(Spr./) factors
through Q¢[mo(LG.,)], so does the action of QX (T)]". Hence the action
of Qu[X4(T)]" on the quotient space H*(Spr,,) or Hz(Spr,,) also factors
through Q[mo(LG’,)], and hence through Q[mo(LG)].

We apply the above discussion to the central isogeny G — G/ = G4 x
G? where G* is the adjoint form of G and G* = G/[G,G] is the
abelianization of G. We then reduce to the case where G is a product of
an adjoint group and a torus. Since Theorem 1 trivially holds for tori,
we reduce to the case where G is of adjoint type. In the sequel we will
assume that G is of adjoint type.
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5.2. The local data

Assume a(y) € ¢(Op), otherwise the affine Springer fiber is empty. Re-
call the local cameral cover diagram (6). As before, we choose a com-
ponent Spec(’)F of SpecOF with stabilizer W'. By our assumption on
char(k), F' = F rac(OF) is a tamely ramified extension of F, hence
W' = Gal(F!/F) is a cyclic subgroup of W. Fix a generator w of W'
and a primitive m-th root of unity ¢ € i, (k), where m = #W*.

5.8. The global data

Let X = Pl Fix z € X(k)\{0,00}. Let X be the contracted product

X =W VK P!, where w_acts on P! by t ¢t. We take X' to be the
component {1} x P! ¢ X. The morphism 7 : X — X' JW!' = X is a
branched W cover. The pomt 0 has a unique preimage in X' , which we
denote by 0'. We fix a W'-equivariant isomorphism

Of = 0z,

This induces a W-equivariant isomorphism Op >0 %o (the latter being

the completion of X along 7~1(0)), and also an isomorphism Op =~ O X,0-

Lemma 4. For any N > 0, there exists an integer d = d(N) such that
for any divisor D on X, disjoint from {0, z,00} and deg(D) > d, there
exists a section a : X — ¢p such that

1. There is a W -equivariant birational morphism X - X, (ie., X is the
normalization of the cameral curve X, );

2. Let ag be the restriction of a to SpecOx . Then ag = a(y) mod wlV
(since D is disjoint from 0, ag is an element in ¢(Ox ) = ¢(OF));

3.a(z) €®, e, a€ A%,

Proof. To give such a section a is equivalent to giving a W-equivariant
morphism a : X — tp whose induced map between W-quotients satis-
fies local conditions (2) and (3) (which is then automatically birational
because a is regular semisimple at z).

Let £ be the following coherent sheaf on X

L=(tom0:)".

Since char(k) does not divide #W, this is a vector bundle over X. First
fix any divisor D on X not containing {0, z,00}. Giving a W-equivariant

map X — tp is equivalent to giving a section @ € HO(X, £(D)). The
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conditions (2)(3) will be satisfied if we can find such a section a which
approximates given sections at 0 and z to high order. This can obviously
be achieved provided deg(D) is large.

Let N be the integer in Proposition 2: whenever a(y') = a(y) mod =,
then Theorem 1 is true for a(y’) if and only if it is true for a(y). Ap-
plying Lemma 4 to this N, we obtain a divisor D = 2D’ on X and
a : X — cp satisfying the properties therein. By choosing deg(D) large
enough, we can make sure that (A% x X) D (AY x X)s for 6 = 6(a;0),
hence (a,0) € (A” x X)' (see the discussion in §3.6). We use this D to
define the rigidified parabolic Hitchin moduli ./\//\lfar. With this a we have
the cameral curve ¢, : Xq — X. The image of X' in X, is a component
X! Let Sing(a) C X be a subset which contains 0, co and the locus where
Qo : Xq — X is not étale.

5.4. Relation between local and global Picard

Let x € X (k). The discussion in §2.6 can be applied to y(a,z) € g(Fy),
the Kostant section of the restriction of a to the formal disk SpecO,. In
particular, we obtain Pg 4, Py 2, Aq . and R, ., and an exact sequence

1 = Rog — Pog — Agp — 1. (23)

Note that R, is the same group scheme which appeared in (12). For
each z € X (k)\{z}, we have a commutative diagram

Py —>P, (24)

|

Aoy — P

Let b = (a,t.) € B(k) lifting a such that t, € X}. The choice of ¢,
gives an identification J,, — T. Recall the exact sequence (12). By [?,
§4.11] we have H(X, J?) = T", hence the first arrow in (12) gives a map
TV — J,. = T, which is easily checked to be the canonical inclusion
T% — T. Let S C T be a torus which is complementary to the neutral
component of T, so that SNT"Y is a finite diagonalizable group over k.
By the assumption on char(k), SNT" is in fact discrete.
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Combining the exact sequences (12), (23) and the diagram (24), we
get a map between exact sequences

l——=5x erSing(a) Ra,z S x HxGSing(a) Pa,m - HxGSing(a) Aa@ 1

- E i

1 — (Jaz % [aesing(a) Raiz) /T Pa P 1
(25)

By the choice of S, « is surjective. Let P = ker(3) and AX" = ker(y).

The snake lemma gives an exact sequence between the kernels

1= SNTY — Pker 5 pker 1. (26)

Here S N T is viewed as a subgroup of T% = H°(X,.J?), hence maps
diagonally into S x [ [, Rq .. Note that SNT" is a discrete group scheme,
so is PX' hence we may identify PX" with its k-points.

By Lemma ?? below, the map v in (25) is also surjective. Hence so is
8 and we have an exact sequence

1P 5 Sx [ Pow—Pa—1 (27)
z€Sing(a)

Lemma 5. In our situation, the coarse moduli space P2 of P° is a discrete
group. The natural map vy : Ago — Pg is an isomorphism, and both
groups are canonically isomorphic to X.(T'),, /torsion.

Proof. By [?, Corollaire 4.8.1], the finite type Néron model J? of J, is
(Res g1 x (TxX'))". The Lie algebra of Fy is H! (X, LieJ;) = H'(X, (t® Oz)") C
te H (X!, O51) = 0 since X' 2 P!, Therefore P’ is discrete.

The restriction of J? to SpecOr is (Resé%/OFT)w, Therefore A, =

JJ(F)/J2(OF) = T(F!)“’/T((aim)’“’. Taking the w-invariants of the exact
sequence

1 — T(O%) = T(F') % X,(T) = 0
we get that A, is the image of the map
ev : Jo(F) = T(FYY - X, (T)v.

Similarly, from the injection J? < Res % (Tx X") we deduce a natural
map

deg: P’ — H (X', T)¥ = X, (T)".
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Consider the diagram

Xi(T)y = Ago —= X, (T)¥ (28)
|
Xu(T) > PP — 2% x (T

Here a is a surjection induced from the map Jo° — J? (here (—)° de-
notes fiber-wise neutral component), and the fact that J,(F')/ J0(Op) =
Xi(T)y [?, Lemme 3.9.4]. The map f is a surjection induced from the
same map Jo — J?, and the fact that mo(Pic(X, JJ;’O)) = Xo(T)w [7,
Proposition 6.4, Corollaire 6.7]. The diagram (??) is easily seen to be
commutative.

The fact that § is surjective shows that ¢g is also surjective. The fact
that ev is injective shows that ¢( is also injective. Therefore (¢ is an isomor-
phism. Now ker(a) = JE(OF)/JE’O(OF) is torsion and A, is torsion-free
since ev is injective, hence the first row of (7?) identifies A, with the
torsion-free quotient of X, (7).

Lemma 6. The natural map

= I mo(Paa)
zeSing(a)\{0}

1s injective with finite cokernel.

Proof. Consider the following map between short exact sequences

1

SnTe pler Al 1

. lg lv

1 — [ Liesing(a)\ {0} T0(Baz) — [Taesing(an o1 0 (Paz) — [ocsing(an jo} Aae — 1
(29)

By Lemma ??, A, 0 — Pg, hence 7 is an isomorphism. Applying the snake

lemma to (?7), we get ker(a) = ker(8) and coker(f) = coker(a), which

is finite.

In order to show that (8 is injective, it suffices to show that « is in-
jective. By definition, co € Sing(a). By [?, Proposition 3.9.7], we have an
isomorphism 7o ( Py 00) = X4 (1), because G is of adjoint type. Also by [?,
Proposition 3.9.7], the map mo(T") — Xy (T")y = mo(Pa,00) is an embed-
ding whose image is the torsion part of X, (7"),,. Since T" — P, o factors
through R, o, we see that mo(T") — mo(Ro,0) is injective. By the choice
of S (complementary to the neutral component of T%), S NT"Y injects
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into mo(T"), therefore S NT" — mo(Rq,00), proving that « is injective.
This finishes the proof.

Proposition 5. For any x € X (k), the following diagram is commuta-

tive:
Oa,x

Qe[Xu ()W — Qe[mo(Pa,z)] — Qe[mo(Pa)] (30)

~ .

Here 044 is the homomorphism (1) applied to vy(a,x), and oq is the stalk

of (2) ata.

Proof. Recall the choice t, gives a point z' € X(!fs over z. Also we have
z' € X over z. Consider the diagram

(31)

(Pa)
\ /
m0(G77,,2)

Here s(—, z') is the map in (13), and the composition ¢, - s(—, z') is used
to define oy, see §3.8. The homomorphism &, .1 is defined in (7) (quoted
from [?, Proposition 3.9.2]), which was used to define o, ;. Therefore, in
order to show that (?7?) is commutative, if suffices to show that the outer
square of (?77?) is commutative.

The arrow 7 in (?7) is defined in [?, Proposition 6.8] and [?, Proposi-
tion 4.10.3]. We shall show that the two triangles in (??) are both com-
mutative. The commutativity of the upper triangle follows from the com-
patibility of Ngo’s constructions, see the proof of [?, Proposition 4.10.3].
On the other hand, tracing through the definition of s(— ') in [?, Lemma
3.2.5], we see that s(—, z') is the same as Ngo’s map o, 1, therefore the

a,z'?
lower triangle of (?7) is also commutative. This finishes ‘the proof.

5.5. Product formula
For each x € Sing(a), choosing a trivialization of Ox (D) at y, we may
view the restriction of a on SpecO, as an element a, € ¢(O,). Let

v(a,z) = e(ay) € g(O,) be the Kostant section. Define

SprP,a,x = SprP,’y(a,x) :
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Recall from [?, §4.2.4] that we have a global Kostant section e(a) =
(€,¢) € Mt Picking any isomorphism ¢, : (€,¢). = (G,t,) gives a
point €(b) € /\//Tgﬁt. As in [?, §4.15], by gluing the local Hitchin pairs at
x € Sing(a) with €(b) we get a morphism

Spr, o X H Sprg . — /T/l\a%r (32)
z€Sing(a)\{0}

which intertwines the Hwesmg( o) P, ;-action on the LHS and the ﬁa—action
on the right. To alleviate notions, let

Z = H SpI‘G@@.
z€Sing(a)\{0}

A rigidified version of the product formula ([?, Proposition 4.15.1], [?,
Proposition 2.4.1]) gives a homeomorphism

Hzesing(a) Po,z ~ “par
(Sprag x Z) X Po = Mg - (33)
Dividing both sides of (??) by S, using (??), we get a homeomorphism
of stacks

ker
P homeo. 77

Sprag X Z = [MpY/S). (34)

5.6. Pulling apart components

! By [?, §3.10.2], the irreducible components of Sprg , , are in bijections

with mo(P,.). Hence, by Lemma ??, PX®' permutes the irreducible com-
ponents of Z = H$€Sing(a)\{0} Sprg 4, freely with finitely many orbits.

We pick one irreducible component Y, C Z from each Pclfer—orbit. Let
Y = U,Y, C Z be the union of these orbit-representatives of irreducible
components. Let Y™ C Y be the intersection of Y with the regular lo-
cus 2" = [[Sprg’, , (cf. [?, Lemma 3.3.1]). By construction, the action

map PX' x Y — Z induces a bijection between irreducible components,
and restricts to an isomorphism on the regular loci. Then we have a com-
mutative diagram

Spr, o X yregc Yo Sprao XY

! b

Pker Pker ??)

Spr,, o % zreacl o Spr,, o X Z

—

[Mpo /5]

! This part of the argument was suggested by Y.Varshavsky.
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From this we get a commutative diagram on compactly supported coho-
mology

Jy,!

He (Spry o x Y7) He(Sprg o x )

] o

Pker Pker

H:(Sprag x 27°9) 2= H:(Spra x 2Z) = Hi([ME%/S])

Here v* makes sense because it is proper. In other words, the map jy, on
compactly supported cohomology can be factored as

s HE(Sprag x Y7°0) 2 HE(MPS/S)) 25 Hi(Spry x V). (35)

Let d = dimY. Using the Kiinneth formula, and taking only the top
cohomology of Y and Y, we get

He(Spry,0) @ H2(Y7%0) ——= H{24(IMR /S]) —= Hi(Spryo) @ H(Y)

The composition of the above maps is an isomorphism because H2¢(Y"¢9) &
H24(Y') = Qq[Irr(Y)]. Therefore the map jy in (??) gives an injection

He(Sprg,0) = Ho(Spry ) @ HX(Y™) — HZPA(IMPG/S]). (36)

where the first map is given by the inclusion of the fundamental class
[Yreg] c sz(yreg)'

Proposition 6. The map (??) intertwines the W x 70(Pa0)-action on
the first factor of the LHS and the W x 7o(Ps) = W x mo(P,/S)-action
on the RHS via the natural map P, o — P.

Proof. The fact that this map intertwines the 7y(F, )-action on the LHS
and the mo(P,)-action on the RHS is clear from the equivariance property
of (77).

It remains to prove the W—equivariance of (??). For each standard
parahoric P, we have a diagram consisting of two Cartesian squares

evy ry

Spry X Y79 My ((p/Lp] (37)

Sprp g0 X Y9 Mp o —> [lp/Lp]

such that the outer square is the product of Y9 with the diagram (4) and
the right square is the restriction of the diagram (10) at (b,0) € B x X*.
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—

The Wp-action on H(Spr, o x Y") and Hz(./\/la%r) are constructed from
these diagrams using the parahorics P and the classical Springer theory
for Lp. The diagram (??) implies that (?7?) is Wp-equivariant for every
P, hence Wg-equivariant. Similarly, using a diagram connecting (5) and
its global analogue, one shows that (??) is also {21-equivariant. Putting

together, we conclude that (??) is W-equivariant.

5.7. Conclusion of the proof of Theorem 1

Consider the diagram

Aloc

QX (1)) @ He(Spr ) Qelmo(Pa,0)] @ Hi(Sprg o) HL(Sprg o)

i(??) im l(??) l(??)

0a®id G'Ctglob

QX (D)W @ HEF2A(IMPY /8)) 2% Qo (Pa)] @ HEF2A([MEY /S]) —=% HE2A([MY /9])

where the upper ajo. and aglep are actions maps of Qg[X, (MW actioe
and actglol, are action maps of the mp’s. By Proposition 77, the left side
square is commutative. By Proposition 77, the right side square and the
outer square are commutative. By Corollary 2, the lower triangle is com-
mutative. Our goal is to prove that the upper triangle is commutative.
From the known commutativity, we conclude that actjoc o (04,0 ® id) and
a)oc are the same if we further compose them with (??7). Since (?7) is
injective, they must be equal before composition, i.e., the upper triangle
is commutative. This proves Theorem 1 for Spr, o. Since ap = a(y) € o
by construction, the theorem also holds for Spr., by Proposition 2. This
finishes the proof of Theorem 1.

0a,0Qid actioe

5.8. Duality between homology and compactly supported cohomology

The next goal is to prove Theorem 2. We consider the following general
setting. Let A be a group. Let X be a scheme, locally of finite type over k
with a free A-action such that X/A is representable by a proper scheme.
The main examples we have in mind are X = Spr,, with the action of a
lattice A C LG,.

A A-covering of X is a A-equivariant morphism

f:YxA—-X
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where Y is a scheme, A acts trivially on Y and acts as translations on
A itself, such that the induced morphism f : Y — X/A is proper and
surjective. For example, we may take Y C X to be the union of represen-
tatives of the A-orbits on the irreducible components of X, and take f to
be the action map.

Let Xg = AXxY and X,, = Xg xx X+ xx Xo (n+ 1 terms). The
collection X = (X,,)n>0 together with the natural face maps (projections)
and degeneration maps (diagonal maps) forms a simplicial resolution of
X. Each X, carries a diagonal A-action which is also free. Let Y, = X,,/A.
Then Y,, is naturally identified with the (n + 1)-fold Cartesian product
Y Xx/aY X+ xx/4Y. We form the simplicial scheme ) = (¥;,)n>0 again
using the obvious face and degeneration maps. Then 2) is a simplicial
resolution of X /A, and each Y;, is a proper scheme.

The natural projection &, : X,, — Y,, is in fact a trivial A-torsor. The
trivialization is given by n, : A x Y,, — X, defined as (\,yo, - ,yn) —
(A Yo; AN, Y15+ 5 A, Un ), where \; € A is the unique element such that
Ay = yo- It is easy to see that 7, is a A-equivariant isomorphism. How-
ever the simplicial structures of X and ) are not preserved by the maps
M- In other words, the map £ : X — 9) is a A-torsor in the category of
simplicial schemes, which is trivializable over each Y, but not necessarily
trivializable as simplicial schemes.

By cohomological descent for proper surjective morphisms (see [?, §5.3]
and [?, Prop. 4.3.2]), H:(X) is canonically isomorphic to the compactly
supported cohomology of the simplicial scheme X. We would like to cal-
culate H’(X) using H}(2)). When working with a finite coefficient ring
R, we may resolve the constant sheaf R on 9) by a complex K" —
K!' — ... on 2 with injective terms. We form the double complex
D4 (f)r = I.(Yi, K7y,) (see [?, §5.2.3]) with differentials in the i-index
induced from the simplicial structure and in the j-index induced from
the differentials on K*. We may view the double complex D**(f)r as
an object D(f)g in the filtered derived category DYF(R-mod), by taking
the stupid filtration in the i-index, i.e., Gr'D(f)g = D**(f)g[—i], which
is quasi-isomorphic to RI.(Y;, R). Let w : D’F(R-mod) — D’(R-mod)
be the functor of forgetting the filtration (which is the same as taking
the simple complex associated with a double complex, when applied to
a filtered complex given by the stupid filtration of a double complex).
Then RI:(9, R) is quasi-isomorphic to wD(f)g. Similarly, RI,(X, R) is
quasi-isomorphic to wC(f)r, where C(f)r is a filtered complex of R-
modules obtained via the stupid filtration in the i-index of the double
complex C(f)r = I'.(X;, & (K |y;)) & R[A] ® D% (f)g. Note that the
differentials in the i-direction on C%J(f)g are not simply the identity
map on R[A] tensored with the differentials on D% (f)g, but are induced
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from the face maps of X. But in any case the differentials on C**(f)p are
R[A]-linear, and hence we may view C**(f)g as a double complex of R[A]-
modules, which defines a filtered complex C(f)r € D*F(R[A]-mod) with
Gr'C(f)r =& R[A] ® Gr'D(f)g. Passing to inverse limits for R = Z/{"Z
and then inverting ¢, we get an object C'(f) € D*F(Q[A]-mod) such that
wC'(f) is quasi-isomorphic to RI.(X). In this way, we have upgraded the
complex HX(X) to an object HX(X)* := wC/(f) in the derived category
Db(Qy[A]-mod).

Similarly, for a finite ring R, we have a double complex K ;(f)r such
that for fixed i, K; «(f)r is quasi-isomorphic to RI.(Y;, Dy, g) (whose co-
homology calculates the R-homology of Y;). The double complex H; ;(f)r =
R[A] ® K; ;(f)r (again the differentials in the i-index is not simply ob-
tained from the tensor product) then calculates the homology H, (X, R) =
H.(X, R): first view H, .(f)r as a filtered complex H(f)g with Gr—H(f)r =
R[A]J@RI.(Y;, Dy, r)[i], then RI(X, Dy ) is quasi-isomorphic to wH (f)r.
For each fixed i, we have a canonical quasi-isomorphism of complexes of

R[A]-modules

Gr'H(f)r = R[A] @ RI.(Y;, Dy, r) (38)
=~ RHompq)(R[A] © RI.(Y;, R), R[A]) = RHomp (Gr'C(f)r, R[A)).

Here we used the fact that each Y; is proper. Moreover, the isomorphism
(??) is compatible with the simplicial structure as ¢ varies. Passing to in-
verse limits for R = 7 /¢"Z and then inverting ¢, we have upgraded the ho-
mology complex H,(X) to an object H,(X)* := wH(f) € D?(Q[A]-mod),
and obtained an isomorphism in D?(Q,[A]-mod) from (??):

H..(X)" = RHomg, 4 (H:(X)*, Q[A]). (39)

Finally, neither the isomorphism classes of the objects H(X)f, H.(X)# €
D®(Q¢[A]-mod) nor the isomorphism (??) depend on the choice of the
A-covering. In fact, for any two A-coverings f : Y x A — X and f' :
Y’ x A — X are both dominated by the third f” : Y” x A — X, where
Y" = (Y x{0})xx (Y'x A). To emphasize the a priori dependence on the
A-covering, we write HZ(X)EI, H. (X)gc etc to denote the upgraded objects
constructed using f. Let g : Y” — Y and ¢’ : Y — Y’ be projections.
They induce maps on simplicial schemes g, : Y — Y, and ¢, : Y — Y/,
which then induce isomorphisms in the category D°(Q[A]-mod)

H; (X)5 £ Hy (X%, <= HI(X)5, (40)
HL(X)f < Ho(X)%, 5 H(X)f,. (41)
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Therefore the isomorphism classes of H(X)# H.(X)! € D*(Qq[A]-mod)
are independent of the choice of the A-covering. Moreover, the quasi-
isomorphisms in (??) and (??) intertwine the dualities of the type (?77).
Therefore, f, f/ and f” all give the same isomorphism (?7).

5.9. Proof of Theorem 2

2 Now let X = Spr., and A C LG, be a free abelian subgroup considered
in [?, Proposition 2.1], which acts freely on Spr., with proper quotient [?,
Proposition 3.1(b), Corollary 3.1]. In fact, the proof in [?] also applies
to Sprp ., for any parahoric P C LG. Hence A also acts freely on Sprp
with proper quotient.

The discussion in §77 gives the upgraded objects

H (Spr, ), Ha(Spr, ) € D*(Q¢[A]-mod) (42)
and the canonical isomorphism (?7?) now reads

Lemma 7. The upgraded objects in (??) carry WXWO(PG(V))—actions (lift-
ing the actions on the plain vector spaces), and the isomorphism (?7) is

W x 70(Pa(y))-equivariant.

Proof. For each parahoric P, we pick a A-covering fp : Yp X A — Sprp
and define a A-covering f :Y x A — Spr, by requiring the left square of
the following diagram to be Cartesian

Y x A—L~spr. o/ Lp] (44)

L

Yp x A—"> Sprp — [ip/Lp]

where the right square is topologically Cartesian by (4). We have shown
in §?7 that the upgraded objects (?7?) are independent of the choice of
A-coverings, and here we shall use this particular A-covering to define
them. The construction of the Wp-action on HZ(Spr,) (resp. H.(Spr,))
in §2.3 then gives a Wp-action on the filtered complexes C(f) (resp. H(f))
calculating Hi(Sprw)ﬁ (resp. H*(Spr,y)ﬁ), and these Wp-actions are com-
patible with the duality between GriC(f) and Gr—*H(f) as complexes

2 The idea of proving Theorem 2 by duality of the type (??) was suggested by
R.Bezrukavnikov.
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of Q¢[A]-modules as in (??). This gives the Wp-action on HZ(Ser)ﬂ and
H*(Sprv)u, and proves that (??) is Wp-equivariant. The actions of {2y
and 7o (Py()) are given by the actions of £ and P,y on Spr, itself,
which clearly lift to the objects in (??) and are intertwined by (?7). One
easily checks that the mo(F,(,))-action commutes with the Wp and
actions. Using a variant of the diagram (5) incorporating the A-coverings
as in (?7), one checks that the commutation relation between Wp and
{21 continues to hold after upgrading. This finishes the proof.

By (??) and the above lemma, we have a W x 70(Py(y))-equivariant
spectral sequence

E;p’iq = E-’Et@ep[/l] (Hg(spr'y)y QE[A]) = Hp+q(spr"/)’

which necessarily converges because Q4] has cohomological dimension
rk(A). Therefore, this gives a finite decreasing filtration Fil” on H;(Spr.,)
such that
GrpyHi(Spr,) = EPP,

Since the Q[X,(T)]"-action on the E> page factors through mo(LG.,)
by Theorem 1, so does the Q[X.(T)]"-action on E,,. Therefore, the
Q¢[X(T)]" -action on GrpHi(Spr,) also factors through 7o (LG.,). Since
E$? = 0 unless 0 < p < rk(A), the same is true for E&" = Gry, H.(Spr.,).
Note that rk(A) is the same as the F-rank of G.,. This proves Theorem
2.

A. Sheaves and correspondences on spaces locally of finite
type

In this appendix, all algebraic spaces are locally of finite type over k.

A.1. The category of sheaves

Let X be an algebraic space over k which is locally of finite type. Let
Ft(X) be the set of open subsets U C X which are of finite type over k.
We define
DM(X):= lm D"(U)
UEFt(X)

When X itself is of finite type over k, Ft(X) has a final object X, so
obviously D°(X) = D*(X).

Concretely, an object in ng(X ) is a system of complexes Fyy € D°(U)
for each open subset U C X of finite type over k, together with isomor-
phisms go‘[f . i*Fu = Fy for each open embedding j : V < U satisfying
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obvious transitivity conditions. A morphism « : {Fy} — {Gu} is a sys-
tem of maps ay : Fy — Gy in D(U) such that ay restricts to ay on
V.

Examples of objects in Qb(X ) include the constant sheaf Qg x =
{Q¢,r} and the dualizing complex Dy := {Dy}.

A.2. Functors

Let f : X — Y be a morphism which is locally of finite type. We have
the following functors

1. f* Qb(X) — Qb(Y). For U € Ft(X), f(U) is contained in some
V € Ft(Y). Denote by fyy : U — V the restriction of f. We define
(f*Gv = firyGv.

2. f': Qb(X) — Qb(Y), defined in a similarly way as f*: (f'G)y :=

f(!]7ng-
3. If f is of finite type, we have

fi: (X)) = P(Y)

For V € Ft(Y), f~1(V) € Ft(X). Let fy : f~%V) — V be the
restriction of f. We define (fiF)y := fv 1 Fr-1(v).
In general, if f is only locally of finite type, we have

fi: PP(X) = ind D*(Y)

where ind Qb(Y) denotes the category of ind-objects in Db(Y"). We
define fi.F as the ind-object @UGFt(X) fu Fu, where fy : U — Y, the

restriction of f, is of finite type, and fy is defined above.
4. If f is of finite type, we have

fe: DY(X) = DY)

defined in a similar way as fi: (fF)v := fvaFr1v)-
In general, if f is only locally of finite type, we have

fe: PY(X) = pro PU(Y)

where pro Qb(Y) denotes the category of pro-objects in Qb(Y). We
define f.F as the pro-object @UeFt(X) fus«Fu.
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In particular, we can still define
H.(X/Y):= fiDx € ind D*(Y
When Y = Speck, we have

H)(X) = fiQ,x, H.(X)=fiDx €ind Db(Qq-vector spaces);
H*(X) = f.Qu x, H*BM(X) = f.Dx € pro Db(Qg—vector spaces).

A.8. Cohomological correspondences
In this appendix, we extend the formalism of cohomological correspon-
dences (see [?] and [?, Appendix A]) to situations where the relevant

algebraic spaces are locally of finite type.
Consider a correspondence diagram

7\

X*>S<iY

(45)

where

— S is locally of finite type over a field k;
— f, g are locally of finite type;
— @ is proper and ‘¢ is of finite type.

For F € D*(X) and G € D*(Y), we define as in [?, Definition A.1.1]
Corr(C; F,G) := Home(C)(7*g, <'F).
%

We call an element ¢ € Corr(C;F,G) a cohomological correspondence
between F and G with support on C.
Given ¢ € Corr(C; F,G), we define

ot g6 20 02,206 LS 02 F = g o T F = i F 1Y i E

In the equality above, we used 7 =7, since it is proper. Arrows indexed
by “ad.” all come from the relevant adjunction for the morphisms ‘¢ and
¢, which are of finite type. Note that (4 is a morphism in ind DY(S).
Most of the results in [?, Appendix A] are still valid in this extended
situation. In particular, the results on pull-backs of cohomological corre-

spondences in [?, Appendix A.4] extends verbatim.
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A.4. Composition

Suppose we have the following diagram

(46)

where C = C] Xy Cy and C; and (5 satisfy the conditions in beginning
of §77?. Since c_f, ¢3 are proper, so are d and g Similarly, ‘¢ is of finite
type. Hence C, as a correspondence between X and Z, also satisfies the
conditions in the beginning of §77.

Let F € Qb(X), ge Qb(Y) and H € Qb(Z). The convolution product
defined in [?, Appendix A.2] extends to the current situation, giving a
bilinear map

o: Corr(C1; F,G) ® Corr(Co, G, H) — Corr(C; F, H).

The following statement is a variant of [?, Lemma A.2.1], and is proved
by a diagram-chasing;:

Lemma 8. Let ¢; € Corr(C1; F,G) and (3 € Corr(Ca; G, H). Then
(CLoGa)y =Crpoloy  MH = AT

The associativity of the convolution o also holds, see [?, Lemma A.2.2].

A.5. Property (G-2)

From now on we assume both X and Y are smooth of equidimension d.
Recall from [?, Appendix A.6] that we say C has Property (G-2) with
respect to an open subset U C S if dim Cy < d and the image of C—Cy —
X Xg¢ Y has dimension < d.

[?, Lemma A.6.2] now reads

Lemma 9. Suppose C satisfies (G-2) with respect to U C S. Let (,(' €
Corr(C; Qex, Qey)- If Clv = ('lv € Corr(Cy; Qux,y, Quyy ), then (4 =
Cy € Homg(9Quy, fiQe,x).
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