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Abstract. We prove a conjecture in [L11] stating that certain poly-
nomials Pσ

y,w(q) introduced in [LV11] for twisted involutions in an affine
Weyl group give (−q)-analogues of weight multiplicities of the Lang-
lands dual group Ǧ . We also prove that the signature of a naturally defined
hermitian form on each irreducible representation of Ǧ can be expressed
in terms of these polynomials Pσ

y,w(q).
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1. Statement of the main theorems

1.1 The Pσ -polynomials

Let W be a Coxeter group with simple reflections S. Let � : W → N

be the length function defined by the simple reflections S. In [KL79], for
any two elements y, w ∈ W , a polynomial Py,w(q) ∈ Z[q] is attached.
Consider the Hecke algebra H over A = Z[q, q−1] (q is an indetermi-
nate) with basis {Tw}w∈W and multiplication given by TwTw′ = Tww′ if
�(ww′) = �(w) + �(w′) and (Ts + 1)(Ts − q) = 0 for all s ∈ S. Then
{∑y∈W ;y≤w Py,w(q)Ty}w∈W is (up to a factor) the “new basis” of H intro-
duced in [KL79].

In [LV11] (for W a Weyl group) and [L11] (in general), the authors work
in the situation of a triple (W, S, ∗) where (W, S) is as before and ∗ is
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an involution of (W, S). Let I∗ = {w ∈ W |w∗ = w−1} be the ∗-twisted
involutions in W . From the data (W, S, ∗), a refined version Pσ

y,w(q) ∈ Z[q]
of Py,w(q) is defined for y, w ∈ I∗. They also introduced a free A-module M
with basis {aw}w∈I∗ , which carries a natural module structure over the Hecke
algebra H′ with q replaced by q2. Then {∑y≤w,y∈I∗ Pσ

y,w(q)ay}w∈I∗ is (up
to a factor) the “new basis” of M introduced in [LV11, Theorem 0.3] and
[L11, Theorem 0.4]. The algebraic definitions of Pσ

y,w(q) will be reviewed in
Section 2.1.

1.2 Affine Weyl group

For the rest of the note we consider the setting of [L11, Section 6]: (W, S)

is the Coxeter group associated to an untwisted connected affine Dynkin
diagram. Let � ⊂ W be the subgroup of translations, i.e., those elements
which have finite conjugacy classes. This is a free abelian normal subgroup of
W of finite index. Let W = W/�. We shall use additive notation for the group
law in �. The conjugation action of w ∈ W on � is denoted by λ �→ wλ.

Fix a hyperspecial vertex s0 ∈ S (i.e., a vertex in S with Dynkin label equal
to 1). Then the finite Weyl group WJ generated by J = S − {s0} is a section
of the natural projection W → W , and we henceforth identify WJ with W .
Let wJ be the longest element of WJ .

An element λ ∈ � is dominant if �(λwJ ) = �(λ) + �(wJ ). Let �+ denote
the set of dominant translations. The set of double cosets WJ \W/WJ is in
bijection with �+: each WJ -double coset in W contains a unique λ ∈ �+. For
λ ∈ �+, let dλ = λwJ be the longest element in the double coset WJ λWJ .

Let ∗ be the automorphism of W defined by

w∗ := wJ wwJ , for w ∈ WJ ; (1.1)

λ∗ := −wJ λ for λ ∈ �.

This ∗ is an involution which stabilizes S and fixes s0. In fact, if wJ acts by
−1 on �, then ∗ is the identity; otherwise ∗ has order two. As shown in [L11,
Proposition 8.2], every element dλ belongs to I∗. Therefore we may consider
the polynomials Pσ

dμ,dλ
(q).

The following theorem is the main result of this note, which was conjec-
tured by the first author in [L11, Conjecture 6.4].

Theorem 1.3. Notation as above. Then for any λ, μ ∈ �+, we have

Pσ
dμ,dλ

(q) = Pdμ,dλ(−q).

The proof of the theorem will be given in Section 4, after some preparation
regarding the geometric Satake equivalence in Section 3. In Section 7, we give
a generalization of the above theorem to other involutions 	 of (W, S) which
are closely related to ∗.
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In [L11, Proposition 8.6], the first author proves special cases of this result
by pure algebra.

It is proved in [L83, 6.1] that Pdμ,dλ(q) is a q-analogue of the μ-weight

multiplicity in the irreducible representation Vλ of an algebraic group Ǧ (see
the discussion in Section 3.3). Therefore, we may interpret the above theorem
as saying that Pσ

dμ,dλ
(q) is a (−q)-analogue of weight multiplicities, hence

the title of this note.

1.4 The Zσ -functions

The polynomial Py,w(q) is the Poincaré polynomial of the local intersection
cohomology of an affine Schubert variety indexed by w; the Poincaré poly-
nomial of the global intersection cohomology of the same affine Schubert
variety is given by

Zw(q) =
∑

y∈W ;y≤w

Py,w(q)q�(y) ∈ Z[q]. (1.2)

In Section 2.2, we will define certain rational functions Zσ
w(q) which are

analogues of Zw(q) in the σ -twisted setting. We also set

Z̃dλ(q) = Zdλ(q)ZwJ (q)−1 ∈ Q(q), Z̃σ
dλ

(q) = Zσ
dλ

(q)Zσ
wJ

(q)−1 ∈ Q(q).

(1.3)
The function Z̃dλ(q) is in fact the Poincaré polynomial of the global intersec-
tion cohomology of an affine Schubert variety in the affine Grassmannian (see
(5.11)), hence it belongs to Z[q]. Our second main result is

Theorem 1.5. For any λ ∈ �+ we have Z̃σ
dλ

(q) = Z̃dλ(−q).

We will present two proofs of the theorem, one geometric in Section 5
which is based on a cohomological interpretation of Zσ

w(q), and one algebraic
in Section 6. Both proofs rely on Theorem 1.3.

1.6 Signatures

It is also observed in [L83] that Z̃dλ(q) is a q-analogue of the dimension of
the irreducible representation Vλ of the group Ǧ. We will show in Section 6.6
that Z̃σ

dλ
(q) is a q-analogue of the signature of Vλ under a naturally defined

hermitian form introduced in [L97].

1.7 Gelfand’s trick

It is interesting to notice the relation between the involution ∗ and “Gelfand’s
trick” in proving that the spherical Hecke algebra is commutative. In fact,
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for a split simply-connected almost simple group G over a local field F
with Weyl group WJ , the double coset G(OF)\G(F)/G(OF ) is in bijection
with WJ \W/WJ . The spherical Hecke algebra Hsph consists of compactly
supported bi-G(OF )-invariant functions on G(F) with the algebra structure
given by convolution. There is an involution g �→ g∗ of G which stabilizes a
split maximal torus T and acts by −wJ on X∗(T ) = �. The induced action
on the affine Weyl group W is the same as the one given in Section 1.2. The
anti-involution τ : g �→ (g∗)−1 induces an anti-involution on Hsph while
fixing each double coset WJ \W/WJ , hence acting by identity on Hsph. This
implies the commutativity of Hsph. Roughly speaking, the main theorem is a
categorification of Gelfand’s trick: it explains what τ does to the Satake cate-
gory (categorification of Hsph) beyond the level of isomorphism classes of
objects (on which it acts by identity).

1.8 Notation and conventions

By a tensor category, we mean a monoidal category with a commutativity
constraint compatible with the associativity constraint.

For an algebraic torus T , let X∗(T ) (resp. X
∗(T )) denote the group of

cocharacters (resp. characters) of T . For a cocharacter λ : Gm → T , we use
xλ to mean the image of x ∈ Gm under λ; for a character α : T → Gm , we
use zα to denote the image of z ∈ T under α. Note that (xλ)α = x 〈α,λ〉 ∈ Gm .

By an involution in a group, we mean an element of order at most two.
All algebraic varieties in this note are over C; all complexes of sheaves are

with Q-coefficients.
For an algebraic variety X of dimension n, let IH•(X) denote its inter-

section cohomology groups with Q-coefficients. We normalize it so that
IHi (X) = 0 unless 0 ≤ i ≤ 2n.

2. Algebraic definition of PσPσPσ and ZσZσZσ : recollections from
[LV11] and [L11]

2.1 The Pσ -polynomials

We work with a general Coxeter group (W, S) with an involution ∗ as in
the second paragraph of Section 1.1. Let M be the free A = Z[q, q−1]-
module with basis {aw}w∈I∗ . Let H′ be the Hecke algebra of (W, S) with q
replaced by q2. Then [L11, Theorem 0.1] states that there is a unique H′-
module structure on M characterized by how Ts acts on aw for each s ∈ S
and w ∈ I∗. Moreover, [L11, Theorem 0.2(a)] states that there is a unique
involution m �→ m on M compatible with the bar involution on H′ given by
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q̄ = q−1 and T w = T −1
w−1 . Concretely, the bar involution on M is given by

[L11, Theorem 0.2(b)]

aw = (−1)�(w)T −1
w−1aw−1 .

Next we extend scalars from A to A = Z[q1/2, q−1/2]. We denote M =
A⊗AM . Then [L11, Theorem 0.4] states that there is a newA-basis {Aw}w∈I∗
of M characterized by the property that Aw = Aw and that

Aw = q−�(w)/2
∑

y≤w,y∈I∗
Pσ

y,w(q)ay .

Here the polynomials Pσ
y,w(q) ∈ Z[q] are required to satisfy Pσ

w,w(q) = 1

and deg Pσ
y,w ≤ 1

2 (�(w) − �(y) − 1) for y < w. The uniqueness of Aw with
these properties gives the definition of the polynomials Pσ

y,w(q).

2.2 The Zσ -functions

We want to define certain rational functions Zσ
w(q) which are analogues of

Zw(q) in the σ -twisted setting.
In the untwisted setting, consider the A-algebra homomorphism

χ : H → A given by χ(Tw) = q�(w) for all w ∈ W . Then Zw(q) is the value
of the new basis

∑
y≤w Py,w(q)Ty under the homomorphism χ .

To define Zσ
w(q), we replace χ : H → A by the following A-linear map

introduced in [L11, 5.7]

ζ : M → Q(q) (2.1)

aw �→ q�(w)

(
q − 1

q + 1

)φ(w)

for all w ∈ I∗

Here φ : I∗ → N is defined in [L11, 4.5]. Concretely, for w ∈ I∗ with image
w ∈ W , φ(w) = e(w∗) − e(∗), where e(∗) (resp. e(w∗)) is the dimension of
the (−1)-eigenspace of the involution t �→ t∗ (resp. t �→ w(t∗)) on �Q =
� ⊗Z Q.

For w ∈ I∗ we let Zσ
w(q) be the image of the new basis of M under ζ :

Zσ
w(q) = ζ

⎛

⎝
∑

y∈I∗;y≤w

Pσ
y,w(q)ay

⎞

⎠

=
∑

y∈I∗;y≤w

Pσ
y,w(q)q�(y)

(
q − 1

q + 1

)φ(y)

∈ Q(q) (2.2)
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3. Geometric definition of the PσPσPσ -polynomials

3.1 Affine flag variety

In this section we give a geometric definition of the polynomials Pσ
x,y(q).

In fact, in the case of finite Weyl groups with ∗ = id, such a geometric defi-
nition is given in [LV11, Section 3] using the geometry of flag varieties. It is
remarked in [LV11, Section 7.1-7.2] that such a geometric definition works
for affine Weyl groups and general ∗, with the flag varieties replaced by affine
flag varieties. This section is an elaboration of this remark.

Let G be the simply-connected almost simple group over C whose extended
Dynkin diagram is the one we started with in Section 1.2, so that the usual
Dynkin diagram of G is given by removing the vertex s0. Fix a pinning for
G; in particular, fix a maximal torus T ⊂ G, and a Borel B containing T .
We may identify (WJ , S −{s0}) with the Weyl group NG(T )/T together with
the simple reflections determined by B. We may also identify � with the
cocharacter lattice X∗(T ), which is also the coroot lattice of G.

Let G((t)) be the loop group associated to G: it is the ind-scheme repre-
senting the functor R �→ G(R((t))) for any C-algebra R. Let G[[t]] ⊂ G((t))
be the subscheme representing the functor R �→ G(R[[t]]). The affine Weyl
group W may be identified with the C-points of NG((t))(T ((t)))/T [[t]]. For
each w ∈ W , we choose a lifting ẇ of it in NG((t))(T ((t))). For example, if
λ ∈ �, we may choose λ̇ to be the point tλ ∈ T ((t)).

An Iwahori subgroup of G((t)) is one which is conjugate to I = π−1(B) ⊂
G[[t]] where π : G[[t]] → G is the mod t reduction morphism. Let Fl =
G((t))/I be the affine flag variety of G classifying Iwahori subgroups of the
loop group G((t)). This is a (locally finite) infinite union of projective vari-
eties over C of increasing dimensions. The group scheme I acts on Fl from the
left with orbits Flw = IẇI/I indexed by w ∈ W . Each orbit Flw is isomorphic
to an affine space of dimension �(w) (with respect to the simple reflections S).
Let Fl≤w be the closure of Flw, which is the union of Fly for y ≤ w.

Consider the derived category DI(Fl) = lim−→w∈W
DI(Fl≤w) of I-equivariant

Q-complexes which are supported on the Fl≤w for some w ∈ W . Note that
for fixed w, the I-action on Fl≤w factors through a quotient group scheme Iw

of finite type such that ker(I → Iw) is pro-unipotent. We therefore understand
DI(Fl≤w) as the category of Iw-equivariant derived category of Q-complexes
on the projective variety Fl≤w in the sense of [BL94].

3.2 Geometric interpretation of the Pσ -polynomials

Let ∗ denote the pinned automorphism of G such that λ �→ (wJ λ)∗ acts by −1
on �. This involution induces an involution on the affine Weyl group (W, S)
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which coincides with the ∗ defined in (1.1). The involution ∗ also induces an
involution on G((t)) preserving the Iwahori I, so that it induces an involution
on Fl which we still denote by ∗.

Consider the anti-involution τ of G((t)) defined as

τ (g) = (g∗)−1.

We would like to define a functor:

τ ∗ : DI(Fl) → DI(Fl)

given by pull-back along the map τ . We may identify each object of DI(Fl) as
a complex on G((t)) equivariant under the left and right translation by I. Since
each I-double coset IẇI ⊂ G((t)) is sent to another double coset I(ẇ∗)−1I,
pull-back by τ preserves bi-I-equivariance, and defines the functor τ ∗.

For each object K ∈ DI(Fl) and y ∈ W , the restriction of K to Fly is a
constant complex by I-equivariance. We therefore have a vector space Hi

yK,
which is canonically isomorphic to the i-th cohomology of the stalk of Sw at
any point of Fly .

For each w ∈ W , one has the (shifted) intersection cohomology complex
Sw ∈ DI(Fl) of Fl≤w , which we normalize so that Sw|Flw

∼= Q. If w ∈ I∗
(i.e., (w∗)−1 = w), we have a canonical isomorphism

�w : τ ∗Sw
∼→ Sw (3.1)

whose restriction to Flw is the identity map for the constant sheaf Q. For each
y ∈ I∗, y ≤ w, the restriction of �w induces an involution:

Hi
y�w : Hi

ySw = τ ∗Hi
y(τ

∗Sw) → Hi
ySw

where the first equality comes from the definition of τ ∗. Then

Pσ
y,w(q) =

∑

i∈Z

tr(Hi
y�w,Hi

ySw)qi/2. (3.2)

It is known that Hi
ySw = 0 for odd i (see [KL80, Theorem 4.2] for the case

W finite, [KL80, Theorem 5.5] for the case W affine; see also [G01, A.7] for
the affine case), therefore Pσ

y,w ∈ Z[q].

3.3 Affine Grassmannian and the geometric Satake equivalence

Let Gr = G((t))/G[[t]] be the affine Grassmannian of G, which is also a
locally finite union of projective varieties of increasing dimensions. The left
translation by G[[t]] on Gr has orbits indexed by WJ -orbits on �. For each
dominant coweight λ ∈ �+, there is a unique G[[t]]-orbit Grλ containing tλ
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(which also contains tλ
′
for any λ′ in the same WJ -orbit of λ). The dimension

of Grλ is 〈2ρ, λ〉, where 2ρ is the sum of positive roots of G.
Let S = PG[[t]](Gr) be the category of G[[t]]-equivariant perverse sheaves

on Gr which are supported on finitely many G[[t]]-orbits. This abelian cate-
gory carries a convolution product � : S ×S → S (see [L83, Corollary 8.7],
see [G95, Proposition 2.2.1]), which is equipped with an obvious associativity
constraint and a less obvious commutativity constraint (due to Drinfeld, see
an exposition in [MV07, Section 5]) making (S, �) a tensor category (the
convolution product is usually denoted by ∗ in literature, and we change it
to � to avoid confusion with the involution ∗). Let Vecgr be the category of
finite dimensional graded Q-vector spaces (the commutativity constraint is
not adjusted by the Koszul sign convention, so Vecgr ∼= Rep(Gm) as tensor
categories). Consider the functor

H• : S → Vecgr

K �→
⊕

i∈Z

Hi (Gr, K).

This functor carries a tensor structure (see [G95, Proposition 3.4.1] and
[MV07, Proposition 6.3], note that the commutativity constraint of S is
adjusted by a sign in [MV07, Paragraph after Remark 6.2] in order to make
H• a tensor functor).

Composing H• with the forgetful functor Vecgr → Vec (the category
of finite dimensional vector spaces), we get a fiber functor H of the ten-
sor category S , hence an algebraic group Ǧ = Aut⊗(H) over Q. In [G95,
Theorem 3.8.1] (with the corrected commutativity constraint by Drinfeld and
based on results of [L83]), it is proved that Ǧ is a connected split reductive
group over Q whose root datum is dual to G. The proof in [MV07, Theorem
7.3] in fact equips Ǧ with a maximal torus Ť with a canonical identification
X∗(Ť ) = � = X∗(T ). In fact, letting Vec� be the category of finite dimen-
sional �-graded vector spaces, the functor H• factors as

H• : S ⊕λ∈� Fλ−−−−→ Vec� 〈2ρ,−〉−−−−→ Vecgr

Here the first arrow is the sum of weight functors introduced in [MV07,
Theorem 3.6]; the second functor turns a �-graded vector space ⊕λV λ into a
Z-graded one V i := ⊕〈2ρ,λ〉=i V λ. Under the identification S ∼→ Rep(Ǧ), the
functor H• then factors as

Rep(Ǧ) → Rep(Ť ) → Rep(Gm)

induced by the homomorphisms 2ρ : Gm → Ť ↪→ Ǧ.
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3.4 Geometric interpretation of Pσ
dμ,dλ

(q)

For each λ ∈ �+, let Cλ be the shifted intersection cohomology complex of
the closure Gr≤λ of Grλ, such that Cλ|Grλ = Q. The involution τ of G((t))
again induces a functor

τ ∗ : S → S. (3.3)

One can similarly define the stalk Hi
μCλ for μ ≤ λ ∈ �+, which again vani-

shes for odd i . Each double coset G[[t]]tλG[[t]] is sent to G[[t]]t−λ∗
G[[t]].

By the definition of ∗, we have −λ∗ = wJ λ, hence G[[t]]t−λ∗
G[[t]] =

G[[t]]tλG[[t]], i.e., each G[[t]]-double coset in G((t)) is stable under τ (this
is equivalent to saying that the longest element in each WJ -double coset
belongs to the set I∗ of ∗-twisted involutions). This means one can fix an
isomorphism

�λ : τ ∗Cλ
∼→ Cλ (3.4)

which is the identity when restricted to Grλ. This isomorphism similarly
induces an involution:

Hi
μ�λ : Hi

μCλ = Hi
μ(τ ∗Cλ) → Hi

μCλ.

We have a projection map π : Fl → Gr. For each λ ∈ �+, the pre-
image π−1(Gr≤λ) = Fl≤dλ (recall dλ ∈ WJ λWJ is the longest element).
Since Fl≤dλ → Gr≤λ is smooth, we have an isomorphism φλ : π∗Cλ

∼= Sdλ ,
which can be made canonical by requiring its restriction to Fldλ to be the
identity map on the constant sheaf. Moreover, the isomorphism φλ clearly
intertwines �λ and �dλ . Using φλ, we get a commutative diagram

H j
μCλ

H j
μφλ ��

H j
μ�λ

��

H j
dμ

Sdλ

H j
μ�λ

��

H j
μCλ

H j
μφλ �� H j

dμ
Sdλ

in which the horizontal arrows are isomorphisms. Therefore, from (3.2) we
get

Pσ
dμ,dλ

(q) =
∑

j∈Z

tr(H2 j
μ �λ,H2 j

μ Cλ)q
j . (3.5)

3.5 Loop group of a compact form

At certain points in the proof of the main theorem, it is convenient to take an
alternative point of view of the affine Grassmannian Gr, namely the space of
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polynomial loops on the compact form of G. We remark that the switch of
viewpoint is not necessary for the proof, but it makes the idea of the proof
more transparent.

Let K ⊂ G(C) be a compact real form which is stable under ∗ (for
example, we may define K using the Cartan involution ẇJ∗, for any lifting of
ẇJ of wJ to NG(T )). Let � = �pol K be the space of polynomial loops on K
based at the identity element 1 ∈ K (see [PS86, §3.5]). By [PS86, Theorem
8.6.3], there is a homeomorphism

ι : �
ι̃

↪→ G(C((t)))
p−→ Gr(C).

The stratification of Gr by {Grλ}λ∈�+ gives a Whitney stratification of �.
We denote the strata by �λ with closure �≤λ. Let Db(�) = lim−→λ

Db(�≤λ).

Let SK be the full subcategory of Db(�) consisting of perverse sheaves which
are locally constant along each strata �λ.

Let mK : � × � → � be the multiplication map. This is stratified in the
sense that mK (�≤λ × �≤μ) = �≤λ+μ for λ, μ ∈ �+. Define

�K : Db(�) × Db(�) → Db(�)

(K1, K2) �→ mK !(K1 � K2).

Let
H• : SK → Vecgr

be the functor of taking total cohomology.
The involution τ : k �→ (k∗)−1 on K induces an involution τK on �, which

gives the pullback functor

τ ∗
K : Db(�) → Db(�).

Lemma 3.6.

(1) The functor �K has image in SK , and there is a natural associativity
constraint making (SK , �K ) a monoidal category; H• : SK → Vecgr is
naturally a monoidal functor.

(2) The pull-back functor ι∗ gives a monoidal equivalence ι∗ : (S, �) →
(SK , �K ).

(3) There is a natural isomorphism of monoidal functors H• ◦ ι∗ ∼= H• : S →
Vecgr.

(4) The functor τ ∗
K sends SK to SK ; τ ∗ and τ ∗

K are naturally intertwined
under ι∗.

Proof. (1)(2) The functor ι∗ identifies SK with the category of per-
verse sheaves on Gr locally constant along the strata Grλ. By [MV07,



A (−q)-analogue of weight multiplicities 321

Proposition A.1] the latter category is canonically equivalent to S . To prove
(1) and (2), it suffices to give ι∗ a monoidal structure. Recall that the convo-
lution product � on S is defined as

K1 � K2 = m!(K1 � K2)

Here m : G((t))
G[[t]]× Gr → Gr is the multiplication map, K1 � K2 is the

perverse sheaf on G((t))
G[[t]]× Gr characterized by

p′∗K1 � K2 = p∗K1 � K2 on G((t)) × Gr, (3.6)

where p : G((t)) → Gr, p′ : G((t)) × Gr → G((t))
G[[t]]× Gr are the projec-

tions. To give ι∗ a tensor structure, we need to give a canonical isomorphism

mK !(ι
∗K1 � ι∗K2) ∼= ι∗m!(K1 � K2)

for any K1, K2 ∈ S . Note that we have a commutative diagram

� × �
ι2 ��

mK

��

G((t))
G[[t]]× Gr

m

��
�

ι �� Gr

(3.7)

where ι2 is given by the composition

� × �
ι̃×ι−→ G((t)) × Gr

p′
−→ G((t))

G[[t]]× Gr.

It is easy to see that ι2 is also a homeomorphism, so (3.7) is a Cartesian
diagram. Therefore, by proper base change, we have a canonical isomorphism

ι∗m!(K1 � K2) ∼= mK !ι
∗
2(K1 � K2)

= mK !(̃ι × ι)∗ p′∗(K1 � K2)
(3.6)= mK !(̃ι × ι)∗(p∗K1 � K2)

= mK !(̃ι
∗ p∗K1 � ι∗K2) = mK !(ι

∗K1 � ι∗K2)

It is easy to check these isomorphisms are compatible with the associativity
constraints.

(3) is obvious.
(4) For each K ∈ S , we need to give a functorial isomorphism

ι∗τ ∗K
∼→ τ ∗

K ι∗K.

Recall ι factors as �
ι̃−→ G((t))

p−→ Gr and ι̃τK = τ̃ ι, where τ : g �→ (g∗)−1

is the anti-automorphism of G((t)). Therefore

ι∗τ ∗K = ι̃∗ p∗τ ∗K = ι̃∗τ ∗ p∗K = τ ∗
K ι̃∗ p∗K = τ ∗

K ι∗K.

This gives the desired isomorphism. �
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Using part (2) of Lemma 3.6, one can transfer the commutativity con-
straint of (S, �) to (SK , �K ) making the latter a tensor category. Part (3)
of Lemma 3.6 then gives the functor H• a tensor (in addition to monoidal)
structure.

4. Proof of theorem 1.3

For a monoidal category (C, ⊗), we let (C, ⊗σ ) be the same category
equipped with a new functor ⊗σ : C × C → C given by X ⊗σ Y := Y ⊗ X .
It is easy to check that (C, ⊗σ ) also carries a monoidal structure.

Lemma 4.1. The functor τ ∗ : S → S carries a natural structure of a
monoidal functor

τ ∗ : (S, �) → (S, �σ ).

Proof. Using Lemma 3.6(2) and (4), it suffices to construct the monoidal
structure of τ ∗

K . Let σ : �×� → �×� be the involution which interchanges
two factors. Since τK is an anti-involution, we have a Cartesian diagram

� × �
τK ×τK ��

mK ◦σ
��

� × �

mK

��
�

τK �� �

(4.1)

Therefore by proper base change, for any K1, K2 ∈ SK , we have a canonical
isomorphism

τ ∗
K mK !(K1 � K2) ∼= (mK ◦ σ)!(τ

∗
K K1 � τ ∗

K K2) = mK !(τ
∗
K K2 � τ ∗

K K2).

By the definition of �K , we get a canonical isomorphism

τ ∗
K (K1 �K K2)

∼→ τ ∗
K K2 �K τ ∗

K K1.

It is easy to check that these isomorphisms are compatible with the associa-
tivity constraint and the unit objects of (SK , �K ) and (SK , �σ

K ). This finishes
the proof of the lemma. �

Let H•,σ : (S, �σ ) → (Vecgr, ⊗) be the same functor as H•, except
that we change its monoidal structure to the one of H• composed with
the commutativity constraint of ⊗ for Vecgr, so that H•,σ is also a tensor
functor.

Lemma 4.2. There is a natural isomorphism γ : H•,σ ◦ τ ∗ ∼→ H•, which
preserves the monoidal structures of both functors.
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Proof. Using Lemma 3.6, it suffices to give a natural isomorphism γK :
H• ◦ τ ∗

K
∼→ H• between functors SK → Vecgr, which preserves the monoidal

structures. Since τK is an automorphism of �, we have a canonical isomor-
phism H•(�, τ ∗

K K)
∼→ H•(�, K), which gives the desired γK . It remains to

check that γ preserves the monoidal structures. But this is also obvious from
the natural monoidal structure of H• : SK → Vecgr. �

Suppose we have two Tannakian categories (C, ⊗) and (D, ⊗) equipped
with fiber functors ωC and ωD into Veck respectively (k is a field). Let
F : (C, ⊗) → (D, ⊗) be a monoidal functor equipped with a monoidal iso-
morphism φ : ωD ◦ F

∼→ ωC . Then φ induces a homomorphism of algebraic
groups over k:

(F, φ)# : Aut⊗(ωD) → Aut⊗(ωC)

(ωD
h−→ ωD) �→ (ωC

φ−1

−−→ ωD ◦ F
h◦idF−−−→ ωD ◦ F

φ−→ ωC).

Since the notion of tensor morphisms between tensor functors only use their
structures as monoidal functors, the above definition makes sense even if F is
only a monoidal functor. More generally, if ωC and ωD take values in another
Tannakian category V equipped with a fiber functor ω : V → Vec, then F
induces a homomorphism of algebraic groups (F, φ)# : Aut⊗(ω ◦ ωD) →
Aut⊗(ω ◦ ωC) making the following diagram commutative

Aut⊗(ω)
ω#
D

�������������
ω#
C

�������������

Aut⊗(ω ◦ ωD)
(F,φ)#

�� Aut⊗(ω ◦ ωC)

We apply the above remarks to the situation

(S, �)
τ∗

��

H•
�����������

γ⇐

(S, �σ )

H•,σ
�����������

Vecgr

and get a commutative diagram of algebraic groups over Q:

Gm
2ρ

����
��

��
�� 2ρ

		�
��

��
��

�

Ǧ
(τ∗,γ )#

�� Ǧ

In other words, (τ ∗, γ )# is an automorphism of Ǧ fixing the elements in the
torus 2ρ(Gm) pointwise. Since τ ∗ does not change the isomorphism classes of



324 George Lusztig and Zhiwei Yun

irreducible objects in S , this automorphism must be inner. Therefore (τ ∗, γ )#

determines an element g ∈ Ť (note that Ǧ is of adjoint form).
Using the commutative constraint of (S, �), the identity functor gives a

monoidal equivalence

idσ
S : (S, �)

∼→ (S, �σ ).

There is a unique natural isomorphism of monoidal functors � : τ ∗ ∼→ idσ
S

making
idH•,σ ◦ � = γ : H•,σ ◦ τ ∗ → H•,σ ◦ idσ

S = H•.

In fact, identifying S with Rep(Ǧ), the functor τ ∗ sends V ∈ Rep(Ǧ) (with
the action α : Ǧ → Aut(V )) to the same vector space V with the new action

Ǧ
Ad(g)−−−→ Ǧ

α−→ Aut(V ). Then the effect of the natural isomorphism � on V
is given by α(g−1) : V → V .

Lemma 4.3.

(1) The element g ∈ Ť (Q) is (−1)ρ , the image of −1 under the cocharacter
ρ : Gm → Ť (note that Ǧ is of adjoint type, so ρ is a cocharacter of Ť ).

(2) The effect of the natural isomorphism � on the intersection complex
Cλ[〈2ρ, λ〉] ∈ S is (−1)〈ρ,λ〉�λ.

(3) The action of the involution τ ∗
K on IH2 j (�≤λ) is by (−1) j .

Proof. Let λ ∈ �+. The action of g−1 on H•(�, Cλ)[〈2ρ, λ〉] = IH•(�≤λ)

[〈2ρ, λ〉] = Vλ ∈ Rep(Ǧ) is given by the composition

IH•(�≤λ)
τ∗

K−→ IH•(�≤λ) = H•(�, τ ∗
K Cλ)

H•(�,�λ)−−−−−−→ H•(�, Cλ) = IH•(�≤λ).

where the first arrow is the pull-back along the anti-involution τK of �≤λ and
�λ : τ ∗

K Cλ → Cλ is induced from the effect of � on Cλ[〈2ρ, λ〉] ∈ S . Since
the only automorphisms of Cλ are scalars, the isomorphisms �λ and �λ must
be related by �λ = cλ�λ for some constant cλ ∈ Q×: the restriction of �λ

on �λ is given by multiplication by cλ on the constant sheaf.
The stratum �λ homotopy retracts to the K -orbit of tλ, which is a partial

flag variety G/Pλ = K/Pλ ∩ K (see [MV07, Top of page 100]). The action
of τK on Ad(K )tλ ∼= K/Pλ ∩ K is given by

ktλk−1 �→ (k∗tλ
∗
k∗,−1)−1 = k∗t−λ∗

k∗,−1 = k∗ẇJ tλẇ−1
0 k∗,−1.

Therefore the induced action of τ ∗
K on K/Pλ ∩ K is given by k mod Pλ ∩

K �→ k∗wJ mod Pλ ∩ K (any lifting ẇJ ∈ NT ∩K (K ) normalizes Pλ ∩ K ,
hence the right translation makes sense).
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Let jλ : �λ ↪→ �≤λ be the inclusion. We have a commutative diagram

IHi (�≤λ)

c−1
λ g−1

��

j∗λ �� Hi(�λ)
∼ ��

τ∗
K

��

Hi (K/Pλ ∩ K )

wJ ∗
��

IHi (�≤λ)
j∗λ �� Hi(�λ)

∼ �� Hi (K/Pλ ∩ K )

(4.2)

When i ≤ 2, the horizontal restriction maps are isomorphisms. In fact, from
the stratification �≤λ by the open �λ and the closed complement z : �<λ ↪→
�≤λ, we get an exact sequence

Hi (�<λ, z!Cλ) → IHi (�≤λ) → Hi (�λ) → Hi (�<λ, z!Cλ) (4.3)

Since dim �<λ ≤ 〈2ρ, λ〉 − 2 and z!Cλ[〈2ρ, λ〉] lies in perverse degree
≥ 1, z!Cλ lies in the usual cohomological degree ≥ 3. This implies
Hi (�<λ, z!Cλ) = 0 for i ≤ 2 hence the isomorphism follows from the exact
sequence (4.3).

We claim that the action τ ∗
K : k �→ k∗wJ on the partial flag variety

K/Pλ ∩ K induces −1 on H2(K/Pλ ∩ K ). In fact, H2(K/Pλ ∩ K , Q) ↪→
H2(K/T , Q) ∼= X

∗(T )Q by pull-back along the projection K/T ∩ K →
K/Pλ∩K , and this map is equivariant under the (W �Out(G))λ-actions (sub-
script λ means stabilizer of λ under the W � Out(G)-action on � = X∗(T )).
Since ∗wJ = wJ∗ ∈ W � Out(G) acts on � by −1 by definition, the claim
follows.

Since τ ∗
K induces the identity action on H0(K/Pλ ∩ K ), c−1

λ g−1 acts by
identity on IH0(�≤λ) by diagram (4.2). Since τ ∗

K acts by -1 on H2(K/Pλ ∩ K )

by the above claim, c−1
λ g−1 acts on IH2(�≤λ) by multiplication by −1 by

diagram (4.2).
Recall that the grading on IH•(�≤λ)[〈2ρ, λ〉] ∼= Vλ comes from the action

of the cocharacter 2ρ : Gm → Ť on Vλ. Let Vλ(μ) be the weight space of
weight μ under the Ť -action, we have

IHi(�≤λ) =
⊕

〈2ρ,μ〉=i

Vλ(μ).

In particular,

IH0(�≤λ) = Vλ(
wJ λ);

IH2(�≤λ) =
⊕

Vλ(
wJ λ + α∨

i )

where the sum is over the simple roots α∨
i of Ǧ. Therefore, the previous para-

graph implies

c−1
λ g−wJ λ = 1; (4.4)

c−1
λ g−wJ λ−α∨

i = −1 for all simple roots α∨
i .
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Comparing these two equations we conclude that gα∨
i = −1 for all simple

roots α∨
i of Ǧ. On the other hand, (−1)ρ also has this property. Since Ǧ is

adjoint, an element in Ť is determined by its image under simple roots, there-
fore g = (−1)ρ . This proves (2). Plugging this back into (4.4), we conclude
that cλ = ((−1)ρ)−wJ λ = (−1)〈ρ,−wJ λ〉 = (−1)〈ρ,λ〉. This proves (1). Now
(3) follows easily from (1) and (2). �

4.4 Completion of the proof

By (3.5), it suffices to show that H2 j
μ �λ acts on H2 j

μ Cλ by (−1) j .
We extend the partially ordered set {μ ∈ �+, μ ≤ λ} into a totally ordered

one, and denote the total ordering still by ≤. For any μ ≤ λ, let �[μ,λ] =
�≤λ − �<μ. Similarly �(μ,λ] = �≤λ − �≤μ. Then we have a long exact
sequence

· · · → Hi
c(�(μ,λ], Cλ) → Hi

c(�[μ,λ], Cλ) → Hi
c(�μ, Cλ|�μ) → · · ·

Since Cλ|�μ is a complex of constant sheaves on �μ with stalks H∗
μCλ, the

third term in the above long exact sequence is isomorphic to ⊕a+b=i Ha
c (�μ)⊗

Hb
μCλ. Since �μ = Grμ is an affine space bundle over a partial flag variety

G/Pμ, we have that H•
c(�μ) ∼= H•(G/Pμ)[−〈2ρ, μ〉 + dim G/Pμ] which is

concentrated in even degrees. We also know that Hb
μCλ vanishes for odd b.

Therefore the third term in the above exact sequence vanishes for odd i .
Using decreasing induction for μ (starting with λ), we conclude that each
H•

c(�[μ,λ], Cλ) is concentrated in even degrees, and the above long exact
sequence becomes a short one for even i . This gives a canonical decreasing
filtration

F≥μIH•(�≤λ) := H•
c(�[μ,λ], Cλ)

with associated graded pieces

grμF IH•(�≤λ) = H•
c(�μ) ⊗ H•

μCλ. (4.5)

The action of τ ∗
K preserves each F≥μ, and the induced action on the associated

graded pieces takes the form

grμFτ ∗
K = (τK |�μ)∗ ⊗H•

μ�λ : H•
c(�μ)⊗H•

μCλ → H•
c(�μ)⊗H•

μCλ. (4.6)

By Lemma 4.3(3), the action of τ ∗
K on the top-dimensional cohomology

H2〈2ρ,μ〉
c (�μ) ∼= IH2〈2ρ,μ〉(�≤μ) is via multiplication by (−1)〈2ρ,μ〉 = 1;

the action of τ ∗
K on H2〈2ρ,μ〉

c (�μ) ⊗ H2 j
μ Cλ ⊂ grμF IH2 j+2〈2ρ,λ〉(�≤λ), as a

subquotient of IH2 j+2〈2ρ,λ〉(�≤λ), is via multiplication by (−1) j+〈2ρ,λ〉 =
(−1) j . Therefore, by (4.6), H2 j

μ �λ acts on H2 j
μ Cλ via multiplication by

(−1) j . This finishes the proof of Theorem 1.3.
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5. Geometric proof of theorem 1.5

The proof of Theorem 1.5 will become transparent once we give a cohomo-
logical interpretation of the Zσ -polynomials.

5.1 Affine flag variety via a compact form

We already see that � = �K
∼→ Gr(C) is a homeomorphism. We need an

analogous statement for the affine flag variety. Let Tc = K ∩ T be a maxi-
mal torus in K . Then the inclusion K ⊂ G(C) induces a homeomorphism
K/Tc

∼→ (G/B)(C). The multiplication (g, kTc) �→ gkI gives a continuous
map ιFl : � × K/Tc → Fl(C) making the following diagram commutative

� × K/Tc

pr�
��

ιFl �� Fl(C)

π

��
�

ι �� Gr(C)

(5.1)

It is easy to check that ιFl is bijective on points, hence a homeomorphism
because it is a continuous map from a compact space to a Hausdorff one.
Moreover, ιFl is Tc-equivariant, where Tc acts on � × K/Tc diagonally by
conjugation and left translation, and it acts on Fl(C) by left translation. Thus
ιFl induces a homeomorphism

ι̃Fl : K
Tc× Fl(C)

∼→ K
Tc× (� × K/Tc)

∼→ K/Tc × � × K/Tc

where the last arrow is (k1, g, k2Tc) �→ (k1Tc, k1gk−1
1 , k1k2Tc). Let � =

K/Tc × � × K/Tc, on which K acts diagonally via left translation on both
factors K/Tc and via conjugation on �. Then ι̃Fl is K -equivariant (with K

acting on the first factor on K
Tc× Fl). We define �w (resp. �≤w) to be the

image of K
Tc× Flw (resp. K

Tc× Fl≤w) under ι̃Fl. The isomorphism ι̃Fl therefore
induces an isomorphism

IH•
I (Fl≤w) ∼= IH•

Tc
(Fl≤w)

∼→ IH•
K (�≤w). (5.2)

Recall from (3.1) that we have an isomorphism �w : τ ∗Sw
∼→ Sw in the

category DI(Fl) for w ∈ I∗, where Sw is the shifted intersection cohomology
sheaf of Fl≤w. This induces an involution on I-equivariant cohomology

τ ∗ = H•
I (Fl, �w) : IH•

I (Fl≤w) → IH•
I (Fl≤w). (5.3)

On the other hand, � also admits an involution τ̃ : (k1Tc, g, k2Tc) �→
(k∗

2 Tc, (g∗)−1, k∗
1 Tc), which intertwines the original diagonal K -action and
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that action pre-composed with ∗. For w ∈ I∗, τ̃ induces an involution

τ̃ ∗ : IH•
K (�≤w) → IH•

K (�≤w). (5.4)

The isomorphism (5.2) intertwines the involutions τ ∗ in (5.3) and τ̃ ∗ in (5.4).
We prefer working with IH•

K (�≤w) to working with IH•
I (Fl≤w) because the

involution τ̃ can be seen on the nose for �≤w , without having to appeal to
stacks such as [I\Fl].

Lemma 5.2. Let r be the rank of G. Then
∑

j∈Z

tr
(
τ̃ ∗, IH2 j

K (�≤w)
)

q j = q�(w)(1 − q)e(∗)−r (1 + q)−e(∗)Zσ
w(q−1)

as elements in Z[[q]]. Here e(∗) is the dimension of the (−1)-eigenspace of
∗ : �Q → �Q.

Proof. Via the isomorphism ι̃Fl, we view Sw as the intersection complex of
�≤w which is the constant sheaf on �w. The stratification of � by �≤w gives
a spectral sequence with the E2-page consisting of H•

K (�y, i !
ySw) abutting

to IH•
K (�≤w). Here iy : �y ↪→ � is the inclusion. Since i !

ySw is a sum
of constant sheaves on �y concentrated on even degrees, and H•

K (�y) ∼=
H•

T (pt) is also concentrated in even degrees, the spectral sequence neces-
sarily degenerates at E2. Therefore IH•

K (�≤w) admits an increasing filtration
indexed by {y ≤ w} with gryIH•

K (�≤w) = H•
K (�y, i !

ySw). The involution τ̃ ∗
on IH•

K (�≤w) maps gry to gr(y∗)−1 , therefore its trace is the sum of traces on
gry for y ∈ I∗, i.e.,

∑

j

tr(̃τ ∗, IH2 j
K (�≤w))q j =

∑

y≤w,y∈I∗

∑

j∈Z

tr(̃τ ∗, H2 j
K (�y, i !

ySw))q j . (5.5)

Verdier duality gives an isomorphism in DK (�y) commuting with the invo-
lutions induced by �w

i !
ySw

∼=
⊕

k

H2�(w)−2�(y)−2kSw[−2k]..

Hence
∑

j∈Z

tr(̃τ ∗, H2 j
K (�y, i !

ySw))q j (5.6)

=
∑

k∈Z

tr(H2�(w)−2�(y)−2k
y �w,H2�(w)−2�(y)−2k

y Sw)qk

×
∑

j∈Z

tr(̃τ ∗, H2k
K (�y))q

j

= q�(w)−�(y) Pσ
y,w(q−1)

∑

j∈Z

tr(̃τ ∗, H2 j
K (�y))q

j .
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We would like to calculate the τ̃ ∗-action on H•
K (�y). Write y = λy for

λ ∈ � and y ∈ W . Note that y∗ = y−1 since y ∈ I∗. Under the isomorphism

ι̃Fl : K
Tc× Fly

∼→ �y , the base point ẏI ∈ Fly corresponds to (Tc, tλ, yTc) ∈
�y . Consider the K -equivariant map

γy : K/Tc
∼→ K · ẏ ⊂ �y

kTc �→ (kTc, ktλk−1, k yTc).

This map in fact identifies K/Tc with the K -orbit K · ẏ ⊂ �y . Since Fly

is an affine space, the inclusion of the base point { ẏ} ↪→ Fly induces an

isomorphism H•
Tc

(Fly)
∼→ H•

Tc
({ ẏ}), therefore we get an isomorphism

H•
K (�y) ∼= H•

Tc
(Fly)

∼→ H•
Tc

({ ẏ}) ∼= H•
K (K · ẏ)

γ ∗
y−→ H•

K (K/Tc). (5.7)

Direct calculation shows that τ̃ (γy(kTc)) = γy(k∗y∗Tc). Therefore the τ̃ ∗-
action on H•

K (�y) can be identified with the involution on H•
K (K/Tc) induced

from the automorphism ε : kTc �→ k∗y∗Tc of K/Tc. We may write ε as the
composition of ∗ : K/Tc → K/Tc with the right action of y∗ on K/Tc.
Therefore the involution ε∗on H•

K (K/Tc) ∼= H•
Tc

(pt) is induced from the

involution t �→ Ad(y∗)−1(t∗) = Ad(y)(t∗) of Tc. This involution gives a
decomposition t = t+ ⊕ t− of the Lie algebra t ∼= �C of T into (+1) and
(−1)-eigenspaces, with dimensions r − e(y∗) and e(y∗) respectively (see
remarks following (2.1) for notations). Using (5.7) and the eigenspace decom-
position t = t+ ⊕ t−, we have

H•
K (�y)

γ ∗
y−→ H•

K (K/Tc) ∼= H•
Tc

(pt) ∼= Sym(t∨[−2])

∼= Sym(t∨+[−2]) ⊗ Sym(t∨−[−2]).

Therefore
∑

j∈Z

tr(̃τ ∗, H2 j
K (�y))q

j =
∑

j≥0

dim Sym j (t∨+)q j
∑

k≥0

dim Symk(t∨−)(−q)k

= (1 − q)e(y∗)−r (1 + q)−e(y∗).

Plugging this into (5.6) and then into (5.5), we get
∑

j

tr(̃τ ∗, IH2 j
K (�≤w))q j

=
∑

y≤w,y∈I∗
q�(w)−�(y) Pσ

y,w(q−1)(1 − q)e(y∗)−r (1 + q)−e(y∗)
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= q�(w)(1 − q)−r
∑

y≤w,y∈I∗
Pσ

y,w(q−1)q−�(y)

(
q−1 − 1

q−1 + 1

)e(y∗)

= q�(w)(1 − q)−r

(
q−1 − 1

q−1 + 1

)e(∗)

Zσ
w(q−1)

= q�(w)(1 − q)e(∗)−r (1 + q)−e(∗)Zσ
w(q−1). �

In the situation of the affine Grassmannian, the isomorphism (3.4) induces
an involution on the global sections τ ∗

K : IH•(�≤λ)
∼→ IH•(�≤λ).

Lemma 5.3. For λ ∈ �+, we have
∑

i∈Z

tr(τ ∗
K , IH2i (�≤λ))q

i = Z̃σ
dλ

(q). (5.8)

Proof. Note that �≤dλ = K/Tc × �≤λ × K/Tc. The map (5.2) induces
an isomorphism on intersection cohomology commuting with the relevant
involutions:

IH•
I (Fl≤dλ)

∼= IH•
K (�≤dλ)

∼= IH•
K (�≤λ) ⊗H•

K (pt) H•
K (K/Tc × K/Tc). (5.9)

where the last equality comes from the degeneration of the Leray spectral
sequence (for the projection �≤dλ → �≤λ) at E2 since all the relevant coho-
mology groups are concentrated in even degrees. Note that in (5.9), the invo-
lution on H•

K (K/Tc × K/Tc) is induced by (k1Tc, k2Tc) �→ (k∗
2 Tc, k∗

1 Tc), and
the involution on H•

K (pt) is induced by the involution ∗ of K .
Another spectral sequence argument shows that we have an isomorphism

IH•
K (�≤λ) ∼= H•

K (pt) ⊗ IH•(�≤λ)

commuting with the obvious involutions (the one on H•
K (pt) is again induced

by ∗, and the ones involving �≤λ are given by τ ∗
K ). Combining this with (5.9)

we get an isomorphism

IH•
I (Fl≤dλ)

∼→ IH•(�≤λ) ⊗ H•
K (K/Tc × K/Tc)

intertwining the involutions on both sides which we specified before. The
special case λ = 0, dλ = wJ gives IH•

I (Fl≤wJ )
∼= H•

K (K/Tc × K/Tc).
Therefore

IH•
I (Fl≤dλ)

∼→ IH•(�≤λ) ⊗ IH•
I (Fl≤wJ )

commuting with the relevant involutions. Taking the Poincaré polynomials
with respect to the traces of these involutions, and using Lemma 5.2, we get

q�(dλ)(1 − q)e(∗)−r (1 + q)−e(∗)Zσ
dλ

(q−1)

= q�(wJ )(1 − q)e(∗)−r (1 + q)−e(∗)Zσ
wJ

(q−1)
∑

j∈Z

tr(τ ∗
K , IH2 j (�≤λ))q

j .
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In view of the definition of Z̃σ
dλ

(q) in (1.3), we get

∑

j∈Z

tr(τ ∗
K , IH2 j (�≤λ))q

j = q�(dλ)−�(wJ ) Z̃σ
dλ

(q−1).

Let Qλ(q) denote the left side. Substituting q−1 for q in the above, we get

Qλ(q
−1) = q−�(dλ)+�(wJ ) Z̃σ

dλ
(q).

Poincaré duality for IH•(�≤λ) (which has dimension 〈2ρ, λ〉) implies
Qλ(q) = q〈2ρ,λ〉Qλ(q−1). Therefore

Qλ(q) = q〈2ρ,λ〉Qλ(q
−1) = q〈2ρ,λ〉+�(wJ )−�(dλ) Z̃σ

dλ
(q).

Since �(dλ) = �(wJ ) + 〈2ρ, λ〉 (i.e, dim Fl≤dλ = dim G/B + dim Gr≤λ), the
above equality implies (5.8). �

5.4 Completion of the proof

By Lemma 4.3(3), the involution τ ∗
K acts on IH2 j (�≤λ) via (−1) j . Therefore,

by Lemma 5.3, we have

Z̃σ
dλ

(q) =
∑

j∈Z

(−1) j dim IH2 j (�≤λ)q
j =

∑

j∈Z

dim IH2 j (�≤λ)(−q) j . (5.10)

which is clearly in Z[q].
On the other hand, stratifying Fl≤w into affine space Fly (y ≤ w) and using

the parity vanishing of the stalks H•
ySw, we have

∑
j∈Z dim IH2 j (Fl≤w)q j =

∑
y≤w Py,w(q)q�(y). The argument is the same as the first part of Section 4.4.

Comparing with the definition of Zw(q) in (1.2), we have

Zw(q) =
∑

j∈Z

dim IH2 j (Fl≤w)q j .

Using the homeomorphism ιFl and the diagram (5.1), we have IH•(Fl≤dλ)
∼=

IH•(�≤λ) ⊗ H•(K/Tc) ∼= IH•(�λ) ⊗ IH•(Fl≤wJ ). Therefore Zdλ(q) is
the product of ZwJ (q) with the Poincaré polynomial of IH•(�≤λ). By the
definition of Z̃dλ(q) in (1.3), we have

Z̃dλ(q) = Zdλ(q)ZwJ (q)−1 =
∑

j∈Z

dim IH2 j (�≤λ)q
j . (5.11)

The theorem now follows by comparing (5.10) and (5.11).
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6. Algebraic proof of theorem 1.5

Now we start the algebraic proof of Theorem 1.5. Using [L11, 3.6(f)] and
Theorem 1.3 we see that

Z̃σ
dλ

(q) =
∑

μ∈�+;dμ≤dλ

Pσ
dμ,dλ

(q)ζ

⎛

⎝
∑

y∈WJ μWJ ;y∈I∗
ay

⎞

⎠ Zσ
wJ

(q)−1

=
∑

μ∈�+;dμ≤dλ

Pdμ,dλ(−q)ζ

⎛

⎝
∑

y∈WJ μWJ ;y∈I∗
ay

⎞

⎠ Zσ
wJ

(q)−1.

On the other hand

Z̃dλ(−q) =
∑

μ∈�+;dμ≤dλ

Pdμ,dλ(−q)
∑

y∈WJμWJ

(−q)�(y)ZwJ (−q)−1.

Hence to prove Theorem 1.5 it is enough to show that for any double coset
WJ μWJ we have

ζ

⎛

⎝
∑

y∈WJ μWJ ∩I∗
ay

⎞

⎠ Zσ
wJ

(q)−1 =
∑

y∈WJ μWJ

(−q)�(y)ZwJ (−q)−1. (6.1)

We fix such a double coset WJ μWJ for the rest of this section, where μ ∈
�+ ∩ WJ μWJ is the unique dominant translation. Let d = dμ (resp. b) be the
element of maximal (resp. minimal) length in WJ μWJ .

We shall be interested also in some parabolic analogues of Zw(q), Zσ
w(q).

For any H � S let WH be the subgroup of W generated by H so that (WH , H)

is a finite Coxeter group; let wH be the longest element of WH . We also set
PH = ∑

x∈WH
q�(x) ∈ N[q] so that ZwH (q) = PH (q). Recall that J =

S−{s0}, and our previous notation WJ , wJ is consistent with the new notation.
If in addition we are given an involution τ : WH → WH leaving H stable,

we set (as in [L11, 5.1]) PH,τ = ∑
x∈WH ;τ(x)=x q�(x) ∈ N[q]. By [L11, 5.9]

we have Zσ
wJ

(q) = PJ (q2)PJ,∗(q)−1 (we use also that Pσ
y,wJ

(q) = 1 for any
y ∈ WJ , see [L11, 3.6(f)]).

Let H = J ∩ bJ b−1. Let ε : WH ∗ → WH ∗ be the involution y �→ b−1 y∗b
(H∗ is the image of H under ∗). From [L11, 5.10] we have

ζ

⎛

⎝
∑

y∈WJ μWJ ∩I∗
ay

⎞

⎠ = ζ(ab)PJ (q2)PH ∗,ε(q)−1.

Similarly, ∑

y∈WJ μWJ

q�(y) = q�(b)PJ (q2)PH ∗(q)−1.
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We see that (6.1) is equivalent to the following statement:

ζ(ab)PJ,∗(q)PH ∗,ε(q)−1 = (−q)�(b)PJ (−q)PH ∗(−q)−1. (6.2)

Lemma 6.1. The involution ε on WH ∗ is the same as Ad(wH ∗); i.e.,
b−1 y∗b = wH ∗ ywH ∗ for all y ∈ WH ∗ .

Proof. We shall denote the inverse of μ by μ−1 instead of −μ as before.
We have μwJ = d = wJ wH bwJ . Hence μ = wJ wH b. Now WJ × WJ

acts transitively on WJ μWJ by left and right multiplication and the
isotropy group of μ is isomorphic to Wμ := {w ∈ WJ ; wμ = μ}. Hence
|WJ μWJ | = |WJ |2/|Wμ|. By [L11, 1.1] we have also |WJ μWJ | =
|WJ |2/|WH | hence |Wμ| = |WH |. We show that Wμ ⊂ WH ∗ . We have
WH = WJ ∩ bWJ b−1; applying ∗ we deduce WH ∗ = WJ ∩ b−1WJ b.
Hence it is enough to show that Wμ ⊂ b−1WJ b. Since μ = wJ wH b we
have μ−1WJ μ = b−1wH wJ WJ wJ wH b = b−1WJ b. If w ∈ Wμ then
wμ = μw hence μwμ−1 = w ∈ WJ ; thus Wμ ⊂ μ−1WJ μ = b−1WJ b.
We have shown that Wμ ⊂ WH ∗ . Since the last two groups have the same
order we see that Wμ = WH ∗ . Hence to prove (a) it is enough to show that
for any y ∈ Wμ we have b−1y∗b = wH ∗ ywH ∗ that is (after applying ∗)
byb−1 = wH y∗wH . Since b = wH wJ μ, it is enough to show that for y ∈ Wμ

we have wJ μyμ−1wJ = y∗, or, using μy = yμ, that wJ ywJ = y∗. This
follows from the definition of ∗ in Section 1.2. This proves the lemma. �

Lemma 6.2. If L � S and Ad(wL) is the conjugation by wL on WL , then

PL ,Ad(wL )(q) = PL(−q)

(
1 + q

1 − q

)nL

,

where nL is the number of odd exponents of WL .

Proof. Let ei (i ∈ X) be the exponents of WL . We have X = X ′ � X ′′ where
X ′ = {i ∈ X; ei is odd}, X ′′ = {i ∈ X; ei is even}. It is well known that

PL(q) =
∏

i∈X

qei+1 − 1

q − 1
.

It follows that

PL(−q) =
∏

i∈X ′

qei +1 − 1

−q − 1

∏

i∈X ′′

qei+1 + 1

q + 1
(6.3)

We have

PL ,Ad(wL )(q) =
∏

i∈X ′

qei +1 − 1

q − 1

∏

i∈X ′′

qei+1 + 1

q + 1
. (6.4)
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Here, the left hand side evaluated at a prime power q calculates #BG ′(Fq),
where G ′ is a semisimple algebraic group defined over Fq with absolute Weyl
group WL , and BG ′ is the variety of Borel subgroups of G ′. More precisely,
take any semisimple split group G ′′ over Fq2 with Weyl group WL , and let G ′
be a form of G ′′ over Fq obtained by requiring that Gal(Fq2/Fq) acts on G ′′
via the opposition involution. This number #BG ′(Fq) can be computed from
the known formula for the number of rational points of such a G ′ given in
[S67, §11]. Now the lemma follows from (6.3) and (6.4). �

6.3. Using Lemma 6.1 and 6.2 (applied to L = H∗) and the definition of ζ

we see that the desired equality (6.2) is equivalent to

q�(b)

(
q − 1

q + 1

)φ(b) (
1 + q

1 − q

)n J −nH∗
= (−q)�(b),

that is, to the equality
φ(b) = n J − nH ∗. (6.5)

Here we use that φ(w) ≡ �(w) mod 2 for any w ∈ I∗, see [L11, 4.5].
Now let R′ be the reflection representation of WH ∗ . For any linear map

A : R′ → R′ we denote by e′(A) the dimension of the (−1)-eigenspace of A.
For z ∈ WH ∗ satisfying ε(z) = z−1, define

φ′(z) = e′(zε) − e′(ε). (6.6)

Lemma 6.4. For any z ∈ WH ∗ such that ε(z) = z−1, we have φ(bz) =
φ′(z) + φ(b).

Proof. We argue by induction on �(z). If z = 1 the result is clear. Now assume
that z �= 1. We can find s ∈ H∗ such that �(sz) < �(z). Assume first that
sz �= zε(s). Then �(szε(s)) = �(z) − 2 hence by the induction hypothesis
we have φ(bszε(s)) = φ′(szε(s)) + φ(b). By definition, φ′(szε(s)) = φ′(z).
We have bszε(s) = bsb−1bzε(s) = ε(s)∗bzε(s) and hence, by definition,
φ(bszε(s)) = φ(ε(s)∗bzε(s)) = φ(bz). Thus φ(bz) = φ′(z) + φ(b). Next
we assume that sz = zε(s). Then �(szε(s)) = �(z) − 1 hence by the induc-
tion hypothesis we have φ(bszε(s)) = φ′(szε(s)) + φ(b). By definition,
φ′(szε(s)) = φ′(z)−1 and φ(bszε(s)) = φ(ε(s)∗bzε(s)) = φ(bz)−1. Thus
φ(bz) = φ′(z) + φ(b). This completes the proof of the lemma. �

6.5 Completion of the proof

From Lemma 6.4 we deduce

φ(bwH ∗) = φ′(wH ∗) + φ(b). (6.7)



A (−q)-analogue of weight multiplicities 335

We have d = cbwH ∗c∗−1 where c = wJ wH (see [L11, §1.2]). From the
definition of φ we see that φ(d) = φ(bwH ∗) hence, using (6.7), we have

φ(d) = φ′(wH ∗) + φ(b).

Hence (6.5) is equivalent to

φ(d) − φ′(wH ∗) = n J − nH ∗ . (6.8)

For any linear map A : �Q → �Q (where �Q = � ⊗Z Q), recall e(A) is
the dimension of the (−1)-eigenspace of A. We claim that

φ(d) = e(wJ ). (6.9)

In fact, if w ∈ I∗ with image w ∈ W , we have φ(w) = e(w∗)−e(∗). Since the
action of ∗ is given by x �→ −wJ (x)), we have φ(w) = e(−wwJ )−e(−wJ ).
If w = d then d = twJ (t is the dominant translation) hence w = wJ ∈ W ∼=
WJ and φ(d) = e(−id)−e(−wJ ), which is equal to e(wJ ). This proves (6.9).

We also claim that
φ′(wH ∗) = e′(wH ∗). (6.10)

In fact, from the definition (6.6) we have φ′(wH ∗) = e′(wH ∗ε) − e′(ε). Note
that both wH ∗ and ε act naturally on R′; the action of ε is given by x �→
−wH ∗x by Lemma 6.1. Thus we have φ′(wH ∗) = e′(−id) − e′(−wH ∗) =
e′(wH ∗). This proves (6.10).

Using (6.9) and (6.10) we see that the desired equality (6.8) is equivalent to

e(wJ ) − e′(wH ∗) = n J − nH ∗ . (6.11)

Now for any finite Weyl group, the dimension of the (−1)-eigenspace of the
longest element acting on the reflection representation is equal to the number
of odd exponents of that Weyl group, as one easily verifies. It follows that
e(wJ ) = n J , e′(wH ∗) = nH ∗. Thus (6.11) is proved. This completes the proof
of Theorem 1.5.

6.6 Signature of a hermitian form

Let Ǧ be the Langlands dual of G as before, with dual Cartan and Borel
Ť ⊂ B̌. We identify the Weyl group of Ǧ with WJ . Let λ ∈ �+, viewed as a
dominant weight of Ǧ, and let Vλ be the corresponding irreducible represen-
tation of Ǧ with highest weight λ. In [L97] a hermitian form hλ on Vλ is
constructed in terms of a semisimple element s ∈ Ť with s2 = 1. Here we
shall take s = (−1)ρ . The hermitian form hλ is invariant under a real form
of Ǧ which can be shown to be quasi-split (for our choice of s) and admits
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a compact Cartan subgroup. Moreover, by [L97, 2.9], the signature of hλ is
given by

Signature(hλ) = (−1)〈ρ,λ〉tr((−1)ρ, Vλ). (6.12)

Recall the following results from [L83]. First, it is shown in [L83, 6.1] that
the multiplicity of the weight μ in Vλ is equal to Pdμ,dλ(1). Second, we have
the formula (see [L83, (8.10)] and its proof)

Z̃dλ(q) = q〈ρ,λ〉 ∑

μ∈�+;dμ≤dλ

Pdμ,dλ(1)
∑

μ∈WJ μ

q〈ρ,μ〉. (6.13)

Setting q = 1 we obtain that Z̃dλ(1) = dim Vλ. Setting q = −1 in (6.13), we
obtain

Z̃dλ(−1) = (−1)〈ρ,λ〉tr((−1)ρ, Vλ). (6.14)

We may also obtain (6.14) from Lemma 4.3(3) and Lemma 5.3. Combining
(6.14) with Theorem 1.5 and (6.12), we obtain

Signature(hλ) = Z̃σ
dλ

(1). (6.15)

Thus, while Z̃dλ(q) is a q-analogue of the dimension of Vλ, Z̃σ
dλ

(q) =
Z̃dλ(−q) is a q-analogue of the signature of the hermitian form hλ on Vλ.

Remark 6.7. We expect that the hermitian form hλ on Vλ is the complexifi-
cation of the sum of the polarized Hodge structures IH2p(Gr≤λ) (which only
has (p, p)-classes). By the Riemann-Hodge bilinear relation, this pairing is
positive (resp. negative) definite on IH2p(Gr≤λ) when p is even (resp. odd).
Therefore the signature on the total intersection cohomology IH•(Gr≤λ)

(which is also the signature of the Poincaré duality pairing) is also calculated
by Z̃dλ(−1) = Z̃σ

dλ
(1).

7. Generalization

7.1 More involutions in affine Weyl groups

In Section 1.2, we fixed a hyperspecial vertex s0 ∈ S in the Dynkin diagram
of (W, S). Let A = Aut(W, S). Then A has a subgroup

A� := {a ∈ Aut(W, S)| there exists w ∈ WJ

such that a(λ) = wλ for all λ ∈ �}.
One may identify A� with the affine automorphisms fixing the standard
alcove corresponding to S. It is easy to see that A� is normal in A. Let
A := A/A� . The stabilizer of s0 under A is AJ = Aut(WJ , J ), which
projects isomorphically to Ā.
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We recall the extended affine Weyl group is the semi-direct product W̃ =
W � A�, and it fits into an exact sequence

1 → �̃ → W̃ → W → 1

where �̃ is a lattice containing � such that the projection �̃ ↪→ W̃ → A�

induces an isomorphism �̃/� ∼= A�.

Lemma 7.2. Recall we have an involution ∗ ∈ AJ defined in (1.1).

(1) Every element in the coset A�∗ = ∗A� ⊂ A is an involution.
(2) For any hyperspecial vertex s1 ∈ S, there is a unique a ∈ A�∗ which

sends s0 to s1.

Proof.

(1) The group AJ acts on A� by conjugation. This action can be seen expli-
citly as follows: WJ � AJ acts on �̃ by the reflection action stabilizing �.
The action of AJ on the quotient A� = �̃/� is then induced from
this reflection action. In particular, the action of ∗ ∈ AJ on �̃ is via
λ �→ −wJ λ, which is congruent to −λ modulo �. Therefore ∗ acts on A�

by inversion, hence every element a∗ ∈ A�∗ satisfies (a∗)2 = a(∗a∗) =
aa−1 = 1.

(2) It is well-known that A� permutes the hyperspecial vertices simply tran-
sitively. Then for any a ∈ A�, we have (a∗)(s0) = a(s0) which exhaust
all hyperspecial vertices exactly once as a runs over A�. � �

Let s1 be another hyperspecial vertex in S. Let 	 ∈ A�∗ be the unique
involution taking s0 to s1, hence taking J to J 	 = S − {s1}. Let I	 = {w ∈
W |w	 = w−1} be the 	-twisted involutions in W . To avoid complicated sub-
scripts, we denote WJ 	 by W	

J instead.
The following theorem generalizes Theorem 1.3.

Theorem 7.3.

(1) Each double coset WJ \W/W	
J in W is stable under the anti-involution

w �→ (w	)−1. In particular, the longest element in each (WJ , W	
J )-

double coset belongs to I	.
(2) For longest representatives d1 and d2 of (WJ , W	

J )-double cosets in W,
we have

Pσ,	
d1,d2

(q) = Pd1,d2(−q).

Here the polynomials Pσ,	
y,w(q) (y, w ∈ I	) are the ones defined in [L11]

in terms of (W, S, 	).
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7.4 Sketch of proof

We only indicate how to modify the proof of Theorem 1.3 to give the proof of
this theorem.

The anti-involution w �→ (w∗)−1 extends to an anti-involution on W̃ by
the same formula (1.1) (except that λ now is any element in �̃). Again each
double coset WJ \W̃/WJ is stable under this anti-involution. Write 	 = a∗ for
a ∈ A�, then W	

J = a(WJ ). Multiplication by a on the right gives a bijection

WJ \W/W	
J ↔ WJ \W · a/WJ ⊂ WJ \W̃/WJ .

This shows part (1) of Theorem 7.3.
In the situation of Section 3.1, G is a simply-connected group. Let Gad be

the adjoint form of G, with maximal torus T ad = T/Z(G). Then we have a
natural isomorphism �̃ ∼= X∗(T ad). The connected components of the affine
Grassmannian Grad for Gad are indexed by �̃/�. The Gad[[t]]-orbits on Grad

are indexed by �̃/WJ , and the natural projection �̃/WJ → �̃/� indicates
which orbit belongs to which connected component. Identifying A� with
�̃/�, we denote the corresponding component of Grad by Grad

a (a ∈ A�

such that 	 = a∗). We may similarly define the Satake category Sad for
Gad with simple objects Cλ[〈2ρ, λ〉], λ ∈ �̃+ (dominant coweights of Gad).
Via the fiber functor H•, Sad is equivalent to Rep(Ǧsc), where Ǧsc is the
simply-connected form of Ǧ. The same anti-involution τ ∗ defines a functor
(Sad, �) → (Sad, �σ ), and there is an isomorphism �λ : τ ∗Cλ

∼→ Cλ nor-
malized to be the identity on Grad

λ , which induces an involution Hi
μ�λ on the

stalks Hi
μCλ for μ ≤ λ ∈ �̃+. Note that in the partial ordering of �̃, two

elements are comparable only if they are congruent modulo �.
Let ȧ ∈ NGad((t))(T ad((t))) be a lifting of a ∈ A� < W̃ , then ȧGad[[t]]ȧ−1

is a hyperspecial parahoric subgroup of Gad((t)) corresponding to the vertex
s1 = 	(s0). Let P ⊂ G((t)) be the hyperspecial parahoric subgroup (contain-
ing I) corresponding to s1. Right multiplication by ȧ induces an isomorphism

G((t))/P
∼→ Gad((t))/ȧGad[[t]]ȧ−1 ∼→ Grad

a (7.1)

which is equivariant under the left actions by G[[t]]. The double coset
G[[t]]\G((t))/P is in bijection with WJ \W/W	

J . As in (3.5), the coefficients
of the polynomials Pσ,	

d1,d2
(q) are expressible as the traces of an involution

on the stalks of the intersection cohomology complexes on G[[t]]-orbits
of G((t))/P. Under the isomorphism (7.1), we have the following formula
generalizing (3.5):

Pσ,	
d1,d2

(q) =
∑

j∈Z

tr(H2 j
μ �λ,H2 j

μ Cλ)q
j .
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Here μ ≤ λ ∈ �̃+ have image equal to a in �̃/�, and d1 (resp. d2) is the
longest element in the double coset WJ μa−1W	

J (resp. WJ λa−1W	
J ).

So in order to prove Theorem 7.3(2), it suffices to show that H2 j
μ �λ acts

on H2 j
μ Cλ via multiplication by (−1) j for any μ ≤ λ ∈ �̃+. The argument

in Section 4 works up to Lemma 4.2. The pair (τ ∗, γ ) again determines the
element g = (−1)ρ ∈ Ť < Aut(Ǧsc). However, a monoidal isomorphism
� : τ ∗ ∼→ idσ

Sad is the same as the choice of an element g̃ ∈ Ť sc lifting (−1)ρ :

the effect of � on V ∈ Rep(Ǧsc) ∼= Sad is the action of g̃−1. Lemma 4.3(2)
should say that the effect of � (or g̃−1) on Cλ[〈2ρ, λ〉] is g̃−wJ λτ ∗

K . In the rest

of the argument, we use (4.6). The piece H2〈2ρ,μ〉
c (�μ) ⊗ H2 j

μ Cλ appears in
degree 2〈2ρ, μ〉 + 2 j − 〈2ρ, λ〉 in IH•(�≤λ)[〈2ρ, λ〉] ∼= Vλ, hence it appears
as a subquotient of ⊕νVλ(ν), where ν ∈ �̃ has the same image as λ and μ in
�̃/� and

〈2ρ, ν〉 = 2〈2ρ, μ〉 + 2 j − 〈2ρ, λ〉, or j = 〈ρ, ν + λ − 2μ〉. (7.2)

We write H2〈2ρ,μ〉
c (�μ)⊗H2 j

μ Cλ = ⊕ν(H
2〈2ρ,μ〉
c (�μ)⊗H j

μCλ)ν according to

the weight decomposition. Therefore g̃−1 or g̃−wJ λτ ∗
K acts on (H2〈2ρ,μ〉

c (�μ)⊗
H2 j

μ Cλ)ν by g̃−ν . Specializing to λ = μ = ν, g̃−wJ μτ ∗
K acts on

H2〈2ρ,μ〉
c (�μ) = IH2〈2ρ,μ〉(�≤μ) by g̃−μ. Therefore, by (4.6), the action of

H j
μ�λ on H j

μCλ is given by

g̃−ν+wJ λ · (̃g−μ+wJ μ)−1 = g̃−ν+μ+wJ (λ−μ). (7.3)

Since −ν + μ ∈ �, we have g̃−ν+μ = g−ν+μ = (−1)〈ρ,−ν+μ〉. Since
λ − μ ∈ �, we also have g̃

wJ (λ−μ) = g
wJ (λ−μ) = (−1)〈ρ,wJ (λ−μ)〉 =

(−1)〈−ρ,λ−μ〉. Taking these two facts together we conclude that the expres-
sion (7.3) is equal to

(−1)〈ρ,−ν+μ〉(−1)〈−ρ,λ−μ〉 = (−1)〈ρ,−ν−λ+2μ〉,

which is equal to (−1) j by (7.2). This finishes the proof of Theorem 7.3.

Remark 7.5. Theorem 1.5 can also be generalized to the setup in Section 7.
Using this generalization, we may extend the discussion in Section 6.6 to the
case where Ǧ is simply connected. In this case, irreducible finite dimensional
representations of Ǧ still carry natural hermitian forms as in [L97], and their
signatures can be expressed in terms analogous to (6.15). We omit the details.

References

[BL94] B. Bernstein and V. Lunts, Equivariant sheaves and functors, Lecture Notes in
Mathematics 1578 Springer-Verlag, Berlin (1994).



340 George Lusztig and Zhiwei Yun

[G01] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via
nearby cycles, Invent. Math., 144 (2001) no. 2, 253–280.

[G95] V. Ginzburg, Perverse sheaves on a Loop group and Langlands duality.
arXiv:math/9511007.

[KL79] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke alge-
bras, Invent. Math., 53 (1979) 165–184.

[KL80] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, In Geometry
of the Laplace operator, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc.,
Providence, R.I., (1980).

[L83] G. Lusztig, Singularities, character formulas and a q-analog of weight multipli-
cities, Analysis and topology on singular spaces, II, III (Luminy, 1981), 208–229,
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