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Abstract. The affine Weyl group acts on the cohomology (with compact support)
of affine Springer fibers (local Springer theory) and of parabolic Hitchin fibers (global
Springer theory). In this paper, we show that in both situations, the action of the center
of the group algebra of the affine Weyl group (the spherical part) factors through the
action of the component group of the relevant centralizers. In the situation of affine
Springer fibers, this partially verifies a conjecture of Goresky-Kottwitz-MacPherson
and Bezrukavnikov-Varshavsky.

We first prove this result for the global Springer action, and then deduce from it
the result for the local Springer action. This gives an application of global Springer
theory to more classical problems.
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1. Introduction

Let k be an algebraically closed field. Let G be a reductive algebraic
group over k. We assume either char(k) = 0 or char(k) is large with
respect to G (see §1.4). Let g be the Lie algebra of G. Let B be the flag
variety of G. For v ∈ g(k), the Springer fiber of v is the closed subvariety
Bv ⊂ B consisting of all Borel subgroups of G whose Lie algebras contain
v. Classical Springer theory [?] gives an action of the Weyl group W of
G on the cohomology of Bv. One the other hand, the centralizer Gv of v
in G acts on Bv, hence on the cohomology of Bv via its component group
π0(Gv). These two symmetries commute with each other:

W y H∗(Bv) x π0(Gv).
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However, there is no obvious way to recover the π0(Gv)-action on H∗(Bv)
solely from the W -action.

Now we consider the affine situation. Let F = k(($)) be the field of
formal Laurent series in one variable and OF = k[[$]]. Let LG be the
loop group of G. This is an ind-scheme over k whose k-points are G(F ).
Let FlG = LG/I be the affine flag variety of G, where I is a fixed Iwahori
subgroup of LG. This is an infinite union of projective varieties. For any
regular semisimple element γ ∈ g(F ), Kazhdan and Lusztig [?] defined a
closed sub-ind-scheme Sprγ ⊂ FlG, called the affine Springer fiber of γ.
The set Sprγ(k) consists of those Iwahori subgroups whose Lie algebras
contain γ. The ind-scheme Sprγ is a possibly infinite union of projective
varieties of dimension expressible in terms of γ (see [?]).

In [?], Lusztig defined an action of the affine Weyl group Waff on the
homology of affine Springer fibers Sprγ . We will review this construction

in §2, and extend it to an action of the extended affine Weyl group W̃ =
X∗(T ) o W on both H∗(Sprγ) and H∗c(Sprγ). On the other hand, the
centralizer group LGγ (the centralizer of γ in the loop group LG) acts
on Sprγ , hence induces an action of its component group π0(LGγ) on the
homology of Sprγ . These two symmetries on H∗(Sprγ) again commute
with each other:

W̃ y H∗(Sprγ) x π0(LGγ).

Similar statement holds for H∗c(Sprγ).

A priori, the definition of the W̃ -action and the π0(LGγ)-action has
nothing to do with each other. However, as opposed to the situation
in classical Springer theory, we expect that the π0(LGγ)-action be com-

pletely determined by the “central character” of the W̃ -action. The center

of the group algebra Q`[W̃ ] is Q`[X∗(T )]W (superscript W means taking

W -invariants). If one views Q`[W̃ ] as the specialization of the affine Hecke
algebra at q = 1, then Q`[X∗(T )]W is the specialization of the spherical
Hecke algebra at q = 1. For this reason, we shall call Q`[X∗(T )]W the

spherical part of the group algebra Q`[W̃ ]. We shall see that there is a
canonical algebra homomorphism (see §2.7)

σγ : Q`[X∗(T )]W → Q`[π0(LGγ)]. (1)

Conjecture 1 (Goresky, Kottwitz and MacPherson [?]; indepen-
dently Bezrukavnikov and Varshavsky [?]). For any regular semisim-

ple element γ ∈ g(F ) and any i ∈ Z≥0, the spherical part of the W̃ -action
on Hi(Sprγ) and Hi

c(Sprγ)

Q`[X∗(T )]W → End(Hi(Sprγ)), Q`[X∗(T )]W → End(Hi
c(Sprγ))

factors through the action of π0(LGγ) via the homomorphism (1).
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In fact, the π0(LGγ)-action factors through a further quotient π0(Pa(γ)),
where Pa(γ) is a certain quotient of LGγ (see §2.6).

The difficulty in proving this conjecture lies in the fact that we do not
know an effective way of computing the action of Q`[X∗(T )]W : Lusztig’s
construction of the Waff-action only tells us how each simple reflection
acts, but elements in Q`[X∗(T )]W are in general sums of complicated
words in simple reflections.

The main purpose of this paper is to prove

Theorem 1 (Local Main Theorem). Conjecture 1 holds for Hi
c(Sprγ).

For the homology part of the conjecture, we prove a weaker statement.

Theorem 2. Under the conditions of Conjecture 1, there exists a fil-

tration Filp on Hi(Sprγ), stable under both W̃ and π0(LGγ), such that

the action of Q`[X∗(T )]W on GrpFilHi(Sprγ) factors through the action of
π0(LGγ) via the homomorphism (1).

Moreover, one may choose Filp such that GrpFilHi(Sprγ) = 0 unless
0 ≤ p ≤ r, where r is the split rank of the F -torus G(F )γ.

The above conjecture and results have a parahoric version. For each
parahoric subgroup P ⊂ LG we have the affine partial flag variety FlP =

LG/P and affine partial Springer fibers SprP,γ . The subalgebra 1PQ`[W̃ ]1P
∼=

Q`[X∗(T )]WP acts on H∗(SprP,γ) and H∗c(SprP,γ) (see §2.5).

Proposition 1. Let P ⊂ LG be any parahoric subgroup. Let γ ∈ g(F ) be
a regular semisimple element. If Conjecture 1 holds for Hi(Sprγ) (resp.

Hi
c(Sprγ)), then the action of Q`[X∗(T )]W ⊂ 1PQ`[W̃ ]1P on Hi(SprP,γ)

(resp. Hi
c(SprP,γ)) factors through the action of π0(LGγ) via the homo-

morphism (1).

In fact, the natural projection Sprγ → SprP,γ induces a surjection
H∗(Sprγ) � H∗(SprP,γ) and an injection H∗c(SprP,γ) ↪→ H∗c(Sprγ) , which

are easily seen to be equivariant under both Q`[X∗(T )]W and π0(LGγ) by
construction in §2.5.

Surprisingly, Theorem 1 is deduced from its global counterpart, which
we state next. Fix a connected smooth projective algebraic curve X over
k. In [?, Definition 2.1.1] we have defined the parabolic Hitchin moduli
stack Mpar classifying quadruples (x, E , ϕ, EBx ) where x ∈ X, E is a G-
bundle over X, ϕ is a section of the twisted adjoint bundle Ad(E)⊗OX(D)
(D is a fixed divisor on X with large degree) and EBx is a Borel reduction
of E at x preserved by the Higgs field ϕ. We have the parabolic Hitchin
fibration

fpar :Mpar → AHit ×X
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recording the characteristic polynomial of ϕ and the point x. One of the
main results of [?] is that there exists a natural action of the extended

affine Weyl group W̃ on the derived direct image complex Rfpar
! Q`|Aani×X ,

where Aani ⊂ AHit is the anisotropic locus (see [?, §4.10.5]). In this pa-
per, we will extend this construction to a larger locus A♥ × X, where
A♥ ⊂ AHit is the hyperbolic locus (see [?, §4.5]), containing Aani as an
open subset.

On the other hand, Ngô defined a Picard stack P over A♥ which acts
onMpar fiber-wise overA♥×X. This action induces an action of the sheaf
of groups π0(P/A♥) (which interpolates the component groups π0(Pa) for
a ∈ A♥) on Rfpar

! Q`. The study of this action in the case of the usual
Hitchin moduli space MHit leads to the geometric theory of endoscopy,
which plays a crucial role in Ngô’s proof of the Fundamental Lemma [?].
The idea of relating the π0(P/A♥)-action and the Q`[X∗(T )]W -action on
Rfpar

! Q` was also suggested to the author by Ngô.

Theorem 3 (Global Main Theorem). For any i ∈ Z≥0, the spherical

part of the W̃ -action on the cohomology sheaves of the parabolic Hitchin
complex Rfpar

! Q`:

Q`[X∗(T )]W → End(Rifpar
! Q`|(A♥×X)′)

factors through the action of the sheaf π0(P/A♥) via a natural homomor-
phism of sheaves of algebras on A♥:

σ : Q`[X∗(T )]W ⊗Q`,A♥ → Q`[π0(P/A♥)]. (2)

Here, (A♥ × X)′ ⊂ A♥ × X is any open subset on which a certain
codimension estimate holds (see [?, Proposition 2.6.3, Remark 2.6.4]). If
char(k)=0, we may take (A♥ ×X)′ = A♥ ×X (see [?, p.4]).

A consequence of Theorem 3 is

Corollary 1. For any geometric point (a, x) ∈ (A♥ ×X)′, the action of
Q`[X∗(T )]W on Hi

c(M
par
a,x) factors through the action of π0(Pa) via the

stalk of the homomorphism (2) at a.

We also have a version of Theorem 3 for parahoric Hitchin fibrations.
Let us spell out the case of the usual Hitchin fibration fHit :MHit → AHit.
In [?, Theorem 6.6.1], we constructed an action of Q`[X∗(T )]W on the
restriction of complex RfHit

! Q` �Q`,X to Aani ×X. We will also extend
this action to an action of Q`[X∗(T )]W on the same complex over A♥×X.

Theorem 4. The action of Q`[X∗(T )]W on the sheaf RifHit
! Q` � Q`,X

factors through the action of the sheaf of algebras Q`[π0(P/A♥)] via the
homomorphism (2).
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Note that this theorem is valid on the whole of A♥×X, rather than just
(A♥ × X)′ as in Theorem 3. In the preprint [?], Theorem 3 and 4 were
proved over (Aani ×X)′.

1.1. Application

In recent work of Bezrukavnikov, Kazhdan and Varshavsky [?], they con-
struct new examples of stable distributions on p-adic groups using an
affine analog of the relation between character sheaves and the center of
the Hecke algebra. When the local field is a function field, a key step in
checking the stability of their distributions is Theorem 1 and Theorem 2,
see [?, Theorem 5.4].

1.2. Idea of the proof

The main idea of proving Theorem 1 is to view OF as the completed local
ring of an algebraic curve at one point x, and try to deform the point x
along the curve X. For this, we also need to extend γ ∈ g(F ) to a g-valued
meromorphic function on X. This naturally leads to the consideration of
the (parabolic) Hitchin moduli stack, hence leading to Theorem 3.

To prove Theorem 3, we first prove Theorem 4. The Q`[X∗(T )]W -action
on RfHit

! Q` �Q`,X can be thought of as a family of Q`[X∗(T )]W -actions
on RfHit

! Q` indexed by x ∈ X. Homotopy invariance guarantees that the
effect of this action on RifHit

! Q` is independent of x. Then we only need
to check that the Q`[X∗(T )]W -action at a general point x ∈ X does factor
through π0(P/A♥), which is clear from the construction in [?].

We then deduce Theorem 3 from a variant of Theorem 4, i.e., Propo-
sition 4. We simultaneously deform the point of Borel reduction (which is
contained in the moduli problem of Mpar) and the point of Hecke mod-
ification (which gives the Q`[X∗(T )]W -action). This way we get a result
about the Q`[X∗(T )]W -action on Rfpar

! Q` �Q`,X analogous to Theorem

4, but this time our complex lives on A♥ × X2. Restricting to the di-
agonal A♥ ×∆(X), we get the desired factorization in Theorem 3. The
idea behind this argument is reminiscent of Gaitsgory’s construction of
the center of the affine Hecke algebra via nearby cycles (see [?]).

Finally, we deduce Theorem 1 from Theorem 3. We argue that for
every affine Springer fiber Sprγ , its compactly supported cohomology ap-
pears inside the compactly supported cohomology of a certain rigidified
parabolic Hitchin fiber, and this inclusion respects the various symme-
tries. This fact follows from a detailed analysis of Ngô’s product formula.

We remark that using a parabolic version of Ngô’s Support Theo-
rem (see [?]), one can deduce a weaker version of Theorem 3, namely the
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semisimplification of the Q`[X∗(T )]W -action factors through the π0(P/Aani)-
action on Rfpar

! Q`|Aani×X .
The proof described above shows that the global Springer theory de-

veloped in [?] can be useful in solving more classical problems about affine
Springer fibers.

1.3. Convention

Throughout the paper, k will be an algebraically closed field. The stacks
on which we talk about sheaves are of the form [X/A], where X is an
algebraic space, locally of finite type over k, and A is a linear algebraic
group over k which acts on X. All complexes of sheaves will be objects in
the derived category of Q`-complexes in the étale topology. See [?, §1.1]
for the case of schemes of finite type and [?] for the case of stacks. See
Appendix ?? for the convention for sheaves on algebraic spaces which are
locally of finite type over k. All sheaf-theoretic functors are under-
stood to be derived without putting R or L in the front. For a
morphism f : X → Y between stacks, we use DX/Y or Df to denote the

relative dualizing complex f !Q`,Y . The homology complex of f is defined
as

H∗(X/Y) := f!DX/Y .

In particular, if Y = Speck, we write H∗(X ) for H∗(X/Speck).

1.4. Notations for G

Let G be a reductive algebraic group over k. Fix a maximal torus T of G
and a Borel B containing T . Let g, b, t be the Lie algebras of G,B, T re-
spectively. Let (X∗(T ), Φ,X∗(T ), Φ∨) be the based root and coroot systems
determined by (G,B, T ). Let W be the Weyl group. Let c = g�G = t�W
be the adjoint quotient of g in the GIT sense.

We now make precise the assumption on char (k). Let h be one plus
the sum of coefficients of the highest root of G written in terms of simple
roots. We assume either char(k) = 0 or char(k) > 2h. We impose this
condition because we would like to make sure that the Kostant section
ε : c→ g exists, see [?, §1.2].

The extended affine Weyl group and the affine Weyl group are defined
as

W̃ := X∗(T ) oW ; Waff := ZΦ∨ oW

where ZΦ∨ ⊂ X∗(T ) is the coroot lattice. The affine Weyl group Waff is
a Coxeter group with the set of simple reflections ∆aff. There is an exact
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sequence

1→Waff → W̃ → Ω → 1 (3)

with Ω = X∗(T )/ZΦ∨ an abelian group (which is finite if G is semisimple).

2. Local Springer action

In this section, we will explain all the ingredients that go into the state-
ment of Conjecture 1.

2.1. Loop group

Let F = k(($)) and OF = k[[$]] ⊂ F . For a scheme X over F , we use LX
(the formal loop space of X) to denote the functor {k-algebras}→{Sets}:

(LX)(R) = X(R(($))).

Similarly, if X is defined over OF ,we define L+X (the formal arc space of
X ) to be the functor

(L+X )(R) = X (R[[$]]).

For notational brevity, we denote L(G⊗k F ) by LG. It is known that LG
is represented by an ind-scheme over k, called the loop group of G (see [?,
Discussion following Definition 1]). Similarly we denote L+(G⊗k OF ) by
L+G.

For each parahoric subgroup P ⊂ LG there is a smooth OF -model GP
of G⊗kF , the Bruhat-Tits group scheme, such that GP(OF ) = P. We may
form the functor L+GP, which is represented by a scheme. By abuse of
notation, we denote this group scheme (of infinite type over k) by P, and
call them parahoric subgroups of LG. For example, L+G is a parahoric
subgroup of LG corresponding to the parahoric subgroup G(OF ) of LG.
The standard Iwahori subgroup I ⊂ L+G is the preimage of B under the
evaluation map L+G → G. Standard parahoric subgroups P ⊃ I are in
bijection with proper subsets of ∆aff.

The Lie algebra Lie P of P is, by definition, the Lie algebra of GP,
hence a finite free OF -module. Let LP be maximal reductive quotient of
the special fiber of GP. This is a connected reductive group over k. The
affine partial flag variety of type P is the ind-scheme

FlP = LG/P.

Having fixed an Iwahori I, the exact sequence (3) admits a section

Ω → W̃ whose image ΩI is the stabilizer of the fundamental alcove cor-

responding to I in the reduced building of LG. The group ΩI ⊂ W̃ can
also be identified with N(I)/I where N(I) is the normalizer of I in LG.
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2.2. Affine Springer fibers

Let γ ∈ g(F ) be a regular semisimple element. The sub-ind-scheme

ŜprP,γ ⊂ LG is defined to have R-points

ŜprP,γ(R) = {g ∈ G(R(($)))|Ad(g−1)γ ∈ R⊗k LieP}.

The right P-action on LG preserves ŜprP,γ , hence we can define the
quotient

SprP,γ = ŜprP,γ/P ⊂ FlP.

As defined above SprP,γ is highly non-reduced. Its reduced structure
SprP,γ is a scheme locally of finite type, see [?]. We call SprP,γ the affine
Springer fiber of γ with type P. When P = I, we often omit I from
subscripts.

2.3. Lusztig’s construction of the Waff-action in [?]

Let lP be the Lie algebra of LP and l̃P be the Grothendieck simultaneous
resolution of lP. We have a Cartesian diagram

Sprγ
evγ //

νP

��

[̃lP/LP]

πP

��
SprP,γ

evP,γ // [lP/LP]

(4)

Apply proper base change to the diagram (4), we get

νP∗DSprγ = ev!
P,γπP∗D[̃lP/LP]

.

By classical Springer theory for the Lie algebra lP, there is a WP-action
on πP,∗D[̃lP/LP]

(to see this, we may identify D
[̃lP/LP]

with the constant

sheaf on [̃lP/LP]). Therefore νP∗DSprγ also carries a WP-action. Since νP
is proper, H∗(Sprγ) = RΓc(SprP,γ , νP∗DSprγ ) also carries a WP-action.

For P ⊂ Q, Lusztig then argues that the WQ-action on H∗(Sprγ)
restricts to the WP-action defined both as above. Therefore, these WP-
actions generate a Waff-action on H∗(Sprγ).

Replacing the dualizing complexes by the constant sheaves in the
above discussion, we obtain an action of Waff on H∗c(Sprγ).
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2.4. The ΩI-action

Viewing ΩI as the quotient N(I)/I, we get a natural action of ΩI on
Fl = FlI by right multiplication. We denote this action by ω 7→ Rω for
ω ∈ ΩI. This action preserves Sprγ (because Ad(g)I = Ad(gω)I for any
ω ∈ N(I)), hence ω ∈ ΩI acts on H∗(Sprγ) from the left:

R−1
ω,∗ : H∗(Sprγ)→ H∗(Sprγ).

Similarly, right multiplication by ω ∈ N(I) sends one standard para-
horic P to another standard parahoric ω−1Pω, and gives an isomorphism
FlP,γ

∼→ Flω−1Pω,γ . We have a commutative diagram

Sprγ
Rω //

νP

��

Sprγ

νω−1Pω

��
SprP,γ

Rω // Sprω−1Pω,γ

(5)

for any ω ∈ ΩI. This implies that R−1
ω,∗ intertwines the action of Wω−1Pω

and of WP on H∗(Sprγ), via the isomorphism Ad(ω) : Wω−1Pω → WP.
Similar remarks apply to H∗c(Sprγ). Summarizing, we get

Theorem 5. Lusztig’s construction in §2.3 and the ΩI-action in §2.4 to-

gether generate a W̃ action on both H∗(Sprγ) and H∗c(Sprγ).

2.5. The parahoric version

For each standard parahoric P, let WP ⊂Waff be the finite Weyl group of
the Levi quotient LP. The Cartesian diagram (4) and proper base change
implies that

H∗(SprP,γ) = H∗(Sprγ)WP , H∗c(SprP,γ) = H∗c(Sprγ)WP .

In fact, the constant sheaf on tP is the WP-invariants of the Springer
sheaf πP,∗Q`,̃lP

. Let

1P =
1

#WP

∑
w∈WP

w ∈ Q`[W̃ ]

be an idempotent. Then the subalgebra 1PQ`[W̃ ]1P acts on H∗(SprP,γ)
and H∗c(SprP,γ).
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2.6. Local Picard

We follow [?, §3.3] in this subsection. For γ ∈ g(OF ), let a(γ) be its image
in c(OF ). Let GF,γ be the centralizer group scheme of γ in G ⊗k F . In
particular, GF,γ is a torus over F . We denote the loop space of GF,γ by
LGγ , which is a subgroup of LG. From the definition of Sprγ , we see that
LGγ acts on SprP,γ via its left translation action on FlP.

The F -torus GF,γ admits a smooth model Ja(γ) over SpecOF which
canonically only depends on a(γ). This is the regular centralizer group
scheme defined in [?, §3]. Let Pa(γ) be the affine Grassmannian of the
SpecOF -group scheme Ja(γ) (see [?, §3.8]):

Pa(γ) := LJa(γ)/L
+Ja(γ) = LGγ/L

+Ja(γ).

For a k-algebra R, Pa(γ)(R) is the set of isomorphism classes of Ja(γ)-
torsors over SpecR[[$]] together with a trivialization over SpecR(($)).
Since Ja(γ) is commutative, Pa(γ) has a group ind-scheme structure. The
action of LGγ on SprP,γ factors through Pa(γ).

We have the finite type Néron model J [a(γ) of Ja(γ) (see [?, §3.8]). We

define P[a(γ) similarly using J [a(γ) instead of Ja(γ). By [?, Lemme 3.8.1], the

reduced structure of P[a(γ) is a free abelian group Λa(γ). Let Pa(γ) ↪→ Pa(γ)

be the preimage of Λa(γ) ↪→ P[a(γ), then we have an exact sequence

1→ Ra(γ) → Pa(γ) → Λa(γ) → 1.

where the kernel Ra(γ) is an affine commutative group scheme of finite
type.

2.7. Definition of the map σγ in (1)

Consider the following diagram

SpecÕF

&&LL
LLL

LLL
LLL

// SpecOF,a //

��

t

��
SpecOF

a(γ) // c

. (6)

where the square on the right is Cartesian by definition. The morphism
SpecOF,a → SpecOF is called the local cameral cover. The ring ÕF is

the normalization of OF,a. Choose a component SpecÕ!
F ⊂ SpecÕF . Let

W ! ⊂ W be the stabilizer of SpecÕ!
F . According to [?, Prop. 3.9.2] (or
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rather its dual statement), the choice of SpecÕ!
F allows us to define a

surjection

X∗(T ) � X∗(T )W ! = π0(LGγ) � π0(Pa(γ)). (7)

If we change the choice of Õ!
F , the above map will differ by an action of W

on X∗(T ). In particular, taking the group algebras in (7) and restricting
to Q`[X∗(T )]W , the map

σγ : Q`[X∗(T )]W → Q`[LGγ ]→ Q`[π0(Pa(γ))]

is independent of any choice. The first of map above is the map in (1).

Proposition 2 (Local constancy). Fix a regular semisimple γ ∈ g(F )
with a(γ) ∈ c(OF ). There is an integer N > 0 such that for any γ′ ∈ g(F )
with a(γ′) ∈ c(OF ) and a(γ′) ≡ a(γ) mod $N , there are isomorphisms

ιP : Pγ
∼→ Pγ′ ;

ι : Sprγ
∼→ Sprγ′

such that ι is equivariant under the Pγ and Pγ′ actions via ιP . Moreover,
the isomorphism ι can be chosen so that both ι∗ : H∗c(Sprγ) → H∗c(Sprγ′)

and ι∗ : H∗(Sprγ)
∼→ H∗(Sprγ′) are W̃ -equivariant.

Proof. We first deal with the case a(γ) = a(γ′). Since the field F has
dimension ≤ 1, H1(F,A) = 0 for any torus A over F (see [?, Ch. X, end
of §7]). In particular, if γ and γ′ have the same image in crs(F ), they
are conjugate by an element g ∈ LG, and the required isomorphisms are
given by Ad(g).

By the above discussion, we may assume γ is the Kostant section of
a(γ) (see [?, §1.2]); similarly we may assume γ′ is the constant section of
a(γ′).

We need a variant of [?, Lemme 3.5.3] with g(OF ) = LieG replaced by
LieI. For this, one only needs to use [?, Lemme 2.4.3] in place of [?, Lemme
2.1.1] in the argument. This variant of [?, Lemme 3.5.3] shows that Sprγ
depends only on the centralizer OF -group scheme GOF ,γ = Ja(γ) (recall
γ ∈ g(OF ) comes from the Kostant section).

By [?, Lemme 3.5.2], there is an integer N > 0 such that the local
cameral covers OF,a(γ) and OF,a(γ′) are W -equivariantly isomorphic as
OF -modules. By [?, Lemme 3.5.4], there exists g ∈ G(OF ) such that
Ad(g)GOF ,γ = GOF ,γ′ as subgroups of G ⊗k OF . The isomorphism ιP
is induced from Ad(g). The left translation g : Fl → Fl then induces an

isomorphism ι : Sprγ
∼→ Sprγ′ intertwining the actions of Pa(γ) and Pa(γ′).

This proves the first statement of the Proposition.
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To prove that ι∗ and ι∗ are W̃ -equivariant, one only needs to notice
that under the left translation by g ∈ G(OF ), the diagrams (4) and (5) for
γ map isomorphically to the corresponding diagrams for γ′, at least after
replacing the Spr’s by their reduced structures Spr. For the diagram (4),
we remark that SprP,γ maps isomorphically to SprP,γ′ under g, since they
are images of Sprγ and Sprγ′ under the projection Fl→ FlP. Since these

diagrams determine the W̃ -action by construction, the W̃ -equivariance
follows.

3. Global Springer action: extension to the hyperbolic locus

In this section, we extend the W̃ -action on fpar
! Q`|Aani×X constructed in

[?] from the anisotropic locus Aani to the hyperbolic locus A♥.

3.1. The Hitchin moduli stack

We first recall the definition of the Hitchin moduli stack. Fix a divisor
D = 2D′ on X with deg(D) ≥ 2gX . The Hitchin moduli stack MHit =
MHit

X,G,D assigns to a k-scheme S the groupoid of Hitchin pairs (E , ϕ)
where

– E is a (right) G-torsor over X × S;
– ϕ is a section of the vector bundle Ad(E) ⊗ OX(D), where Ad(E) =

E
G
× g is the adjoint bundle over X × S.

It is well-known that MHit is an algebraic stack.

Let cD be the affine space bundle Tot×(D)
Gm
× c where Tot×(D) is the

Gm-torsor associated to the line bundle OX(D). Let AHit = H0(X, cD)
be the Hitchin base. We have the Hitchin fibration

fHit :MHit → AHit

which assigns (E , ϕ) the “invariant polynomials” of ϕ. Recall from [?,
§4.5] that there is an open subset A♥ ⊂ AHit consisting of those sections
a : X → cD which generically lies in the regular semisimple locus crsD . We
call A♥ the hyperbolic locus of AHit.

3.2. Rigidified Hitchin moduli space

Fix a point z ∈ X(k)\D. Let Az ⊂ AHit be the open subset consisting of
sections a : X → cD such that a(z) ∈ crs (since z /∈ D,O(D) is canonically
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trivialized at z and a(z) is a well-defined element in c). Clearly Az ⊂ A♥.
Evaluating at z gives a morphism evz : Az → crs. Define the W -torsor
B → Az by the Cartesian diagram

B //

��

trs

��
Az evz // crs

Let M̂Hit be the functor which assigns to a k-scheme S the groupoid
of tuples (E , ϕ, tz, ιz) where

– (E , ϕ) ∈MHit(S);
– Let a : X × S → cD be the image of (E , ϕ) under fHit, and a(z) :
{z} × S → c. We require that the image of a(z) lies in crs. Moreover,
tz : S → trs is a lifting of a(z).

– ιz : (E , ϕ)|{z}×S
∼→ (G× S, tz) is an isomorphism of Hitchin pairs over

{z} × S.

Forgetting tz and ιz we get a morphism M̂Hit →MHit|Az , which can
be factored as

M̂Hit → B ×AHitMHit = B ×Az (MHit|Az)→MHit|Az . (8)

The space in the middle B ×AHit MHit classifies triples (E , ϕ, tz) as de-

scribed in the definition of M̂Hit. Therefore the first arrow in (8) is a

T -torsor: T acts on M̂Hit by changing the trivialization ιz, and the cen-
tralizer of tz in G is exactly T . The last arrow in (8) is a W -torsor because

B → Az is. It is easy to see that M̂Hit →MHit|Az is a NG(T )-torsor.

Lemma 1. The functor M̂Hit is represented by an algebraic space which
is locally of finite type and smooth over k.

Proof. Since the forget morphism M̂Hit →MHit|Az is a NG(T )-torsor, it
is in particular of finite type. Since MHit is an algebraic stack which is

locally of finite type and smooth over k, so is M̂Hit.
It remains to show that the automorphism group of any geometric

point (E , ϕ, tz, ιz) ∈ M̂Hit(K) is trivial (K ⊃ k being any algebraically
closed field). In fact, in [?, Proposition 4.11.2] it is shown that

Aut(E , ϕ) ⊂ H0(XK , J
[
a).

where J [a is the (finite type ) Néron model of the regular centralizer group
scheme Ja over XK . Let qa : Xa → XK be the cameral cover of XK , then
by [?, Corollaire 4.8.1], we have

H0(XK , J
[
a) = H0(Xa, T )W ⊂ (q−1

a (z)× T )W = J [a,z = Aut((E , ϕ)z)
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the last equality holds because a(z) ∈ crs(K). Therefore there is no non-
trivial automorphism of (E , ϕ) which preserves ιz. This shows that the
automorphism group of the triple (E , ϕ, tz, ιz) is trivial.

We still have the Hitchin fibration (which is no longer proper even
over the anisotropic locus)

f̂Hit : M̂Hit → B.

3.3. Rigidified parahoric Hitchin moduli space

For each standard parahoric subgroup P ⊂ LG, we have defined in [?,
Definition 4.3.3] an algebraic stack MP classifying Hitchin pairs (E , ϕ)
together with a P-level structure EPx of E at a varying point x ∈ X
such that ϕ is compatible with EPx . For the precise meaning of “P-level
structure” and “compatible” we refer the readers to [?, §4.3].

A particular case is when P = I, then Mpar := MI is called the
parabolic Hitchin moduli stack, which classifies quadruples (E , ϕ, x, EBx )
where (E , ϕ) ∈ MHit, x ∈ X and EBx is a B-reduction of E at x such
that ϕ(x) ∈ Ad(EBx )⊗O(D)x. Another special case is when P = G, then
MG =MHit ×X. For each P, we have the parahoric Hitchin fibration

fP :MP → AHit ×X.

We now introduce the rigidified version M̂P of MP similar to M̂Hit.

Let M̂P be the stack classifying data (E , ϕ, x, EPx , tz, ιz) where

– (E , ϕ, x, EPx ) ∈MP;
– x is disjoint from z and a(z) ∈ crs (a = fHit(E , ϕ) ∈ AHit), tz ∈ trs

lifts a(z);

– ιz is an isomorphism (E , ϕ)|z
∼→ (G, tz) of Hitchin pairs at {z} (cf. the

definition of M̂Hit).

The forgetful morphism

M̂P → B ×Az (MP|Az)→MP|Az

is again an NG(T )-torsor. Parallel to Lemma 1, M̂P is represented by an
algebraic space which is locally of finite type and smooth over k. We also
have morphisms

f̂P : M̂P → B ×Xz (9)

where Xz = X\{z}. When P = I, we usually write the morphism (9) as

f̂par : M̂par → B ×Xz.

For two parahorics Q ⊂ P, we have a forgetful morphism over B ×Xz:

F̂or
P

Q : M̂Q → M̂P
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3.4. Construction of the W̃ -action

In this subsection we construct a W̃ -action on the direct image complex

f̂par
! Q`. Since T acts on M̂par and f̂par is T -invariant, we can view f̂par

! Q`

as an object in ind Db
T (B ×Xz), where Db

T (B ×Xz) is the T -equivariant
derived category of Q`-complexes on B×Xz (with trivial T -action). The

construction of the W̃ -action is completely parallel to the case of fpar

treated in [?, §5.1] and the affine Springer fiber case in §2.3.
For each standard parahoric P, we have a Cartesian diagram

M̂par
evPI //

F̂or
P

I��

[̃lP/LP]D

��
M̂P

evP // [lP/LP]D

(10)

Here LP is a group scheme over X which is an inner form of LP. For
precise definition, see [?, Equation (4.1)]. Similarly, we have the twisted

versions lP and l̃P of the Lie algebra lP and its Grothendieck resolution

l̃P. So [̃lP/LP] and [lP/LP] are stacks over X with natural Gm-actions
by dilation. Adding a subscript D means applying the twisted product

(−)
Gm
× X Tot×(D) to these stacks.

With this diagram, we can define a WP-action on F̂or
P

I,∗Q` ∈ Db(M̂P)
similarly as in §2.3 or [?, Construction 5.1.1]. Therefore we get a WP-

action on the ind-object f̂par
! Q` = f̂P,!F̂or

P

I,∗Q`. As in the proof of [?,
Theorem 5.1.2], these actions for various P are compatible, and they

together give an action of Waff on f̂par
! Q`.

On the other hand, ΩI still acts on M̂par on the right, lifting its action
onMpar in [?, Corollary 4.3.4]. This gives anΩI-action on f̂par

! Q`. Putting

together with the Waff-action, we get a W̃ -action on f̂par
! Q`.

The diagram (10) implies

f̂P,!Q` = (f̂par
! Q`)

WP .

Therefore we get an action of 1PQ`[W̃ ]1P on f̂P,!Q`.

3.5. Hecke correspondences

In [?, §3], we also have a construction of the W̃ -action on fpar
! Q` via

Hecke correspondences. Here we extend the construction to the case of
f̂par

! Q`.
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Recall we have a Hecke correspondence Heckepar, which is a self-
correspondence ofMpar over AHit×X. Over the locus (A♥×X)rs, there

is a W̃ -action on Mpar|(A♥×X)rs . For each w̃ ∈ W̃ , the closure Hw̃ of the
graph of the w̃-action is a closed subspace of Heckepar.

Let
−→
h be the second projection from Heckepar or Hw̃ to Mpar. Let

Ĥeckepar = Heckepar ×−→
h ,Mpar M̂par;

Ĥw̃ = Hw̃ ×−→h ,Mpar M̂par.

Then Ĥeckepar and Ĥw̃ can be viewed as self-correspondences of M̂par

over B×Xz. In fact, Ĥeckepar parametrizes two Hitchin pairs with Borel
reductions at a point x 6= z, an isomorphism of these Hitchin pairs on
X\{x} and a rigidification ιz of the second Hitchin pair at z (which then
automatically gives a rigidification of the first Hitchin pair at z).

3.6. The subset (B ×Xz)′

On the scheme A♥ × X, we have an upper semi-continuous function δ
given by the local δ-invariants δ(a, x), see [?, §2.6]. Let (A♥×X)δ be the
level set of this function. By [?, Proposition 2.6.3], for each δ0 ≥ 0, as
long as deg(D) is large enough, we have

codimA♥×X(A♥ ×X)δ ≥ δ + 1, for all δ ≤ δ0.

Fix such a D (depending on δ0) in the definition of MHit. Let (A♥ ×
X)′ =

⊔
δ≤δ0(A♥ × X)δ, which is an open subscheme of A♥ × X. Let

(B ×Xz)′ = (A♥ ×X)′ ×(A♥×X) (B ×Xz).
We will need the notion of Property (G-2) of a correspondence, as

defined in [?, Definition A.6.1] and recalled in Appendix ??. The following
fact is an easy consequence of [?, Lemma 3.1.4]

Lemma 2. Any algebraic subspace Ĥ′ ⊂ Ĥeckepar|(B×Xz)′ which is of

finite type over M̂par via both projections satisfies Property (G-2) with

respect to (B ×Xz)rs, as a self-correspondence of M̂par|(B×Xz)′.

Using the formalism of cohomological correspondences in Appendix
??, the fundamental class of Ĥw̃ gives a map

[Ĥw̃]# : f̂par
! Q` → f̂par

! Q`.

in the category ind Db
T (B ×Xz) (with T acting trivially on B ×Xz).

Completely parallel to [?, Theorem 3.3.3] and [?, Proposition 5.2.1],
we have
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Proposition 3. The assignment w̃ 7→ [Ĥw̃]# for w̃ ∈ W̃ gives a left

action of W̃ on the restriction f̂par
! Q`|(B×Xz)′. Moreover, this action co-

incides with the action constructed in §3.4.

3.7. Global Picard stack

We recall some facts from [?, §4.8]. For a point a ∈ A♥(k), we have a
smooth commutative group scheme Ja over X, called the regular central-
izer group scheme. The global Picard stack Pa is defined as the mod-
uli stack of Ja-torsors on X. It acts on both MHit

a and Mpar
a,x (for any

x ∈ X(k)).
Because we work with the rigidified moduli spaces, it is more rele-

vant to consider the group subscheme Jza ⊂ Ja which fits into the exact
sequence

1→ Jza → Ja → iz,∗Ja,z → 1 (11)

Here Ja,z is the fiber of Ja at z and iz : {z} → X is the inclusion. Let P̂a be

the Picard stack of Jza -torsors over X. One may also view P̂a as classifying
a Ja-torsor over X together with a trivialization at z. Similar argument
as in Lemma 1 shows that P̂a is in fact a group scheme, locally of finite
type and smooth over k. The exact sequence (11) gives a homomorphism

of group schemes Ja,z → P̂a, and an isomorphism of Picard stacks

Pa ∼= [P̂a/Ja,z].

As a varies in Az, {P̂a} form a group scheme P̂Az over Az. Let

P̂ = B ×Az P̂Az .

For b = (a, tz) ∈ B, the choice of tz gives an isomorphism Ja,z
∼→ T .

Therefore we have an isomorphism of Picard stacks over B:

B ×A P ∼= [P̂/T ]

The group scheme P̂ acts on both M̂Hit and its parahoric variants M̂P

over B.
Let J [a be the finite-type Néron model of Ja over X (see [?, §4.8]), then

there is an exact sequence

1→ Jza → J [a → Ja,z ×
∏

x∈Sing(a)

Ra,x → 1.

Here Ra,x is an affine group scheme of finite type over Speck = Speck(x),

and Sing(a) ⊂ X is the locus where a(x) /∈ crsD . Let P[a be the Picard
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stack of J [a-torsors on X, and let P [a be its coarse moduli space. From the
above sequence we deduce an exact sequence

1→ H0(X, J [a)→ Ja,z ×
∏

x∈Sing(a)

Ra,x → P̂a → P [a → 1. (12)

3.8. Definition of the map σ in (2)

Recall from [?, Definition 2.2.2] we have the universal cameral cover de-
fined by the Cartesian diagram

ÃHit ev //

q

��

tD

qt

��
AHit ×X ev // cD

For a ∈ AHit(k), the preimage Xa := q−1({a} ×X) is the cameral curve

of a. Let Ãrs ⊂ ÃHit (resp. (A♥ ×X)rs ⊂ AHit ×X) be the preimage of

trsD (resp. crsD ). Then qrs : Ãrs → (A♥ ×X)rs is a W -torsor.
Recall from [?, Second line of the proof of Proposition 3.2.1] that for

each λ ∈ X∗(T ), there is a canonical morphism sλ : Ãrs → P (in [?] this

map was defined over a larger open subset Ã0 but we do not need this
fact). Putting the various {sλ}λ∈X∗(T ) together we get a morphism

s : X∗(T )× Ãrs → P. (13)

This gives a push-forward map on homology complexes

s∗ : Q`[X∗(T )]⊗H∗(Ãrs/A♥)→ H∗(P/A♥)

which is W -invariant (W acts diagonally on the two factors on the LHS
and acts trivially on the RHS). Therefore, it factors through the W -

coinvariants of Q`[X∗(T )] ⊗ H∗(Ãrs/A). In particular, if we restrict to
Q`[X∗(T )]W , the map s∗ factors through a map

s′∗ : Q`[X∗(T )]W ⊗H∗(Ãrs/A♥)W → H∗(P/A♥) (14)

Since qrs is a W -torsor, we have H∗(Ãrs/A♥)W = H∗((A♥ ×X)rs/A♥).
Since (A♥ ×X)rs → A♥ has connected fibers, we get

H0(Ãrs/A♥)W = H0((A♥ ×X)rs/A♥) = Q`,A♥ . (15)

On the other hand,

H0(P/A♥) = Q`[π0(P/A♥)]. (16)

Therefore, the degree zero part of (14) gives the desired map σ in (2).
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3.9. Rigidified version of the map s

In [?], the map s in (13) was used to describe the action of X∗(T ) on the
regular semisimple locus Mpar,rs explicitly. We shall in this subsection
define a rigidified version of the map s and use it to describe the action

of X∗(T ) on the regular semisimple locus of M̂par. This construction will
be used in the proof of Theorem 4 in §4.1.

When we work with the rigidified versions of Hitchin moduli spaces,
we may similarly define a rigidified version of s

ŝ : X∗(T )× Ãz,rs s−→ GrJ |Xz → P̂,

The last map is defined as follows: a point in GrJ over x ∈ Xz is a J-
torsor over X with a trivialization over X − {x}; since z ∈ X − {x}, this
trivialization restricts to a trivialization at z, and hence defines a point in
P̂. Analogous to the map σ in (2), we obtain from this a homomorphism

σB : Q`[X∗(T )]W → Q`[π0(P̂/B)]. (17)

Since P̂ → P ×A♥ B is a T -torsor, π0(P̂/B) is the pullback of π0(P/A♥),
and the map σB is simply the pullback of σ from A♥ to B.

When (b, y) ∈ B × Xz is such that its image (a, y) ∈ (Az × Xz)rs

(a ∈ Az is the image of b), we have an action of X∗(T ) on M̂par
b,y , see

[?, Proof of Proposition 3.2.1, especially equation (3.4)]. On the level of

points, for m̂ ∈ M̂par
b,y with image ã ∈ Ãz,rs, the action of λ ∈ X∗(T ) on

it is given by
λ(m̂) = ŝ(λ, ã) · m̂ (18)

where the right side means the action of P̂b on M̂par
b,y . By the construction

of Ĥλ (λ ∈ X∗(T )) in §3.5, Ĥλ restricted to (Az ×Xz)rs is given by the

graph of the λ-action given above. Therefore the action of X∗(T ) ⊂ W̃ on

H∗c(M̂
par
b,y ), as part of the action constructed in Proposition 3, is induced

from the geometric action of X∗(T ) on M̂par
b,y by formula (18).

4. Proof of the global main theorem

4.1. Proof of Theorem 4

We first set up some notation. Fix S ⊂ T to be any algebraic subgroup.

Then T , hence S acts on M̂Hit. The complex f̂Hit
! Q` (as an ind-object of

Db(B)) carries a canonical S-equivariant structure, and can be viewed as
an ind-object in the S-equivariant derived category Db

S(B) = Db([B/S]),
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where S acts trivially on B. Let pS : [B/S]→ B be the projection. Then we
have the derived functor pS,∗ : Db

S(B) → D+(B) of taking S-equivariant
cohomology. We briefly recall the definition of pS,∗. An object K ∈ Db

S(B)
is, by definition, a Cartesian complex of sheaves (Kn)n≥0 on the simplicial
scheme (Sn × B)n ≥ 0. Using the natural projection (pn)n≥0 from (Sn ×
B)n≥0 to the constant simplicial scheme (B)n≥0, we obtain a simplicial
object (pn,∗Kn)n≥0 in Db(B). We then define pS,∗K ∈ D+(B) as the total
complex associated with the simplicial object (pn,∗Kn)n≥0. For details,
see [?] and [?]. The functor pS,∗ naturally extends to the ind-completions
ind Db

S(B)→ ind D+(B). Fix i and S, we define

K := RipS,∗f̂
Hit
! Q`.

For each geometric point b ∈ B, the stalk of K at b is

Kb = Hi
c([M̂Hit

b /S]).

Let p : B×Xz → B be the projection. We would like to show that the
action of Q`[X∗(T )]W on p∗K = K �Q`,Xz factors through the action of

Q`[π0(P̂/B)] via the homomorphism (17). This is the same as saying that
the homomorphism

ker(Q`[X∗(T )]W
σB−→ Q`[π0(P̂/B)])→ R0p∗End(p∗K)

is zero. Since both the source and the target are sheaves, to show it is
zero it suffices to show it stalkwise, i.e., we have to show the following
result.

Lemma 3. For any geometric point (b, x) ∈ B×Xz, the action of Q`[X∗(T )]W

on the stalk (p∗K)b,x ∼= Hi
c([M̂Hit

b /S]) is independent of x ∈ Xz, and it

factors through the action of π0(P̂b) ∼= π0(Pa) (where a is the image of b
in AHit).

Proof. By adjunction we have

p∗End(p∗K) ∼= Hom(K, p∗p
∗K) = Hom(K,H∗(Xz)⊗K).

Taking H0, using the fact that H0(Xz) = Q`, we conclude that

R0p∗End(p∗K) ∼= H0End(K).

The above isomorphism can be explicitly given as the restriction to B×{y}
for any y ∈ Xz:

R0p∗End(p∗K)→ R0p∗iy,∗End(i∗yp
∗K) = H0End(K)

where iy : B × {y} ↪→ B ×Xz is the inclusion.
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Therefore, for any given geometric point (b, x) ∈ B × Xz, in order
to show that the Q`[X∗(T )]W -action on (p∗K)b,x = Kb factors through

the π0(P̂b)-action on Kb, it suffices to show that the Q`[X∗(T )]W -action

on (p∗K)b,y = Kb factors through the π0(P̂b)-action on Kb, for some

y ∈ Xz. In particular we may choose y such that (a, y) ∈ Ãrs. We identify

Kb = Hi
c([M̂Hit

b /S]) as the W -invariants of Hi
c([M̂

par
b,y /S]). By construc-

tion, the action of Q`[X∗(T )]W on Kb is the restriction of its action on

Hi
c([M̂

par
b,y /S]). Therefore it suffices to show that the Q`[X∗(T )]W -action

on Hi
c([M̂

par
b,y /S]) factors through π0(P̂b).

For λ ∈ X∗(T ), let |λ| be the W -orbit of λ. Let Av(λ) :=
∑

λ′∈|λ| λ
′ ∈

Q`[X∗(T )]W . Since (a, y) ∈ Ãrs, the group X∗(T ) acts on M̂par
b,y by the for-

mula (18), from which we deduce that the action ofAv(λ) on Hi
c([M̂

par
b,y /S])

is the same as the action of σB(Av(λ)) ∈ Q`[π0(P̂b)] on Hi
c([M̂

par
b,y /S]).

This shows that the Q`[X∗(T )]W -action on (p∗K)b,x = Kb factors through

the π0(P̂b) ∼= π0(Pa)-action on Kb.

For the original statement of Theorem 4, we take S = T . In this case,
we have

Kb = (Ri
T f̂

Hit
! Q`)b = Hi

c(MHit
a ).

The above discussion shows that the action of Q`[X∗(T )]W on (p∗K)b,x ∼=
Hi
c(MHit

a ) factors through π0(P̂b) = π0(Pa) for any x ∈ Xz, therefore
the action of Q`[X∗(T )]W on the stalk (RifHit

! Q` �Q`,X)a,x = Hi
c(MHit

a )
factors through π0(Pa) whenever a ∈ Az and x ∈ Xz.

For an arbitrary geometric point (a, x) ∈ A♥ × X, one can find a
point z ∈ X −{x} such that a(z) is in the regular semi-simple locus of c.
Therefore (a, x) ∈ Az×Xz for some z ∈ X, and over Az×Xz we already
know the factorization result from the previous paragraph. Theorem 4 is
proved.

4.2. Plan of the proof of Theorem 3

The rest of the section is devoted to the proof of Theorem 3. We shall
consider another action of Q`[X∗(T )]W on f̂par

! Q` given by restricting the

Q`[X∗(T )]W -action on f̂par
! Q`�Q`,Xz to the diagonal B×Xz ↪→ B×(Xz)2.

This latter action will be constructed using the Hecke modification at
two points, see §4.3. This new action is easier seen to factor through the
action of π0(P̂/B), as we shall prove in Proposition 4 (and the proof is
similar to that of Theorem 4). Finally we show that the original action of

Q`[X∗(T )]W on f̂par
! Q` coincides with the new one, finishing the proof.
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4.3. Hecke modification at “another” point

This subsection provides preparatory tools for proving Theorem 3.
Consider the correspondence

Ĥecke2
←−
h2

wwppp
ppp

ppp
pp −→

h2

''NN
NNN

NNN
NNN

M̂par ×Xz

f̂par×id
// B × (Xz)2 M̂par ×Xz

f̂par×id
oo

(19)

For any scheme S, Ĥecke2(S) is the isomorphism classes of tuples

(x, y, E1, ϕ1, t1,z, ι1,z, EB1,x, E2, ϕ2, t2,z, ι2,z, EB2,x, τ)

where

– (x, Ei, ϕi, ti,z, ιi,z, EBi,x) ∈ M̂par(S), for i = 1, 2;
– y ∈ X(S) with graph Γ (y);
– τ is an isomorphism of objects on S ×Xz − Γ (y):

τ : (E1, ϕ1, t1,z, ι1,z)|S×Xz−Γ (y)
∼→ (E2, ϕ2, t2,z, ι2,z)|S×Xz−Γ (y).

For a point (b, x, y) ∈ (B × (Xz)2)(k) such that x 6= y, the fibers

of
←−
h2 and

−→
h2 over (b, x, y) are isomorphic to the product of SprG,γa,y

and a Springer fiber in G/B corresponding to the image of γa,x in g
(here γa,x ∈ g(Ox) and γa,y ∈ g(Oy) are Kostant sections of a in the
formal neighborhood of x and y; see the discussion in §??). If we restrict

to the diagonal ∆Xz : B × Xz ⊂ B × (Xz)2, Ĥecke2|∆Xz is the same

as Ĥeckepar. The reader may notice the analogy between our situation
and the situation considered by Gaitsgory in [?], where he uses Hecke
modifications at two points to deform the product GrG ×G/B to FlG.

Let
B̃ = ÃHit ×AHit B, B̃rs = Ãrs ×AHit B.

The morphism f̂par admits an enhancement
̂̃
f : M̂par → B̃ analogous to

the enhanced Hitchin vibration f̃ :Mpar → Ã in [?, Eq.(2.2)]. Therefore
we have a morphism

Ĥecke2 → M̂par ×(B×Xz) M̂par
̂̃
f,
̂̃
f−−→ B̃ ×(B×Xz) B̃.

Let Ĥecke2,[e] be the preimage of the diagonal B̃ ⊂ B̃ ×B×Xz B̃. One the

other hand, we have the Hecke correspondence ĤeckeHit of M̂Hit × Xz

which modifies the Hitchin pair at one point. We have a commutative
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diagram of correspondences where the horizontal maps are given by for-
getting the B-reductions.

If we restrict the left column above to B̃rs × Xz, all squares in the
above diagram are Cartesian. Recall from [?, Construction 6.6.3] that for
each W -orbit |λ| in X∗(T ), we have a graph-like closed substack H|λ| ⊂
HeckeHit. Similarly, in the rigidified setting, we have Ĥ|λ| ⊂ ĤeckeHit.

Denote by p̃rs
Ĥ

: Ĥecke2,[e]|B̃rs×Xz → ĤeckeHit the restriction of p̃Ĥ to

B̃rs × Xz. Let Ĥ2,|λ| ⊂ Ĥecke2,[e] be closure of p̃rs,−1

Ĥ
(Ĥ|λ|). Using the

formalism of cohomological correspondences in Appendix ??, the funda-
mental class [Ĥ2,|λ|] induces a map

[Ĥ2,|λ|]# : f̂par
! Q` �Q`,Xz → f̂par

! Q` �Q`,Xz . (20)

and an endomorphism of S-equivariant cohomology sheaves (in the nota-
tion set up in the beginning of §4.1)

[Ĥ2,|λ|]# : Ri
S f̂

par
! Q` �Q`,Xz → Ri

S f̂
par
! Q` �Q`,Xz . (21)

Proposition 4. The endomorphism [Ĥ2,|λ|]# on Ri
S f̂

par
! Q` � Q`,Xz in

(21) factors through the action of σB(Av(λ)) ∈ Q`[π0(P̂/B)] on the first

factor of Ri
S f̂

par
! Q` �Q`,Xz . Here Av(λ) =

∑
λ′∈|λ| λ

′ ∈ Q`[X∗(T )]W .

Equivalently, for any geometric point (b, x, y) ∈ B×(Xz)2, the effect of

(21) on the stalk (Ri
S f̂

par
! Q`�Q`,Xz)b,x,y ∼= Hi

c([M̂
par
b,x /S]) is independent

of y, and factors through the action of π0(P̂b) ∼= π0(Pa) (where a ∈ Az is
the image of b).

Proof. The argument is completely analogous to that of Lemma 3. We
first use the adjunction for the projection onto the first two coordinates
p : (B × (Xz)2)′ → (B ×Xz)′ to show that the action of Q`[X∗(T )]W on

the stalk (Ri
S f̂

par
! Q` � Q`,Xz)b,x,y ∼= Hi

c([M̂
par
b,x /S]) is independent of y.

Then we choose y ∈ Xz such that (a, y) ∈ Ãrs and calculate the action

of Av(λ) on (Ri
S f̂

par
! Q` �Q`,Xz)b,x,y using the formula (18).

Remark 1. One can show that the assignment Q`[X∗(T )]W 3 Av(λ) 7→
[Ĥ2,|λ|]# extends by linearity to an algebra action of Q`[X∗(T )]W on

(f̂par
! Q`�Q`,Xz)|(B×(Xz)2)′ , where (B× (Xz)2)′ = (B×Xz)′×B (B×Xz)′.

This can be deduced from the (G-2) property of the correspondence

Ĥecke2. We shall not use this fact.
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4.4. Proof of Theorem 3

We consider two actions of Av(λ) on f̂par
! Q`|(B×Xz)′ :

– Action α1: this is given by the restriction of the W̃ -action constructed
in §3.4. This is the action involved in the statement of Theorem 3.

– Action α∆: this is given by restricting the action [Ĥ2,|λ|]# in (20) to

the diagonal ∆Xz : (B × Xz)′ ↪→ (B × (Xz)2)′. Note that f̂par
! Q` =

∆∗Xz(f̂
par
! Q` �Q`,Xz).

We claim that the actions α1 and α∆ are the same. Recall from
[?, Appendix A.4] the notion of the pullback of a cohomological corre-
spondence, which extends to the situation of cohomological correspon-
dences over algebraic spaces locally of finite type. See the discussion
at the end of Appendix ??. By [?, Lemma A.4.1], the action α∆ of

Av(λ) is given by the pullback class ∆∗Xz [Ĥ2,|λ|] ∈ Corr(Ĥ′;Q`,Q`), where

Ĥ′ ⊂ Ĥeckepar is a large enough closed sub-correspondence with both

maps to M̂par proper. For the notation Corr(−;−,−), see Appendix ??.
Let ∆rs

Xz : (B ×Xz)rs ↪→ (B × (Xz)2)rs be the restriction of ∆Xz . Over

(B × (Xz)2)rs, Ĥrs2,|λ| is finite étale over M̂par ×Xz via both projections,

therefore ∆rs,∗
Xz [Ĥrs2,|λ|] = [Ĥrs2,|λ||∆rsXz ], the fundamental class of the base

change of Ĥrs2,|λ| via ∆rs
Xz . However, restricting the left column of the dia-

gram (??) to B̃rs ↪→ B̃ ×Xz (as the graph of the projection B̃rs → Xz),
we get

∆rs,−1
Xz (Ĥrs2,|λ|) =

⊔
λ′∈|λ|

Ĥrsλ′ . (22)

On the other hand, the action α1 of Av(λ) is given by the class∑
λ′∈|λ|[Ĥλ′ ] ∈ Corr(Ĥ′;Q`,Q`) (enlarge the correspondence Ĥ′ defined

before to contain all the Ĥλ′ with λ′ ∈ |λ|). Over (B ×Xz)′, both classes

∆∗Xz [Ĥ2,|λ|] and
∑

λ′∈|λ|[Ĥλ′ ] are supported on Ĥ′, which has property

(G-2) by Lemma 2. Applying Lemma ??, the equality (22) implies

(∆∗Xz [Ĥ2,|λ|])# =
∑
λ′∈|λ|

[Ĥλ′ ]#

as endomorphisms of f̂par
! Q`|(B×Xz)′ . This proves the claim.

By Proposition 4, the action α∆ of Av(λ) on Ri
S f̂

par
! Q`|(B×Xz)′ =

∆∗Xz(Ri
S f̂

par
! Q`�Q`,Xz |(B×(Xz)2)′) factors through (17). Since the action

α1 on Ri
S f̂

par
! Q`|(B×Xz)′ is the same as α∆, it also factors through (17).

To finish the proof of Theorem 3, we take S = T and argue as in the
final part of §4.1. Taking the stalk at a point of (B ×Xz)′, we conclude:
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Corollary 2. Let S ⊂ T be an algebraic subgroup and (b, x) ∈ (B ×
Xz)′(k). Then for each i the action of Q`[X∗(T )]W on Hi

c([M̂
par
b,x /S]) fac-

tors through the action of π0(P̂b) = π0(Pa) via σ.

5. From global to local

In this section, we prove the local main theorem (Theorem 1) and Theo-
rem 2.

5.1. Initial reduction

We use the notations from §2.7. Suppose G→ G′ is a central isogeny with
finite kernel. Let γ ∈ g(F ) be a regular semisimple element and γ′ its
image in g′(F ). We claim that the validity of Theorem 1 for γ′ implies its
validity for γ. For a notation (−) attached to G, we use the notation (−)′

to denote its counterpart for G′. The induced morphism between affine
flag varieties FlG → FlG′ identifies FlG homeomorphically with a union
of connected components of FlG′ . This morphism restricts to a morphism
θ : Sprγ → Sprγ′ , which also identifies Sprγ with a union of connected

components of Sprγ′ . Note that W̃ can be identified with a subgroup of

W̃ ′, under which the surjective map θ∗ : H∗(Sprγ′) � H∗(Sprγ), and its

H∗c analog, are both W̃ -equivariant. Finally, the construction in §2.7 gives
a commutative diagram

Q`[X∗(T )]W

��

// Q`[π0(LGγ)]

��
Q`[X∗(T ′)]W

′ // Q`[π0(LG′γ′)]

Therefore, if the action of Q`[X∗(T ′)]W
′

on H∗(Sprγ′) or H∗c(Sprγ′) factors

through Q`[π0(LG′γ′)], so does the action of Q`[X∗(T )]W . Hence the action

of Q`[X∗(T )]W on the quotient space H∗(Sprγ) or H∗c(Sprγ) also factors
through Q`[π0(LG′γ′)], and hence through Q`[π0(LGγ)].

We apply the above discussion to the central isogeny G→ G′ = Gad×
Gab, where Gad is the adjoint form of G and Gab = G/[G,G] is the
abelianization of G. We then reduce to the case where G is a product of
an adjoint group and a torus. Since Theorem 1 trivially holds for tori,
we reduce to the case where G is of adjoint type. In the sequel we will
assume that G is of adjoint type.
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5.2. The local data

Assume a(γ) ∈ c(OF ), otherwise the affine Springer fiber is empty. Re-
call the local cameral cover diagram (6). As before, we choose a com-

ponent SpecÕ!
F of SpecÕF with stabilizer W !. By our assumption on

char(k), F ! = Frac(Õ!
F ) is a tamely ramified extension of F , hence

W ! = Gal(F !/F ) is a cyclic subgroup of W . Fix a generator w of W !

and a primitive m-th root of unity ζ ∈ µm(k), where m = #W !.

5.3. The global data

Let X = P1. Fix z ∈ X(k)\{0,∞}. Let X̃ be the contracted product

X̃ = W
W !

× P1, where w acts on P1 by t 7→ ζt. We take X̃ ! to be the
component {1} × P1 ⊂ X̃. The morphism π : X̃ → X̃ ! � W ! = X is a

branched W -cover. The point 0 has a unique preimage in X̃ !, which we
denote by 0!. We fix a W !-equivariant isomorphism

Õ!
F
∼= OX̃!,0!

This induces a W -equivariant isomorphism ÕF ∼= OX̃,0 (the latter being

the completion of X̃ along π−1(0)), and also an isomorphism OF ∼= OX,0.

Lemma 4. For any N > 0, there exists an integer d = d(N) such that
for any divisor D on X, disjoint from {0, z,∞} and deg(D) ≥ d, there
exists a section a : X → cD such that

1. There is a W -equivariant birational morphism X̃ → Xa (i.e., X̃ is the
normalization of the cameral curve Xa);

2. Let a0 be the restriction of a to SpecOX,0. Then a0 ≡ a(γ) mod $N

(since D is disjoint from 0, a0 is an element in c(OX,0) = c(OF ));
3. a(z) ∈ crs, i.e., a ∈ Az.

Proof. To give such a section a is equivalent to giving a W -equivariant
morphism ã : X̃ → tD whose induced map between W -quotients satis-
fies local conditions (2) and (3) (which is then automatically birational
because a is regular semisimple at z).

Let L be the following coherent sheaf on X

L = (t⊗ π∗OX̃)W .

Since char(k) does not divide #W , this is a vector bundle over X. First
fix any divisor D on X not containing {0, z,∞}. Giving a W -equivariant

map X̃ → tD is equivalent to giving a section ã ∈ H0(X,L(D)). The
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conditions (2)(3) will be satisfied if we can find such a section ã which
approximates given sections at 0 and z to high order. This can obviously
be achieved provided deg(D) is large.

LetN be the integer in Proposition 2: whenever a(γ′) ≡ a(γ) mod $N ,
then Theorem 1 is true for a(γ′) if and only if it is true for a(γ). Ap-
plying Lemma 4 to this N , we obtain a divisor D = 2D′ on X and
a : X → cD satisfying the properties therein. By choosing deg(D) large
enough, we can make sure that (A♥ ×X)′ ⊃ (A♥ ×X)δ for δ = δ(a; 0),
hence (a, 0) ∈ (A♥ × X)′ (see the discussion in §3.6). We use this D to

define the rigidified parabolic Hitchin moduli M̂par. With this a we have
the cameral curve qa : Xa → X. The image of X̃ ! in Xa is a component
X !
a. Let Sing(a) ⊂ X be a subset which contains 0,∞ and the locus where

qa : Xa → X is not étale.

5.4. Relation between local and global Picard

Let x ∈ X(k). The discussion in §2.6 can be applied to γ(a, x) ∈ g(Fx),
the Kostant section of the restriction of a to the formal disk SpecOx. In
particular, we obtain Pa,x, Pa,x, Λa,x and Ra,x, and an exact sequence

1→ Ra,x → Pa,x → Λa,x → 1. (23)

Note that Ra,x is the same group scheme which appeared in (12). For
each x ∈ X(k)\{z}, we have a commutative diagram

Pa,x //

��

P̂a

��
Λa,x // P [a

(24)

Let b = (a, tz) ∈ B(k) lifting a such that tz ∈ X !
a. The choice of tz

gives an identification Ja,z
∼→ T . Recall the exact sequence (12). By [?,

§4.11] we have H0(X,J [a) = Tw, hence the first arrow in (12) gives a map
Tw → Ja,z = T , which is easily checked to be the canonical inclusion
Tw ↪→ T . Let S ⊂ T be a torus which is complementary to the neutral
component of Tw, so that S ∩ Tw is a finite diagonalizable group over k.
By the assumption on char(k), S ∩ Tw is in fact discrete.
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Combining the exact sequences (12), (23) and the diagram (24), we
get a map between exact sequences

1 // S ×
∏
x∈Sing(a)Ra,x

//

α

��

S ×
∏
x∈Sing(a) Pa,x

//

β
��

∏
x∈Sing(a) Λa,x

γ

��

// 1

1 // (Ja,z ×
∏
x∈Sing(a)Ra,x)/Tw // P̂a // P [a // 1

(25)
By the choice of S, α is surjective. Let P ker

a = ker(β) and Λker
a = ker(γ).

The snake lemma gives an exact sequence between the kernels

1→ S ∩ Tw → P ker
a → Λker

a → 1. (26)

Here S ∩ Tw is viewed as a subgroup of Tw = H0(X, J [a), hence maps
diagonally into S×

∏
xRa,x. Note that S∩Tw is a discrete group scheme,

so is P ker
a , hence we may identify P ker

a with its k-points.
By Lemma ?? below, the map γ in (25) is also surjective. Hence so is

β and we have an exact sequence

1→ P ker
a → S ×

∏
x∈Sing(a)

Pa,x → P̂a → 1 (27)

Lemma 5. In our situation, the coarse moduli space P [a of P[a is a discrete
group. The natural map ι0 : Λa,0 → P [a is an isomorphism, and both
groups are canonically isomorphic to X∗(T )w/torsion.

Proof. By [?, Corollaire 4.8.1], the finite type Néron model J [a of Ja is

(Res
X̃!/X

(T×X̃ !))w. The Lie algebra of P [a is H1(X,LieJ [a) = H1(X, (t⊗O
X̃!)

w) ⊂
t⊗H1(X̃ !,O

X̃!) = 0 since X̃ ! ∼= P1. Therefore P [a is discrete.

The restriction of J [a to SpecOF is (ResÕ!
F /OF

T )w. Therefore Λa,0 =

Ja(F )/J [a(OF ) = T (F !)w/T (Õ!
F )w. Taking the w-invariants of the exact

sequence

1→ T (Õ!
F )→ T (F !)

ev−→ X∗(T )→ 0

we get that Λa,0 is the image of the map

ev : Ja(F ) = T (F !)w → X∗(T )w.

Similarly, from the injection J [a ↪→ Res
X̃!/X

(T × X̃ !) we deduce a natural
map

deg : P [a → H1(X̃ !, T )w = X∗(T )w.
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Consider the diagram

X∗(T )w
α // Λa,0

ev //

ι0
��

X∗(T )w

X∗(T )w
β // P [a

deg // X∗(T )w

(28)

Here α is a surjection induced from the map J [,0a → J [a (here (−)0 de-

notes fiber-wise neutral component), and the fact that Ja(F )/J [,0a (OF ) ∼=
X∗(T )w [?, Lemme 3.9.4]. The map β is a surjection induced from the

same map J [,0a → J [a, and the fact that π0(Pic(X, J [,0a )) ∼= X∗(T )w [?,
Proposition 6.4, Corollaire 6.7]. The diagram (??) is easily seen to be
commutative.

The fact that β is surjective shows that ι0 is also surjective. The fact
that ev is injective shows that ι0 is also injective. Therefore ι0 is an isomor-

phism. Now ker(α) ∼= J [a(OF )/J [,0a (OF ) is torsion and Λa,0 is torsion-free
since ev is injective, hence the first row of (??) identifies Λa,0 with the
torsion-free quotient of X∗(T )w.

Lemma 6. The natural map

P ker
a →

∏
x∈Sing(a)\{0}

π0(Pa,x)

is injective with finite cokernel.

Proof. Consider the following map between short exact sequences

1 // S ∩ Tw

α

��

// P ker
a

//

β

��

Λker
a

//

γ

��

1

1 //
∏
x∈Sing(a)\{0} π0(Ra,x) //

∏
x∈Sing(a)\{0} π0(Pa,x) //

∏
x∈Sing(a)\{0} Λa,x

// 1

(29)

By Lemma ??, Λa,0
∼→ P [a, hence γ is an isomorphism. Applying the snake

lemma to (??), we get ker(α) ∼= ker(β) and coker(β) ∼= coker(α), which
is finite.

In order to show that β is injective, it suffices to show that α is in-
jective. By definition, ∞ ∈ Sing(a). By [?, Proposition 3.9.7], we have an
isomorphism π0(Pa,∞) ∼= X∗(T )w because G is of adjoint type. Also by [?,
Proposition 3.9.7], the map π0(Tw) → X∗(T )w = π0(Pa,∞) is an embed-
ding whose image is the torsion part of X∗(T )w. Since Tw → Pa,∞ factors
through Ra,∞, we see that π0(Tw)→ π0(R0,∞) is injective. By the choice
of S (complementary to the neutral component of Tw), S ∩ Tw injects
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into π0(Tw), therefore S ∩ Tw ↪→ π0(Ra,∞), proving that α is injective.
This finishes the proof.

Proposition 5. For any x ∈ X(k), the following diagram is commuta-
tive:

Q`[X∗(T )]W
σa,x //

σa

66
Q`[π0(Pa,x)] // Q`[π0(Pa)] (30)

Here σa,x is the homomorphism (1) applied to γ(a, x), and σa is the stalk
of (2) at a.

Proof. Recall the choice tz gives a point z! ∈ X !,rs
a over z. Also we have

x! ∈ X !
a over x. Consider the diagram

π0(Pa,x)

ιx

((QQ
QQQ

QQQ
QQQ

QQ

X∗(T )
s(−,z!)

((QQ
QQQ

QQQ
QQQ

QQ

σ̃
a,x!

66mmmmmmmmmmmmm
τ // π0(Pa)

π0(GrJa,z) = π0(Pa,z)

ιz
66mmmmmmmmmmmmm

(31)

Here s(−, z!) is the map in (13), and the composition ιz · s(−, z!) is used
to define σa, see §3.8. The homomorphism σ̃a,x! is defined in (7) (quoted
from [?, Proposition 3.9.2]), which was used to define σa,x. Therefore, in
order to show that (??) is commutative, if suffices to show that the outer
square of (??) is commutative.

The arrow τ in (??) is defined in [?, Proposition 6.8] and [?, Proposi-
tion 4.10.3]. We shall show that the two triangles in (??) are both com-
mutative. The commutativity of the upper triangle follows from the com-
patibility of Ngô’s constructions, see the proof of [?, Proposition 4.10.3].
On the other hand, tracing through the definition of s(−, z!) in [?, Lemma
3.2.5], we see that s(−, z!) is the same as Ngô’s map σ̃a,z! , therefore the
lower triangle of (??) is also commutative. This finishes the proof.

5.5. Product formula

For each x ∈ Sing(a), choosing a trivialization of OX(D) at y, we may
view the restriction of a on SpecOx as an element ax ∈ c(Ox). Let
γ(a, x) = ε(ax) ∈ g(Ox) be the Kostant section. Define

SprP,a,x := SprP,γ(a,x).
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Recall from [?, §4.2.4] that we have a global Kostant section ε(a) =

(E , ϕ) ∈ MHit
a . Picking any isomorphism ιz : (E , ϕ)z

∼→ (G, tz) gives a

point ε̂(b) ∈ M̂Hit
b . As in [?, §4.15], by gluing the local Hitchin pairs at

x ∈ Sing(a) with ε̂(b) we get a morphism

Spra,0 ×
∏

x∈Sing(a)\{0}

SprG,a,x → M̂
par
b,0 (32)

which intertwines the
∏
x∈Sing(a) Pa,x-action on the LHS and the P̂a-action

on the right. To alleviate notions, let

Z =
∏

x∈Sing(a)\{0}

SprG,a,x.

A rigidified version of the product formula ([?, Proposition 4.15.1], [?,
Proposition 2.4.1]) gives a homeomorphism

(Spra,0 × Z)

∏
x∈Sing(a) Pa,x

× P̂a → M̂par
b,0 . (33)

Dividing both sides of (??) by S, using (??), we get a homeomorphism
of stacks

Spra,0
P ker
a

× Z
homeo.−−−−→ [M̂par

b,0 /S]. (34)

5.6. Pulling apart components

1 By [?, §3.10.2], the irreducible components of SprG,a,x are in bijections

with π0(Pa,x). Hence, by Lemma ??, P ker
a permutes the irreducible com-

ponents of Z =
∏
x∈Sing(a)\{0} SprG,a,x freely with finitely many orbits.

We pick one irreducible component Yα ⊂ Z from each P ker
a -orbit. Let

Y = ∪αYα ⊂ Z be the union of these orbit-representatives of irreducible
components. Let Y reg ⊂ Y be the intersection of Y with the regular lo-
cus Zreg =

∏
SprregG,a,x (cf. [?, Lemma 3.3.1]). By construction, the action

map P ker
a × Y → Z induces a bijection between irreducible components,

and restricts to an isomorphism on the regular loci. Then we have a com-
mutative diagram

Spra,0 × Y reg � � jY //

o��

Spra,0 × Y

ν��

Spra,0
P ker
a

× Zreg �
� j // Spra,0

P ker
a

× Z
(??) // [M̂par

b,0 /S]

1 This part of the argument was suggested by Y.Varshavsky.
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From this we get a commutative diagram on compactly supported coho-
mology

H∗c(Spra,0 × Y reg)
jY,! // H∗c(Spra,0 × Y )

H∗c(Spra,0
P ker
a

× Zreg)

o

OO

j! // H∗c(Spra,0
P ker
a

× Z)

ν∗

OO

∼ // H∗c([M̂
par
b,0 /S])

Here ν∗ makes sense because it is proper. In other words, the map jY,! on
compactly supported cohomology can be factored as

jY,! : H∗c(Spra,0 × Y reg)
j!−→ H∗c([M̂

par
b,0 /S])

ν∗−→ H∗c(Spra,0 × Y ). (35)

Let d = dimY . Using the Künneth formula, and taking only the top
cohomology of Y reg and Y , we get

Hi
c(Spra,0)⊗H2d

c (Y reg) // Hi+2d
c ([M̂par

b,0 /S]) // Hi
c(Spra,0)⊗H2d(Y )

The composition of the above maps is an isomorphism because H2d
c (Y reg)

∼→
H2d(Y ) = Q`[Irr(Y )]. Therefore the map j! in (??) gives an injection

Hi
c(Spra,0) ↪→ Hi

c(Spra,0)⊗H2d
c (Y reg) ↪→ Hi+2d

c ([M̂par
b,0 /S]). (36)

where the first map is given by the inclusion of the fundamental class
[Y reg] ∈ H2d

c (Y reg).

Proposition 6. The map (??) intertwines the W̃ × π0(Pa,0)-action on

the first factor of the LHS and the W̃ × π0(Pa) = W̃ × π0(P̂a/S)-action

on the RHS via the natural map Pa,0 → P̂a.

Proof. The fact that this map intertwines the π0(Pa,0)-action on the LHS
and the π0(Pa)-action on the RHS is clear from the equivariance property
of (??).

It remains to prove the W̃ -equivariance of (??). For each standard
parahoric P, we have a diagram consisting of two Cartesian squares

Spra,0 × Y reg � � //

νP

��

M̂par
b,0

F̂or
P

I
��

ev0 // [̃lP/LP]

πP

��
SprP,a,0 × Y reg � � // M̂P,b,0

ev0 // [lP/LP]

(37)

such that the outer square is the product of Y reg with the diagram (4) and
the right square is the restriction of the diagram (10) at (b, 0) ∈ B ×Xz.
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The WP-action on H∗c(Spra,0 × Y reg) and H∗c(M̂
par
b,0 ) are constructed from

these diagrams using the parahorics P and the classical Springer theory
for LP. The diagram (??) implies that (??) is WP-equivariant for every
P, hence Waff-equivariant. Similarly, using a diagram connecting (5) and
its global analogue, one shows that (??) is also ΩI-equivariant. Putting

together, we conclude that (??) is W̃ -equivariant.

5.7. Conclusion of the proof of Theorem 1

Consider the diagram

Q`[X∗(T )]W ⊗Hi
c(Spra,0)

σa,0⊗id //

αloc

++

(??)
��

Q`[π0(Pa,0)]⊗Hi
c(Spra,0)

actloc //

(??)
��

ι0
��

Hi
c(Spra,0)

(??)
��

Q`[X∗(T )]W ⊗Hi+2d
c ([M̂par

b,0 /S])

αglob

33

σa⊗id // Q`[π0(Pa)]⊗Hi+2d
c ([M̂par

b,0 /S])
actglob // Hi+2d

c ([M̂par
b,0 /S])

where the upper αloc and αglob are actions maps of Q`[X∗(T )]W ; actloc

and actglob are action maps of the π0’s. By Proposition ??, the left side
square is commutative. By Proposition ??, the right side square and the
outer square are commutative. By Corollary 2, the lower triangle is com-
mutative. Our goal is to prove that the upper triangle is commutative.
From the known commutativity, we conclude that actloc ◦ (σa,0 ⊗ id) and
αloc are the same if we further compose them with (??). Since (??) is
injective, they must be equal before composition, i.e., the upper triangle
is commutative. This proves Theorem 1 for Spra,0. Since a0 ≡ a(γ) ∈ $N

by construction, the theorem also holds for Sprγ by Proposition 2. This
finishes the proof of Theorem 1.

5.8. Duality between homology and compactly supported cohomology

The next goal is to prove Theorem 2. We consider the following general
setting. Let Λ be a group. Let X be a scheme, locally of finite type over k
with a free Λ-action such that X/Λ is representable by a proper scheme.
The main examples we have in mind are X = Sprγ with the action of a
lattice Λ ⊂ LGγ .

A Λ-covering of X is a Λ-equivariant morphism

f : Y × Λ→ X



34 Zhiwei Yun

where Y is a scheme, Λ acts trivially on Y and acts as translations on
Λ itself, such that the induced morphism f̄ : Y → X/Λ is proper and
surjective. For example, we may take Y ⊂ X to be the union of represen-
tatives of the Λ-orbits on the irreducible components of X, and take f to
be the action map.

Let X0 = Λ × Y and Xn = X0 ×X × · · · ×X X0 (n + 1 terms). The
collection X = (Xn)n≥0 together with the natural face maps (projections)
and degeneration maps (diagonal maps) forms a simplicial resolution of
X. Each Xn carries a diagonal Λ-action which is also free. Let Yn = Xn/Λ.
Then Yn is naturally identified with the (n + 1)-fold Cartesian product
Y ×X/ΛY ×· · ·×X/ΛY . We form the simplicial scheme Y = (Yn)n≥0 again
using the obvious face and degeneration maps. Then Y is a simplicial
resolution of X/Λ, and each Yn is a proper scheme.

The natural projection ξn : Xn → Yn is in fact a trivial Λ-torsor. The
trivialization is given by ηn : Λ × Yn → Xn defined as (λ, y0, · · · , yn) 7→
(λ, y0;λλ1, y1; · · · ;λλn, yn), where λi ∈ Λ is the unique element such that
λiyi = y0. It is easy to see that ηn is a Λ-equivariant isomorphism. How-
ever the simplicial structures of X and Y are not preserved by the maps
ηn. In other words, the map ξ : X → Y is a Λ-torsor in the category of
simplicial schemes, which is trivializable over each Yn but not necessarily
trivializable as simplicial schemes.

By cohomological descent for proper surjective morphisms (see [?, §5.3]
and [?, Prop. 4.3.2]), H∗c(X) is canonically isomorphic to the compactly
supported cohomology of the simplicial scheme X. We would like to cal-
culate H∗c(X) using H∗c(Y). When working with a finite coefficient ring
R, we may resolve the constant sheaf R on Y by a complex K0 →
K1 → · · · on Y with injective terms. We form the double complex
Di,j(f)R = Γc(Yi,K

j |Yi) (see [?, §5.2.3]) with differentials in the i-index
induced from the simplicial structure and in the j-index induced from
the differentials on K∗. We may view the double complex D∗,∗(f)R as
an object D(f)R in the filtered derived category DbF (R-mod), by taking
the stupid filtration in the i-index, i.e., GriD(f)R ∼= Di,∗(f)R[−i], which
is quasi-isomorphic to RΓc(Yi, R). Let ω : DbF (R-mod) → Db(R-mod)
be the functor of forgetting the filtration (which is the same as taking
the simple complex associated with a double complex, when applied to
a filtered complex given by the stupid filtration of a double complex).
Then RΓc(Y, R) is quasi-isomorphic to ωD(f)R. Similarly, RΓc(X, R) is
quasi-isomorphic to ωC(f)R, where C(f)R is a filtered complex of R-
modules obtained via the stupid filtration in the i-index of the double
complex Ci,j(f)R = Γc(Xi, ξ

∗
i (Kj |Yi)) ∼= R[Λ] ⊗Di,j(f)R. Note that the

differentials in the i-direction on Ci,j(f)R are not simply the identity
map on R[Λ] tensored with the differentials on Di,j(f)R, but are induced
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from the face maps of X. But in any case the differentials on C∗,∗(f)R are
R[Λ]-linear, and hence we may view C∗,∗(f)R as a double complex of R[Λ]-
modules, which defines a filtered complex C(f)R ∈ DbF (R[Λ]-mod) with
GriC(f)R ∼= R[Λ] ⊗ GriD(f)R. Passing to inverse limits for R = Z/`nZ
and then inverting `, we get an object C(f) ∈ DbF (Q`[Λ]-mod) such that
ωC(f) is quasi-isomorphic to RΓc(X). In this way, we have upgraded the
complex H∗c(X) to an object H∗c(X)] := ωC(f) in the derived category
Db(Q`[Λ]-mod).

Similarly, for a finite ring R, we have a double complex Ki,j(f)R such
that for fixed i, Ki,∗(f)R is quasi-isomorphic to RΓc(Yi,DYi,R) (whose co-
homology calculates theR-homology of Yi). The double complexHi,j(f)R =
R[Λ] ⊗ Ki,j(f)R (again the differentials in the i-index is not simply ob-
tained from the tensor product) then calculates the homology H∗(X, R) ∼=
H∗(X,R): first viewH∗,∗(f)R as a filtered complexH(f)R withGr−iH(f)R =
R[Λ]⊗RΓc(Yi,DYi,R)[i], then RΓc(X,DX,R) is quasi-isomorphic to ωH(f)R.
For each fixed i, we have a canonical quasi-isomorphism of complexes of
R[Λ]-modules

Gr−iH(f)R ∼= R[Λ]⊗RΓc(Yi,DYi,R) (38)

∼= RHomR[Λ](R[Λ]⊗RΓc(Yi, R), R[Λ]) ∼= RHomR[Λ](Gr
iC(f)R, R[Λ]).

Here we used the fact that each Yi is proper. Moreover, the isomorphism
(??) is compatible with the simplicial structure as i varies. Passing to in-
verse limits for R = Z/`nZ and then inverting `, we have upgraded the ho-
mology complex H∗(X) to an object H∗(X)] := ωH(f) ∈ Db(Q`[Λ]-mod),
and obtained an isomorphism in Db(Q`[Λ]-mod) from (??):

H∗(X)] ∼= RHomQ`[Λ](H
∗
c(X)],Q`[Λ]). (39)

Finally, neither the isomorphism classes of the objects H∗c(X)],H∗(X)] ∈
Db(Q`[Λ]-mod) nor the isomorphism (??) depend on the choice of the
Λ-covering. In fact, for any two Λ-coverings f : Y × Λ → X and f ′ :
Y ′ × Λ → X are both dominated by the third f ′′ : Y ′′ × Λ → X, where
Y ′′ = (Y ×{0})×X (Y ′×Λ). To emphasize the a priori dependence on the

Λ-covering, we write H∗c(X)]f ,H∗(X)]f etc to denote the upgraded objects

constructed using f . Let g : Y ′′ → Y and g′ : Y ′′ → Y ′ be projections.
They induce maps on simplicial schemes g∗ : Y ′′∗ → Y∗ and g′∗ : Y ′′∗ → Y ′∗ ,
which then induce isomorphisms in the category Db(Q`[Λ]-mod)

H∗c(X)]f
g∗−→ H∗c(X)]f ′′

g′∗←−− H∗c(X)]f ′ , (40)

H∗(X)]f
g∗←− H∗(X)]f ′′

g′∗−→ H∗(X)]f ′ . (41)
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Therefore the isomorphism classes of H∗c(X)],H∗(X)] ∈ Db(Q`[Λ]-mod)
are independent of the choice of the Λ-covering. Moreover, the quasi-
isomorphisms in (??) and (??) intertwine the dualities of the type (??).
Therefore, f, f ′ and f ′′ all give the same isomorphism (??).

5.9. Proof of Theorem 2

2 Now let X = Sprγ and Λ ⊂ LGγ be a free abelian subgroup considered
in [?, Proposition 2.1], which acts freely on Sprγ with proper quotient [?,
Proposition 3.1(b), Corollary 3.1]. In fact, the proof in [?] also applies
to SprP,γ for any parahoric P ⊂ LG. Hence Λ also acts freely on SprP,γ
with proper quotient.

The discussion in §?? gives the upgraded objects

H∗c(Sprγ)],H∗(Sprγ)] ∈ Db(Q`[Λ]-mod) (42)

and the canonical isomorphism (??) now reads

H∗(Sprγ)] ∼= RHomQ`[Λ](H
∗
c(Sprγ)],Q`[Λ]). (43)

Lemma 7. The upgraded objects in (??) carry W̃×π0(Pa(γ))-actions (lift-
ing the actions on the plain vector spaces), and the isomorphism (??) is

W̃ × π0(Pa(γ))-equivariant.

Proof. For each parahoric P, we pick a Λ-covering fP : YP ×Λ→ SprP,γ
and define a Λ-covering f : Y × Λ→ Sprγ by requiring the left square of
the following diagram to be Cartesian

Y × Λ f //

��

Sprγ //

��

[̃lP/LP]

��
YP × Λ

fP // SprP,γ // [lP/LP]

(44)

where the right square is topologically Cartesian by (4). We have shown
in §?? that the upgraded objects (??) are independent of the choice of
Λ-coverings, and here we shall use this particular Λ-covering to define
them. The construction of the WP-action on H∗c(Sprγ) (resp. H∗(Sprγ))
in §2.3 then gives aWP-action on the filtered complexes C(f) (resp.H(f))
calculating H∗c(Sprγ)] (resp. H∗(Sprγ)]), and these WP-actions are com-

patible with the duality between GriC(f) and Gr−iH(f) as complexes

2 The idea of proving Theorem 2 by duality of the type (??) was suggested by
R.Bezrukavnikov.
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of Q`[Λ]-modules as in (??). This gives the WP-action on H∗c(Sprγ)] and

H∗(Sprγ)], and proves that (??) is WP-equivariant. The actions of ΩI

and π0(Pa(γ)) are given by the actions of ΩI and Pa(γ) on Sprγ itself,
which clearly lift to the objects in (??) and are intertwined by (??). One
easily checks that the π0(Pa(γ))-action commutes with the WP and ΩI

actions. Using a variant of the diagram (5) incorporating the Λ-coverings
as in (??), one checks that the commutation relation between WP and
ΩI continues to hold after upgrading. This finishes the proof.

By (??) and the above lemma, we have a W̃ × π0(Pa(γ))-equivariant
spectral sequence

E−p,−q2 = Ext−pQ`[Λ](H
q
c(Sprγ),Q`[Λ])⇒ Hp+q(Sprγ),

which necessarily converges because Q`[Λ] has cohomological dimension
rk(Λ). Therefore, this gives a finite decreasing filtration Filp on Hi(Sprγ)
such that

GrpFilHi(Sprγ) = Ep,−i−p∞ .

Since the Q`[X∗(T )]W -action on the E2 page factors through π0(LGγ)
by Theorem 1, so does the Q`[X∗(T )]W -action on E∞. Therefore, the
Q`[X∗(T )]W -action on GrpFilHi(Sprγ) also factors through π0(LGγ). Since

Ep,q2 = 0 unless 0 ≤ p ≤ rk(Λ), the same is true for Ep,∗∞ = GrpFilH∗(Sprγ).
Note that rk(Λ) is the same as the F -rank of Gγ . This proves Theorem
2.

A. Sheaves and correspondences on spaces locally of finite
type

In this appendix, all algebraic spaces are locally of finite type over k.

A.1. The category of sheaves

Let X be an algebraic space over k which is locally of finite type. Let
Ft(X) be the set of open subsets U ⊂ X which are of finite type over k.
We define

D←−
b(X) := lim←−

U∈Ft(X)

Db(U)

When X itself is of finite type over k, Ft(X) has a final object X, so
obviously D←−

b(X) = Db(X).

Concretely, an object in D←−
b(X) is a system of complexes FU ∈ Db(U)

for each open subset U ⊂ X of finite type over k, together with isomor-
phisms ϕUV : j∗FU

∼→ FV for each open embedding j : V ↪→ U satisfying
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obvious transitivity conditions. A morphism α : {FU} → {GU} is a sys-
tem of maps αU : FU → GU in Db(U) such that αU restricts to αV on
V .

Examples of objects in D←−
b(X) include the constant sheaf Q`,X :=

{Q`,U} and the dualizing complex DX := {DU}.

A.2. Functors

Let f : X → Y be a morphism which is locally of finite type. We have
the following functors

1. f∗ : D←−
b(X) → D←−

b(Y ). For U ∈ Ft(X), f(U) is contained in some

V ∈ Ft(Y ). Denote by fU,V : U → V the restriction of f . We define
(f∗G)U = f∗U,V GV .

2. f ! : D←−
b(X) → D←−

b(Y ), defined in a similarly way as f∗: (f !G)U :=

f !
U,V GV .

3. If f is of finite type, we have

f! : D←−
b(X)→ D←−

b(Y )

For V ∈ Ft(Y ), f−1(V ) ∈ Ft(X). Let fV : f−1(V ) → V be the
restriction of f . We define (f!F)V := fV,!Ff−1(V ).
In general, if f is only locally of finite type, we have

f! : D←−
b(X)→ ind D←−

b(Y )

where ind D←−
b(Y ) denotes the category of ind-objects in D←−

b(Y ). We
define f!F as the ind-object lim−→U∈Ft(X)

fU,!FU , where fU : U → Y , the

restriction of f , is of finite type, and fU,! is defined above.
4. If f is of finite type, we have

f∗ : D←−
b(X)→ D←−

b(Y )

defined in a similar way as f!: (f∗F)V := fV,∗Ff−1(V ).
In general, if f is only locally of finite type, we have

f∗ : D←−
b(X)→ pro D←−

b(Y )

where pro D←−
b(Y ) denotes the category of pro-objects in D←−

b(Y ). We
define f∗F as the pro-object lim←−U∈Ft(X)

fU,∗FU .
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In particular, we can still define

H∗(X/Y ) := f!DX ∈ ind D←−
b(Y ).

When Y = Speck, we have

H∗c(X) = f!Q`,X , H∗(X) = f!DX ∈ ind Db(Q`-vector spaces);

H∗(X) = f∗Q`,X , HBM
∗ (X) = f∗DX ∈ pro Db(Q`-vector spaces).

A.3. Cohomological correspondences

In this appendix, we extend the formalism of cohomological correspon-
dences (see [?] and [?, Appendix A]) to situations where the relevant
algebraic spaces are locally of finite type.

Consider a correspondence diagram

C
←−c

~~~~
~~
~~
~~ −→c

  @
@@

@@
@@

@

X
f
// S Yg
oo

(45)

where

– S is locally of finite type over a field k;
– f, g are locally of finite type;
– −→c is proper and ←−c is of finite type.

For F ∈ Db(X) and G ∈ Db(Y ), we define as in [?, Definition A.1.1]

Corr(C;F ,G) := HomD←−
b(C)(
−→c ∗G,←−c !F).

We call an element ζ ∈ Corr(C;F ,G) a cohomological correspondence
between F and G with support on C.

Given ζ ∈ Corr(C;F ,G), we define

ζ# : g!G
g!(ad.)−−−−→ g!

−→c ∗−→c ∗G
g!
−→c ∗ζ−−−−→ g!

−→c ∗←−c !F = g!
−→c !
←−c !F = f!

←−c !
←−c !F f!(ad.)−−−−→ f!F .

In the equality above, we used −→c ! = −→c ∗ since it is proper. Arrows indexed
by “ad.” all come from the relevant adjunction for the morphisms←−c and
−→c , which are of finite type. Note that ζ# is a morphism in ind Db(S).

Most of the results in [?, Appendix A] are still valid in this extended
situation. In particular, the results on pull-backs of cohomological corre-
spondences in [?, Appendix A.4] extends verbatim.
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A.4. Composition

Suppose we have the following diagram

C

←−
d~~}}

}}
}}
}}←−c

��

−→
d   A

AA
AA

AA
A

−→c

��

C1

←−c1~~}}
}}
}}
} −→c1

  A
AA

AA
AA

C2
←−c2

~~}}
}}
}}
}

−→c2   A
AA

AA
AA

X

f
((PP

PPP
PPP

PPP
PPP

P Y

g

��

Z

h
vvnnn

nnn
nnn

nnn
nnn

S

(46)

where C = C1 ×Y C2 and C1 and C2 satisfy the conditions in beginning

of §??. Since −→c1 ,
−→c2 are proper, so are

−→
d and −→c . Similarly, ←−c is of finite

type. Hence C, as a correspondence between X and Z, also satisfies the
conditions in the beginning of §??.

Let F ∈ D←−
b(X),G ∈ D←−

b(Y ) andH ∈ D←−
b(Z). The convolution product

defined in [?, Appendix A.2] extends to the current situation, giving a
bilinear map

◦ : Corr(C1;F ,G)⊗ Corr(C2,G,H)→ Corr(C;F ,H).

The following statement is a variant of [?, Lemma A.2.1], and is proved
by a diagram-chasing:

Lemma 8. Let ζ1 ∈ Corr(C1;F ,G) and ζ2 ∈ Corr(C2;G,H). Then

(ζ1 ◦ ζ2)# = ζ1,# ◦ ζ2,# : h!H → f!F .

The associativity of the convolution ◦ also holds, see [?, Lemma A.2.2].

A.5. Property (G-2)

From now on we assume both X and Y are smooth of equidimension d.
Recall from [?, Appendix A.6] that we say C has Property (G-2) with
respect to an open subset U ⊂ S if dimCU ≤ d and the image of C−CU →
X ×S Y has dimension < d.

[?, Lemma A.6.2] now reads

Lemma 9. Suppose C satisfies (G-2) with respect to U ⊂ S. Let ζ, ζ ′ ∈
Corr(C;Q`,X ,Q`,Y ). If ζ|U = ζ ′|U ∈ Corr(CU ;Q`,XU ,Q`,YU ), then ζ# =
ζ ′# ∈ HomS(g!Q`,Y , f!Q`,X).



The spherical part of the local and global Springer actions 41

Acknowledgements. The author would like to thank R.Bezrukavnikov, B-C.Ngô and
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