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Let G be a connected reductive group over a non-archimedean local field F . The
Bernstein center ZG is the center of the category of smooth complex representations
of G(F ), which is in some sense the ring of regular functions on the set of irreducible
representations of G(F ). Each element of ZG determines an invariant distribution on
G(F ). There is a subtle notion of stability for invariant distributions on G(F ), which
has to do with the fact that two distinct G(F )-conjugacy classes in G(F ) can become
conjugate under G(F ) (F is an algebraic closure of F ). Let ZstG be the subspace of ZG
consisting of those elements which are stable as invariant distributions.

The stable Bernstein center conjecture says that ZstG is a unital subalgebra of ZG,
i.e., as a subspace of invariant distributions, ZstG should be closed under convolution.
A refined version of the conjecture says that if we view ZG as functions on the set
of irreducible representations of G(F ), ZstG should consist exactly of those functions
that are constant on L-packets. Here, according to the local Langlands conjecture, the
irreducible representations of G(F ) are partitioned into finite subsets called L-packets,
which are indexed by Galois representations into the dual group LG.

The paper under review proposes a geometric way of constructing many (conjecturally
all) elements in the depth zero part Z0

G of the Bernstein center, when F is a local function
field and G is split. This approach opens up the possibility of using geometric and sheaf-
theoretic machinery to prove the stability of certain elements in Z0

G, in the same
spirit that geometric methods helped prove the fundamental lemma. As a concrete
implementation of this strategy, it is checked in this paper that the unit element in Z0

G

is stable, a statement which was not known before.
The proposal has its origin in a new construction of character sheaves on a reductive

group H as the categorical center of the monoidal category of sheaves on U\H/U
(where U ⊂H is a maximal unipotent subgroup) [see D. Ben-Zvi and D. Nadler, “The
character theory of a complex group”, preprint, arXiv:0904.1247; R. Bezrukavnikov, M.
Finkelberg and V. Ostrik, Invent. Math. 188 (2012), no. 3, 589–620; MR2917178]. In
the current paper the authors carry out an analogous construction when H is replaced
with the loop group LG, with (inevitably) a much higher level of technicality. They
consider the monoidal category of constructible sheaves on I+\LG/I+, where I+ is the
pro-unipotent radical of an Iwahori subgroup I of LG. Then take ZI+(LG) to be the
categorical center of the above monoidal category. There is an averaging functor sending
an object B ∈ ZI+(LG) to an LG-equivariant complex of sheaves Av(B) on LG, which

further carries an action of the affine Weyl group W̃ . Taking the derived invariants of

the W̃ -module Av(B) against the sign representation of W̃ , the resulting object A(B)
on LG is the proposed geometric incarnation of an element in Z0

G. More precisely, via
the sheaf-to-function correspondence, the Frobenius trace at a regular semisimple point
γ ∈G(F ) (viewed as a k-point of LG where k is the residue field of F ) is the value of a
well-defined element [B] ∈ Z0

G at γ.
There are several difficulties new to the current situation that the authors had to
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overcome: one is that the sheaves they work with live over infinite-dimensional spaces
such as LG; another one, which is more essential, is that in order to talk about derived

invariants of W̃ -modules, the W̃ -action on Av(B) needs to be defined at an enhanced
categorical level beyond the mere action on the cohomology sheaves of Av(B). To
overcome these difficulties, the authors systematically use the language of stable ∞-
categories. In fact, the entirety of sections 1 and 2, which occupy more than a third of
the paper, are devoted to setting up categorical foundations for sheaf theory on nice
infinite-dimensional ind-schemes and ind-stacks. This part should be of independent
interest.

In the simplest case when B is the unit object in ZI+(LG), the stalk of Av(B) at a
regular semisimple element γ ∈ LG is the homology of the affine Springer fiber Flγ , on

which the W̃ -action was constructed by G. Lusztig [Transform. Groups 1 (1996), no. 1-
2, 83–97; MR1390751]. In this case, the authors show that the corresponding element
z0 := [B] ∈ Z0

G is the projector to the depth zero part Z0
G of ZG. In particular, z0 should

be in the stable Bernstein center ZstG . The main numerical result of this paper (Theorem
4.4.9) confirms that this is indeed the case, at least when z0 is restricted to regular
semisimple elements. The proof is achieved in two steps: first, the authors give a formula

for the value of z0 at a regular semisimple element γ in terms of the Frobenius and W̃ -
actions on the homology of the affine Springer fiber Flγ (Theorem 4.4.8). Second, they
use a theorem of the reviewer [Math. Ann. 359 (2014), no. 3-4, 557–594; MR3231007]
on the compatibility of two actions on the homology of Flγ to deduce the stability of z0.
Note that the proof of the theorem in [Z. Yun, op. cit.] ultimately uses global methods
involving the geometry of Hitchin fibrations.

In section 3.5, there is also an outline of how to get all elements in the depth zero
stable Bernstein center. The idea is to start with objects in ZI+(LG) coming from
D. Gaitsgory’s nearby cycles construction [Invent. Math. 144 (2001), no. 2, 253–280;
MR1826370].

Given the technical nature of the subject, the paper is very clearly written. Some of
the proofs in section 3 are postponed to a future publication. Zhiwei Yun
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