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INTEGRAL HOMOLOGY OF LOOP GROUPS
VIA LANGLANDS DUAL GROUPS

ZHIWEI YUN AND XINWEN ZHU

ABSTRACT. Let K be a connected compact Lie group, and G its complexifi-
cation. The homology of the based loop group QK with integer coefficients
is naturally a Z-Hopf algebra. After possibly inverting 2 or 3, we identify
H.(QK,Z) with the Hopf algebra of algebraic functions on BY, where BY is
a Borel subgroup of the Langlands dual group scheme GV of G and B is the
centralizer in BY of a regular nilpotent element e € Lie BY. We also give a
similar interpretation for the equivariant homology of QK under the maximal
torus action.

1. INTRODUCTION

Let K be a connected compact Lie group and G its complexification. Let QK
be the based loop space of K. Then the homology H.(Q2K,Z) is a Hopf algebra
over Z. The goal of this paper is to describe this Hopf algebra canonically in terms
of the Langlands dual group of G.

The rational (co)homology of QK is easy since rationally K is the product of
spheres. However, the integral (co)homology is much more subtle: H*(QK,Z)
is not a finitely generated Z-algebra, and the simplest example H*(2SU(2),Z)
involves divided power structures. The integral (co)homology of QK has been
studied extensively by different methods.

The first method was pioneered by Bott (cf. [B58]). He developed an algorithm,
which theoretically determines the Hopf algebra structure of integral (co)homology
of all based loop groups. By applying this algorithm, he gave explicit descriptions of
the (co)homology of special unitary groups, orthogonal groups, and the exceptional
group Go. However, Bott’s description depends on the choice of a “generating
circle” as defined in loc. cit. and is therefore not canonical.

The second method to study the (co)homology of based loop groups comes from
the theory of Kac-Moody groups. Namely, let G be the complexification of K. This
is a reductive algebraic group over C. Let F' = C((t)) and O = C[[t]]. Then the
quotient Grg = G(F)/G(O), known as the affine Grassmannian of G, is a maximal

-

partial flag variety of the Kac-Moody group G(F') (a central extension of G(F)).
Let Qp01K be the space of polynomial maps (S*,1) — (K, 1x). More precisely, let
us parametrize S by €¢?, ¢ € R, and let K C SO(n,R) be an embedding. Then
Qpo K is the space of maps from (S*,1) — (K, 1) such that when composed with
K C SO(n,R), the matrix entries of the maps are given by Laurent polynomials of
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348 ZHIWEI YUN AND XINWEN ZHU

e*®. Tt is known that Q01K is homotopic to QK. On the other hand, the obvious
map

L onlK — G(F) — ng

is a homeomorphism between Q1K and Grg, which is K-equivariant (the action
of K on Q0K is the pointwise conjugation and on Grg is the left multiplication).
See [PS86] for details about these facts. Therefore, Grg and QK have the same
(co)homology groups. Kostant and Kumar (cf. [KK86]) studied the topology of
the (partial) flag varieties of arbitrary Kac-Moody groups. In particular, they
determined the (equivariant) cohomology rings of these partial flag varieties, using
an algebraic construction called the nil-Hecke ring. D. Peterson (unpublished work)
realized that the nil-Hecke ring can also be used to study the homology ring of the
affine Grassmannian. The affine variety Spec H,(Gr¢) is usually called the Peterson
variety.

In this paper, we will proceed from yet another perspective of this story, which
is pioneered by Ginzburg (cf. [G95]). We first recall the geometric Satake isomor-
phism developed by Lusztig ([L81]), Ginzburg ([G93]), and Mirkovié and Vilonen
(IMVQT]). We refer the details to the paper [MV07]. Recall that Grg is a union of
projective varieties. Let Pj be the abelian category of G(O)-equivariant perverse
sheaves with k-coefficients on Grg whose supports are finite dimensional, where k
is some commutative noetherian ring of finite global dimension. The convolution
product makes Py, into a tensor category, equipped with the functor H*(Grg, —) of
taking (hyper)cohomology as a fiber functor. The geometric Satake isomorphism
claims that H*(Grg, —) gives an equivalence of tensor categories

(1.1) H*(Grg,—) : P = Rep(GY/, k),

where GV is the Langlands dual group scheme of G, defined over Z. Ginzburg
observed that taking cohomology also gives rise to a tensor functor

H*(Gre,—) : Pi = Mod(H"(Gra. k).

Assume that G is simple and simply-connected and &k = C. By Tannakian formal-
ism, one obtains a map of Hopf algebras

(1.2) H*(Gra,C) — Ulge),

where g¢ is the Lie algebra of G{. Ginzburg proved that this map is injective,
and the first Chern class ¢1(Lget) of the determinant line bundle L4er on Grg gets
mapped to a regular nilpotent element e in g¢ under (I2)). Hence the map (L.2)
factors through U(g¢ ) C U(gg!), where g¢: , is the centralizer of e in g¢ . Ginzburg
concluded that this gives an isomorphism

(1.3) H*(Gra,C) = U(ge,.)

This paper is an extension of the above result to the (co)homology of Grg with
integer coefficients. According to [MV07], the geometric Satake isomorphism holds
for k = Z. Therefore, it is natural to expect that (I3]) should hold over Z (hence
should hold modulo every prime p). However, this is not the case, and it fails for
two reasons:

First, as we already remarked, the integral cohomology ring H*(Grg,Z) is not
finitely generated over Z whereas U(gy ) is. For this reason, we prefer to work
with homology because it is a finitely génerated Z-algebra (under the Pontryagin
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product) by a result of Bott in [B58]. The Tannakian formalism (cf. §3]) gives us a
natural homomorphism of group schemes

(1.4) Spec H,(Grg,Z) — Gy.

Second, although the first Chern class ¢;(Lqet) still gives rise to an element
e € gy, it is not a regular nilpotent element modulo every prime p. When e mod p
is not regular, U(g)) ®F), is “too large” to be isomorphic to H*(Gr¢g,F,). We must
carefully exclude these p’s.

Now the main theorem of this note reads as

1.1. Theorem (See Theorem [6.1(1)). Let G be a reductive connected group over
C such that its derived group G" is almost simple. Let K be a mazimal compact
subgroup of G. Let £ be the square of the ratio of the lengths of long roots and the
short roots of G (so £g=1,2 or 3). Then there is a canonical isomorphism of group
schemes over Z[1/4c]:

Spec H, (QK,Z[1/{g])) = BY[1/lc],

where BY is a fized Borel subgroup of GV, e € Lie BY is a regular nilpotent element
gwen by (B3), and BY is the centralizer of e in BY.

This theorem describes the Hopf algebra structure of H,(QK) in terms of a
purely algebraic object Bg/, at least after inverting ¢¢. In fact, one can also see
the grading of H,(2K) in terms of BY: the grading on H,(QK) is the same thing
as a G,-action on Spec H,(2K), and this G,,, action can be identified with the G,
action on BY given by the adjoint action through the cocharcter 2p : G,,, — T".

We will also prove an equivariant version of the above theorem. Let T be a
maximal torus of G such that T'N K is a maximal torus of K. Then T N K
acts on QK via conjugation. Let Ry = Hjk(pt,Z). The T N K-equivariant
homology HI™K (QK,Z) (for precise definition, see (ZI0)) is an Rp-Hopf algebra,
hence Spec HI"K(QK,7Z) is a group scheme over Ry. On the other hand, the T-
equivariant Chern classes of line bundles on Gr¢ give an element e € gy @Ry ([1/n¢]
(where ng is an integer explicitly given in Remark (.8]). The equivariant version of
the main theorem reads as

1.2. Theorem (See Theorem [61)(2)). Notations are the same as in Theorem L1

)

There is a canonical isomorphism of group schemes over Ryp|
ana

1 ~
Spec HI (UK, Z[——1]) = Bl[1/La),

ana
where BYy is the centralizer of ' in BY x Spec Rr([1/n¢].

Finally, we also have descriptions of the cohomology H*(2K) and the K-equi-
variant homology HX (QK) in terms of group-theoretic data of GV. For details, see

§6.3] and §6.51

Plan of the paper. In §2 we prove that the equivariant cohomology functor Hr is
a fiber functor from P to Ry := Hi(pt)-modules that is canonically isomorphic to
H* @ Ry. We also describe how the cup product by H*(Gr¢) interacts with the
tensor structure of the functor H;.. In §3] we construct a canonical homomorphism
of groups schemes over Z from Spec H! (Grg) to By. In § we digress to discussing

1S. Kumar informed us that D. Peterson also obtained a similar result (unpublished).
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line bundles on the affine Grassmannian and their equivariant structures. In §5l we
determine the equivariant Chern class ¢ (Lqet) explicitly as an element in gy @ Ry.
Finally, in §6l we prove our main theorem.

Convention and Notation. In this paper, we always assume that G is a connected
reductive algebraic group over C. From §4 we will assume that G is almost
simple. We will fix a Borel subgroup B C G and a maximal torus 7' C B. Let U
be the unipotent radical of B. Let X*(T) and X¢(T") be the character group and
cocharacher group of T'. Let K be the maximal compact subgroup of G containing
the maximal compact torus in 7'. We shall identify QK with Q,, K, and denote
them simply by QK.

The Langlands dual group G is the Chevalley group scheme over Z whose root
system is identified with the coroot system of G. Later a Borel subgroup BY ¢ GV
and a maximal torus 7V C GV will be fixed by the geometric Satake isomorphism.
Let UV be the unipotent radical of BY. The Lie algebras of these group schemes
will be denoted by g¥,b",tY and u, which are free Z-modules.

With dual groups in mind, our notation concerning the root system of G is
opposite to the usual one. Let &, ® be the set of roots and coroots of G. Coweights
and coroots of G will be denoted by A, u, ... and «, 3, ..., while weights and roots
are denoted by AV, iV, ... and oV, 3Y,.... Let 2p" denote the sum of positive roots.
We will give X4(T') a partial order such that A < p if and only if  — X is a positive
integral combination of the simple coroots. Let (—, —)ki be the Killing form on
Xo(T') given by:

(I, y)Kil = Z <a\/7 x><a\/, y>
avedpVv

The (co)homology groups H*(—), H,(—) are taken with Z-coefficients unless oth-
erwise specified. All tensor products ® with no base ring specified are understood
to be taken over Z. For simplicity, we will write P for Pz. For objects F € P, we
will abbreviate H*(Grg, F), H3(Gra, F) by H*(F) and H(F).

2. EQUIVARIANT COHOMOLOGY FUNCTOR

Let G be a connected reductive algebraic group over C. Let F = C((t)) and
O = C[[t]]. Let Grg = G(F')/G(O) be the affine Grassmannian of G. Each coweight
A € X¢(T) determines a point t* € T(F'), and hence a point in Gr¢g, which we still
denote by t*. For A € X (T), let Gry = G(O)**G(O)/G(O) be the G(O)-orbit
through t*. Each G(O)-orbit of Grg contains a unique point ¢* for some dominant
coweight A. For A dominant, we denote the closure of Gry by Gr<). Then each
Gr<, is a projective variety and Grg is their union.

2.1. Weight functors and MV-filtration. In [MV07], Mirkovi¢ and Vilonen
introduce the weight functors

(2.1) H:(S,,—):P — Mod(Z),

where S, is the U(F')-orbit through t*, u € Xi(T) (notice that in [MVO0T7], U is
denoted by N). They show in [MV07, Theorem 3.6] that there is a natural isomor-
phism of tensor functors:

(2.2) H*(-)= @ H:(S..—):P —Mod(Z).

HEXG(T)
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Moreover, under the geometric Satake isomorphism (I]), the weight functors cor-
respond to the weight spaces of a maximal torus TV C GV.

For each F € P, consider the filtration {Fils, H*(F)} indexed by the partially
ordered set Xq(7T):

Fil>, H*(F) = ker(H*(F) = H*(S<u, F)),

where S, = S_u — Su. We call this filtration the MV-filtration. It is functorial
for F € P. Clearly, the weight functors are the associated graded pieces of the
MV-filtration. Under the geometric Satake isomorphism (], there is a unique
Borel subgroup BY C GV containing T such that the natural X, (7T')-filtration on
the BY-module H*(F) coincides with the MV-filtration.

Now consider the equivariant cohomology functor:

(2.3) H7 (=) :P — Mod? (Rr).
Here Ry = Hi(pt,Z) = Sym(X*(T)), and Mod?" (R7) is the category of graded
Rr-modules.

2.2. Lemma. There is a natural isomorphism of functors
H3(Gr,—) = H*(Gr,—) ® Ry : P — Mod?"(Rr).

Proof. The construction of weight functors ([2]) extends to the T-equivariant set-
ting. For each p € X (T), the cohomology H/(S,,F) is concentrated in degree
(2pY, ) (IMVO7, Theorem 3.5]), hence the equivariant cohomology Hz. (S, F) is
free over Ry with a canonical isomorphism

(2.4) Hy o (Sy, F) = HZ(Su, F) @ R

There is a spectral sequence calculating H7.(F) with Ei-terms Hf (S, F). Over
each component of Grg, the nonzero terms of this £ page are all in degrees of
the same parity, hence the spectral sequence degenerates. In other words, we get a
T-equivariant version of the MV-filtration {Fil>, H}.(F)} with associated graded
pieces Hr (S, F).

Again, by [MV07, Theorem 3.5], Fils,, H3(F) is in degrees > (2p", u), hence we
have a canonical splitting of the exact sequence

0 — Fils, — Fils,, — Hr (S, F) =0
given by
H3. (Sy, F) = H® W (S,, F) ® Ry — (H® " Fils,,) ® Ry — Fils,,

where H* Fil>, means the degree k part of Fil>,. Therefore, the T-equivariant
MV-filtration on H7(F) also has a canonical splitting:

(2.5) Hy(-)= € Hi(Su,—):P — Mod’ (Rr).
neEXe (T)
Combining Z4), ZH) and ([Z2)), we get isomorphisms of functors P —
MOdgT(RT)I
Hi(-)= @ Hi(S.-)= @ HI(Sw-)®Rr=H(-)®Rr. O
p€EXe(T) HEXW(T)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



352 ZHIWEI YUN AND XINWEN ZHU

2.3. Monoidal structure on Hj(—). Although the isomorphism in Lemma
equips H}(—) with a monoidal structure, this monoidal structure is, a priori, not
what we want to use later. We recall here another monoidal structure on H}.(—),
following [MVQT, §5,86]. First recall the definition of the convolution product * on
P, following [MV07, §4]. Consider the diagram

P q GO) mg
ng X ng — G(F) X ng — G(F) X ng — gTG.

Here p is the natural projection morphism, ¢ is the quotient map by the right G(O)-
action on G(F) x Grg given by (x,y) - g = (zg,9'y) and mg is induced by the
multiplication on G(F). By definition,

Fix Py =mg.F,
_ G(O)
where F is the unique perverse sheaf on G(F) X Grg such that
~ L
¢"(F) =p'PH(F1 K Fa).
Hence

G(0) -
(2.6) Hp(Fy+ Fo) = HA(G(F) % Gra, F).

Let X = Al. Recall that the global counterpart Grx of Grg classifies triples
(x,€,7) where z € X, £ is a G-torsor over X and 7 is a trivialization of £ over

X — {z}. The global counterpart of G(F') G&O) Grg is the space Grx xGrx which
classifies tuples (x1,x2,&1,E2, 71, T2) where 1,22 € X, &1,& are G-torsors over
X, 11 is a trivialization of & on X — {z;} and 7 is an isomorphism of G-torsors
E1lx {20} = Es|x {2,y For my # x2, the fiber (grxigrx)xwz is isomorphic to
Gre x Grg; while for x; = o, the fiber (Grx Qgrx)%x,_, is isomorphic to G(F) G&O)
grg.

Given objects Fi, F2 € P, we can “spread them over the curve X” to get per-
verse sheaves K1,y on Gry; we can also mimic the construction of F to get a
perverse sheaf K on Gry xGrx (see [MVO7, §5] for details). The restriction of K

on (Grx xGrx)z, .z, can be identified with ? HO(F; % F2) when z1 # 22 and with
F when x1 = xg, under the above identification of fibers. In [MV07, Lemma 6.1,
eqn.(6.4)], it is shown that the direct image sheaves Ri7,(K) are constant (as T-
equivariant sheaves, as we can easily see), where 7 : Grx xGrx — X2 is the natural
projection. In other words, we have a co-specialization isomorphism from the stalks
of Ri7,K along the diagonal A(X) C X2 to its stalks over X2 — A(X). Using the
above identifications, the co-specialization map takes the form:

G(0) ~ o~ L
(2.7) Spg : HR(G(F) X Gra,F) = Hy(Gra x Gra, "HY(F1 K F)).

The argument of [MV07, Lemma 6.1, eqn.(6.3)] has an obvious T-equivariant ver-
sion (using Lemma [22]), hence

L
(2.8) Hi(Gra x Grg,PHO(Fi W Fy)) = Hi(F1) @, Hi(Fa).
Combining 27), (Z8) and (28], we get the monoidal structure
H;(.Fl * .7:2) :—) H;(J_'.l) ®RT H;(.FQ)
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2.4. Lemma. Under the monoidal structure of H}.(—) introduced in §23] and the
monoidal structure of H*(—) ® Ry induced from that of H*(—), the natural iso-
morphism in Lemma is a monoidal isomorphism. In particular, the monoidal
structure on H(—) introduced in §2.3] is also a tensor structure (i.e., it is compat-
ible with the commutativity constraintd? ).

Proof. Using the same argument of [MV07, §6], one can show that the sum of the
T-equivariant weight functors has a natural monoidal structure. Moreover, the
isomorphism in (Z3]) is a monoidal isomorphism. Using ([24]) and the argument of
[MV07, Proposition 6.4], it is easy to see that

(2.9) P Hi(Sn-)= P HIS.-)@Rr:P — Mod™ " (Ry)
pn€EXe(T) HEXS(T)

as monoidal functors. The natural isomorphism H7(—) = H*(—) ® Ry in Lemma
is given by the composition of monoidal isomorphisms (23], (29) and (2.2)),
hence it is also a monoidal isomorphism. O

2.5. Remark. Similarly, we can consider
Hgo)(=) = Hg(=) : P — Mod”" (Rg).

Here Rg = H}(pt,Z). Using the argument of [MV07, Proposition 6.1], one can
show that H (—) is also a tensor functor. Further argument shows that it is actually
a fiber functor (i.e., it is exact and faithful). By [Sa72], this fiber functor defines a
GY-torsor € over Spec R (here we use the fact that GV is flat over Z). Moreover,
by Lemma 2.2, the pull back of £ to Spec Rt admits a canonical trivialization.
However, £ itself does not have a canonical trivialization.

2.6. Equivariant (co)homology of Grg. Since H;(Gra) = Hin g (UK) and QK
is a homotopy commutative H-space, H}(Gr¢g) is naturally a commutative and co-
commutative Hopf algebra over Rp. By the cell-decomposition of Grg, Hr(Gra)
is a free Rp-module concentrated in even degrees. We denote the coproduct on
H(Gra) by A.

We define the T-equivariant homology

(210) Hf(grg) = HOI’IIRT (H;(grg), RT)gT

to be the graded dual of H}(Grg) as an Rp-module, i.e., HI (Grg) sends Hi(Grg)
to Rf;p_". Note that HI (Grg) %liLﬂH*T(grS,\) where H (Gr<)) = H7*(Gr<x, D<)
(D< is the dualizing complex of Gr<y with the canonical T-equivariant structure).

As the Rp-dual of H;(Grg), the T-equivariant homology HI (Grg) is also a
commutative and co-commutative Hopf algebra over Rp. The multiplication on
HT(Grg) is identified with the Pontryagin product on HI "% (QK), and is denoted
by A.

Similarly, we can define the G-equivariant homology HS(Grg) of Grg either as
the Rg-dual of Hf(Grg) or the direct limit of H;"(Gr<x,D<y). This is a Hopf
algebra over Rg.

Next, we consider the action of H}.(Grg) on the fiber functor H}.(Grg, —) via
cup product.

2See [MV07, Section 6] for the definition of the commutativity constraints on P.
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2.7. Proposition. For any F1,F> € P, and any h € H}(Gra), we have a commu-
tative diagram

H}(F1) @py H (F2) —— Hp(Fy* F2)

lUA(h) th

H}(F1) ®@py H(F2) —— Hp(F1* F2)

where the horizontal maps are given by the tensor structure of the functor H}.(—)
(see the proof of Lemma 22]).
A similar statement also holds for G-equivariant cohomology H.

Proof. From (2.0]) we see that the action of h € Hx(Grg) on Hi(Fy * Fa) is the

same as the action of m{,(h) € H}(G(F) G(xO) Grg) on Hy(G(F) G(xO) Gra, F).
Let us keep track of the cup product by the cohomology of the relevant spaces in
the construction of the tensor structure in §2.31 Since the morphism 7: Gry XGryx —
X? is stratified by affine space bundles (see [MV07, Lemma 6.1, argument for
(6.4)]), an easy spectral sequence argument shows that the sheaves R'7.Z are
locally constant, hence constant. In other words, we also have a co-specialization
isomorphism from the stalks of R'7,Z along A(X) to stalks elsewhere, i.e.,

G(O) ~
(2.11) Sp*: H.(G(F) x Grg) — Hi(Grg x Gra).

Moreover, by the naturality of co-specialization maps, (Z7) and (211 are compat-
ible under the cup product:

Spi(h U v) = Sp*(h) USpE(v),

_ G(o) G(o) _
for any h € H5.(G(F) x Grg),ve H3»(G(F) x Grg,F).

From the above discussion, the cup product action of h € Hy(Grg) on Hiy(Fy *
F3), when transported to H3(F1) Qr, Hi(F2) under the isomorphism given by
the tensor structure of H7.(—), is the cup product action of the class Sp*(m;(h)) €
HY(Gre x Grg) = H3(Gra) @ry H3(Grg). Therefore, to prove the proposition, it
suffices to show that

(2.12) A =Sp*m¢ : Hi(Grg) — Hp(Grg x Gra).

Recall that the coproduct A is induced from the multiplication mg : QK x QK —
QK, hence

(2.13) (tx)*A=my* : H (Grg) — Hpar (QK x QK).

Now we construct a map 7 : QK x QK x X2 — GrxxGrx. For a point (y1,72 :
St = K,x1,15) € QK x QK x X2, we consider the complexifications &, 75 :
A' — {0} — G (recall that ; are polynomial maps so that the complexifications
make sense). Let vf% : A' — {x;} — G be the composition of the translation
Al — {x;} & AY — {0} with 4F. We define

Wy, y2, 21, @2) = (21, 32,6, = EV, & = E 71, 7y)

where £ is the trivial G-torsor on X, and the isomorphism 7; (viewed as an
automorphism of £ over X — {x;}) is given by 7, : X —{z;} — G fori =1,2.
The restriction of ¢ to points 1 = x2 can be identified with the map ¢ :

LXt

G(0)
QK x QK “% G(F) x Grg % G(F) X Grg; the restriction of 7 to z; # x is
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exactly the map ¢ x ¢ : QK x QK — Grg x Grg. We view QK x QK x X? as a
constant family over X2, then 7 commutes with the co-specialization maps, i.e., we
have a commutative diagram

G(0) Sp*
Hi(G(F) x Grg) — Hj(Grg x Gre)

jba) L(LXL)*

Hin i (QK x QK) === H; (QK x QK).
On the other hand, we also have a commutative diagram

OK x QK ™ S QK

b

G(0) m
X Grg—=Grg.

Combining the two commutative diagrams, we get
(¢ X 0)"Sp* mg; = 1{yyme; = micL”.
In view of [2I3), we get
(L X )"A = (¢ x )" Sp" m¢.

Since (¢ x ¢)* is an isomorphism, the equality (ZI2]) follows. This finishes the proof
of the proposition. (|

3. RELATING HI(Grg) TO THE LANGLANDS DUAL GROUP
Consider the fiber functor
Hi (=) @ry HI(Grg) : P = Mod® (H[ (Gra)).

We now construct a canonical tensor automorphism o4, of this functor. For any
F € P, the action of 0cqp on Hi(F) @p, HI (Grg) is given by

Tean( @ h) = (K" Uv) ® (hi AB),

2

where v € HA(F),h € HI'(Grg) and {h'},{h;} are dual bases of the free Rp-
modules H%(Grg) and HI (Grg). One readily checks that 0.4, does not depend
on the choice of the dual bases {h'}, {h;}.

3.1. Lemma. The natural transformation o.qn is a tensor automorphism of the

fiber functor Hx (=) ®p, HI (Grg).
Proof. Let Fyi, Fo € P and v; € H3(F;) for i = 1,2. We have to show that
Ucan(vl ® U2) - Ucan(vl) ® Ucan(v2)~

Here we view v; ® ve as an element in Hjy(F; % F2) under the identification
Hi(F1) @py Hp(Fa) = Hyp(F1 * Fa).
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On one hand, we have

(3.1) Cean(V1) @ Ocan (V) = Z(h” Uv @ hi) @ (W Uwg) @ hy
0,J
= Z ((hz Uv) ® (hj U ’Uz)) ® (hi N hj).
0,J
On the other hand, by Proposition 2.7,
(32) Ucan(vl & U2) = Z (A(hk)(vl ® UQ)) ® hk'

k
Since the coproduct A on H}.(Grg) is adjoint to the Pontryagin product A on
HT(Grg), the two expressions (B.I) and (3:2)) are the same. O

By this lemma and the Tannakian formalism, 0.4, defines an H! (Grg)-valued
point of the group scheme Aut®(H3), which is canonically isomorphic to GV x
Spec Ry by Lemma
(3.3) o1 : Spec HI (Grg) — GV x Spec Ry
We also have the non-equivariant counterpart:

(3.4) & : Spec H.(Grg) — GY.

3.2. Lemma. The morphisms ' and & as in B.3) and B.4) are homomorphisms
of group schemes over Ry and Z.

Proof. We give the argument for the non-equivariant version, and the equivariant
version is similar. We abbreviate H,(Grg) by H. and H*(Grg) by H*. We need
to check that the following diagram is commutative

OGY) 7 H,
- -
OGY) ® O(GY) —27 H,®H,

where p* and A, are the coproducts on O(G") and H,. The composition (7®7)ou*
corresponds to the following automorphism of the tensor functor H*(—) ® H, ® H.,:

H (F)@ H.®@ H, - H*(F) ® H, ® H,,
(3.5) v@1@1m Y (KUK Uv)®h; ® hy,
.3
for v € H*(F) and {h'}, {h;} dual bases of H* and H, as before. On the other
hand, the composition A, o 7 is given by the automorphism

H' (F)@ H.@ H. — H(F)® H, ® H,,
(3.6) v@l@ 1l Y (B Uv) @ Au(hy).

(2
Since A, : H, — H, ® H, is adjoint to U : H* ® H* — H*, the two expressions

and are the same. O
B.5)

3.3. Proposition.
(1) The homomorphism ¢ factors through BY x Spec Ry;
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(2) We have a natural isomorphism of group schemes Spec Ho(Grg) — ZV,
the center of G¥;

(3) If G is simply-connected, & factors through UV ;

(4) In general, let G*¢ be the simply-connected cover of G", and we identify the
neutral component Qr% with Grgse. Then we have a natural isomorphism
of Hopf algebras:

H,(Gra) = Ho(Grg) ® Hio(Grgse).
The morphism & : Spec Hy(Grg) — BY factors as
Spec H.(Gra) — Spec Ho(Grg) x Spec Hy(Grgse) = Z¥ x UV < BY,

where the starred arrow is the product of the morphisms in (2) and (3).
Here we have identified unipotent radicals UV of BY for GV and (G*¢)Y =
(G\/)ad'

Proof. (1) The action of 0.4, preserves the MV-filtration on H3(—)®g, HI (Grg),
which implies that o7 factors through BY x Spec Ry.

(2) The component group mo(Gra) = m(K) & Xo(T)/ZP (here ZP is the co-
root lattice of G). Therefore, Ho(Grg) is the group algebra of Xo(T)/Z®, hence
isomorphic to O(ZV) as Hopf algebras.

(3) and (4) Since the tensor automorphism o4, preserves the MV-filtration, it
induces a tensor automorphism &.,, on the associated graded pieces, i.e., on the
tensor functor

P H:(S.. )@ H.(Grg) : P — Mod™ ") (H,(Grg)).
nEXq (T)

The tensor automorphism .4, gives a homomorphism Spec H,(Grg) — T which
s

is clearly the same as the composition Spec H,(Grg) %, BY I TV. On the other
hand, since H}(S,,F) is concentrated in one degree, the action of Gcqpn on it is
given by
v (BFUv) Q€ HX(Su,F)® Hy(Gre).

Herev € H} (S, F), fuis the image of p € Xo(T) in X (T')/ZPY C Z[Xo(T)/ZDV] =
Hy(Grg), and ji* is the element in H%(Grg) that takes value 1 on the component
corresponding to 1 and 0 on other components. This means that the tensor auto-
morphism .4, in fact comes from a tensor automorphism of the functor

B H:(Su,—) @ Ho(Gra) : P — Mod™ ") (Hy(Gre))
neXe (T)

followed by the functor Mod™*")(Hy(Grg)) — Mod** ™) (H,(Grg)) given by
®u,H:(Grg). In other words, there is a commutative diagram

(3.7) Spec H, (Grq) BY

l )

Spec Hy(Grg) ——= ZV—=TV

which implies that & factors through 7=*(ZV) = ZV x UY C B".
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Now if G = G*¢, ZV is trivial and the map H.(Grg) — BY factors through
UY. This proves (3). In general, by the functoriality of the geometric Satake
isomorphism for the homomorphism G*¢ — G, we have a commutative diagram

(3.8) Spec H,.(Grg) —=ZV x UV
Spec H,(Grgse) Uv.
Combining (B7) and (B.8]), the assertion is proved. O

3.4. Remark. The composition

~T
(3.9 Spec HY (Grg) 2= BY x Spec Ry — TV x Spec Ry

can be interpreted via equivariant localization. In fact, as we remarked in the proof
of Proposition B.3(3),(4), the above morphism Spec HI (Grg) — TV x Spec Ry
comes from the tensor automorphism &.,, of the T-equivariant weight functors
23). On the other hand, the cup product action of Hy(Grg) on Hf .(Sx, —)
factors through the restriction map i} : Hi(Grg) — HH(S\) = HA({t*}) (the
second arrow is an isomorphism because Sy contracts to t* under a G,,-action).
Therefore, for vy € Hf .(S\, F), we have

a'can(v)\) = Z(Z;(hz) U v/\) oy hz =\ ® i)\,*(l)v

?

where iy . : Rp = HI ({t*}) — HI(Gre) is the adjoint of i}. The product of i} is
the equivariant localization map:

Loc* = H i Hp(Grg) — HH;“({t)\})

XeXo (T)

Let

(3.10) Loc, = Y ix.: Rp[Xe(T)] — HI(Gre)
AeXo (T)

be the adjoint of Loc*, where Rp[Xo(T')] is the Rp-valued group ring of the abelian
group X(T). The above discussion shows that the morphism (B3] coincides with

Spec(Loc,) : Spec HX (Gra) — Spec Ry[Xo(T)] = TV x Spec Ry.

4. REMARKS ON LINE BUNDLES

From this section on, we assume that G9" is almost simple. In this case, it is
well known that the Picard group of each component of Grg is isomorphic to Z.
Let L4et denote the line bundle on Grg whose restriction to each component is the
positive generator of the Picard group.

4.1. Equivariant line bundles. Fix a representation V of G. The homomorphism
¢ : G — GL(V) induces a morphism of ind-schemes Grg : Grg — Grapv) over C.
We identify Grarv) with the set of O-lattices in V @ F' in the usual way. Fix a
lattice A1 € Grar(vy. Define a line bundle £,, whose value at a point A € Grar,v)
is the line

det(A : Ay) :=det(A/ANA;) @det(A; /AN A)®H
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where det(—) means taking the top exterior power of a finite dimensional C-vector
space. Let E(f;l = QTZEAI be the pull-back line bundle on Grg.

Let G(F')a, be the stabilizer of the lattice Ay in G(F')(via the action ¢). Then
Eil has a natural G(F')s,-equivariant structure: for each g € G(F),,, we identify
det(Grg(x) : A1) and det(Grg(gx) : A1) = det(Gry(gz) : gA1) via the action of g.
Let H C G(F)a, be an algebraic subgroup. Let = € Grg and H, be the stabilizer
of z in H, so that we can identify the H-orbit through x with the homogeneous
space H/H,. Via the induction functor, we have an identification

Pic? (H - z) = Pic® (H/H,) = X*(H,,).

It is easy to see that the image of Eﬁl |ir. € Pic” (H - x) in X*(H,) is the character
given by the action of H, on the line det(Gry(z) : A1) (notice that H, stabilizes
both Gry(x) and Aq).

We consider the special case where Ag = V ®@c O. Since Ay is stabilized by G(O),
Lf{o has a natural G(O)-equivariant structure. Take H = G C G(0O) and = = t*.
Then H, = P, C G is a parabolic subgroup containing the maximal torus 7. We
can identify the image of £i0 in X*(Py) C X*(T') as the character of the action of
T on det(t*Ag : Ag), which is

(4.1) - Z dim Vv - (¥, N)x".

xV €weight (V)
We can further specialize to the case H = H, = T, then the element in ({1 is also
the restriction of cf(ﬁf{o) to the point #*, if we identify X*(T) with H2(pt).

4.2. Lemma (See also [KNR94, Section 5] and [So00, Lemma 10.6.1]). We have
Eil = ﬁ?jtv € Pic(Grg) where

1
dv = 5 Z dim VXv . <Xv,9>2.
xV Eweight (V)

Here 0 stands for the coroot corresponding to the highest root 0V of G.

Proof. For i € mo(Grg), let Gre, denote the corresponding connected component.
We first claim that the degree of Eil on the generating cycle of H(Gr) (= Z)
is independent of the component Gri,. In fact, for any g € G(F), by choosing
a trivialization of the line det(gA; : A1), we get an isomorphism of line bundles
g*ﬁil & E(f;l. Since G(F) transitively permutes the components of Grg, our asser-
tion follows. In the following we concentrate on the neutral component Grd,.

Let I C G(O) be the Iwahori subgroup of G(F') containing B. The only 1-
dimensional I-orbit in gr% is/ t*‘g, and the fundamental class of its closure generates
Hy(Gr2). Therefore the number dy in question is the degree of Ej‘:l on the closure
of It=7.

Fix an s[(2)-triple (zgv,0,x_gv) where x19v belongs to the root space ggv. Let
¢o : SL(2) — G(F) be the homomorphism which sends the standard triple (e, h, f)
to (t~'azev,0,tx_gv). Then the closure of It~% in Grq is the ¢ (SL(2))-orbit through
t=% and the stabilizer of =% is the upper triangular matrices B, C SL(2). To
compute the degree of Eil on this orbit, we will choose a lattice A1 which is stable
under the SL(2)-action and calculate the character of By acting on det(t=%Aq : Ay).
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Let V. = @,, Vs be the grading according to the action of #: V,, is the di-
rect sum of weight spaces Viv such that (xV,0) = n. Then the lattice Ay =
@, t 20 ®c V,, is stable under the SL(2)-action. On the other hand, the lattice
=0y = P, 1 "0 &c V,,. Therefore, the action of By on det(t=%Ag : Ay) is via a
character whose pairing with 6 is:

2
(42) S n(n- [g])dimvn - Zn: %dim v, = % Y dimVi - (xY,6)%

n xEweight (V)

Here the first equality follows from the fact that dimV,, = dimV_,. As a well-
known fact for line bundles on P! = SL(2)/Bz, the number in (Z2) is the degree of
restriction of the line bundle Eil to the SL(2)-orbit through t~¢ hence the degree
of Eil on the generating cycle of Hy(Grd) (here A; can be any reference lattice,
because different choices of A; give rise to isomorphic line bundles). O

4.3. Remark. The lemma shows that some power of L4t admits a natural G(O)-
equivariant structure (the G(O)-equivariant structure is necessarily unique if G is
almost simple). However, Lqq itself may not have a G(O)-equivariant structure.
Assume that under the isomorphism Pic(Grd) = Z, the image of the natural for-
getful map Pic’ (Gr%) — Pic(GrY) is nZ C Z. Then the number n coincides with
the number ng which will be introduced in Remark (.8

5. THE REGULAR ELEMENT el

(a1

We continue using the notation introduced in the previous section. Since Lio
L2 admits a canonical G-equivariant structure (hence a canonical T-equivariant
det

structure), we can take its equivariant Chern class c{(ﬁio) € H2(Grg).

5.1. Lemma. The element c{(ﬁio) is primitive in the Hopf algebra Hy(Grg).

Proof. Let mg : QK x QK — QK be the multiplication. Then the T N K-
equivariant line bundle m}((ﬁio) restricts to £j§0 on both QK x {x} and {x} x QK
({+} is the unit element in QK). This forces clT(Eio) to be primitive. Therefore,

et is also primitive. (]

5.2. Corollary. The element

1
of = @cf (L£3,) € H3(Gre, Q)

is independent of the choice of the representation ¢ : G — GL(V).

Proof. For different choices of (¢, V), the classes %c{(ﬁio) have the same image

c1(Lqet) in H?(Grg). However, there can be at most one primitive element in
H2(Grg, Q) with a given image in H%(Grg, Q). O

5.3. The element e”. For each object F € Pg, cup product with ¢/ induces a
functorial map

Ucl + Hi(F) — HEP(F).
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By Proposition 7 the fact that ¢! is primitive implies that for any F1, F> € Pg,
there is a functorial commutative diagram

Hi(F1) ®@ry Hy(F2)
lf@idﬂd@c? lcf

H3(F1) @ry Hi(F2)[2] —= Hi(Fy + F2)[2)].

~

HI(F1* Fa)

In general, let ¢ is an endomorphism of the functor wg : Rep(GY) — Mod(R)
(the composition of the forgetful functor with the tensor product ®R) satisfying
cvigv, = cy, @ idy, +idy, ®cy,, then ¢ determines an element e € g¥ @ R. In
fact, Consider the fiber functor wg . : Rep(GY) — Mod(R[e]/e?) sending V +
V® R[]/ =V @ R®V ® Re. The maps

(5.1) <ldV 0 ):V®R®V®R5—>V®R@V®Re
Cy ldV

give a tensor automorphism of wg ., hence an element e € GV (R[e]/€?). Since the
induced tensor automorphism of wg (via R[e]/e?> — R) is the identity, e lies in the
kernel of the reduction map GV (R[e]/€?) — GV (R), which is g¥ @ R.

Applying the above discussion to the functor Hy : P — Mod(Rr ® Q) (which
can be identified with the functor wr,gg : Rep(GY) — Mod(Rr ® Q) by Lemma
Z2) and ¢ = ¢’ | we conclude that ¢! gives an element e? € g¥ ® Ry ® Q.

5.4. Remark. More generally, suppose w’ : Rep(GY) — Mod(R) is a fiber functor
and ¢’ is an endomorphism of ' satisfying cy, oy, = ¢y, ® idwr (1) +iduwr(vy) @€, -
Then w’ determines a GY-torsor £ over Spec R. Let § : Spec R[e]/€? — Spec R be
the structure map and let 6*€ be the pull-back GV-torsor to Spec R[e|/¢?. Then the
same construction as in (1)) determines an automorphism of 6*€ whose restriction
to the closed subscheme Spec R < Spec Re]/e? is the identity. Spelling these out,
we see that ¢’ determines a Higgs field of the GV-torsor &£, i.e., a global section

¢/ € T'(Spec R,Ad(E)) where Ad(E) = & % gV is the adjoint bundle. In other
words, the pair (w’, ') determines an R-point (£, ¢€’) of the stack [g¥/GY].

Applying the above discussion to the functor H(—) (which determines the torsor
& by Remark 2.35)) and c¢§ (L) for any G-equivariant line bundle £ on Grg, we get a
commutative diagram:

cf (£) v

Spec Rt g

l H* _7G£ l
Spoc g PEEE 1 oy

In the remaining part of this section, we determine the element e’ explicitly.
We give an (even) grading on g¥ = €, ., 93, according to the action of G,, via
the conjugation of 2p" : G,,, — TV:

v \%
an - @ ga'
a€®,(2pV,a)=2n

We give g¥ ® Ry the tensor product (even) grading. The fact that Uc! increases the
cohomological degree by 2 implies that e’ is homogeneous of degree 2 in g¥ ® Ry,
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ie.,
eT € @gg(l—n) ® Symn(X.(T)) ® Q.
nez
5.5. Lemma.

(5.2) efegyeQot' X (T) Q.

Proof. The action of Uc] preserves the T-equivariant MV-filtration on H}(F)
which gives the canonical BY-reduction of the trivial GV-torsor £|gpec r, (see Re-
mark Z.5)). Hence, el is an Ry ® Q-valued element of the Lie algebra bY. Since e”
is homogeneous of degree 2 in b¥ ® Ry ® Q, it must take the form (5.2)). O

Write e’ = e+ h where e € gy ® Q and h € t¥ @ X*(T) ® Q.

We first calculate e. Clearly, e is obtained from the endomorphism of the functor
H* : P — Mod(Z) given by Uc;(Lget), the ordinary Chern class of Lget. In partic-
ular, e € gV. For each simple root «; of gV, let z; be the element of a Chevalley
basis of gV in the root space gx Then e is an integral combination of the x;’s.

5.6. Proposition. Up to changing the Chevalley basis elements {x;} by signs, we
have

(5.3) e= Z |ovi |2

where | |* is a W-invariant quadratic form on Xe(T) normalized so that short
coroots (of G) have length one (hence |o;|?> = 1,2 or 3).

Proof. Let I be the perverse sheaf Pj27Z[(2p", \)] where j* : Gry — Grg is the
inclusion. We first claim that the restriction map H~ (2" (Z}) — H'(Gry) is an
isomorphism for i < 2. In fact, the cone F of I3 — j2Z[(2pY, A)] has perverse degree
> 1, and is supported on Gr.y = Gr< — Gry, which has dimension < (2pY, \) — 2.
Therefore, H*(F) vanishes for i < —dimGr.y +1 < —(2p¥,A) + 3. This implies
our assertion.

Now we prove the proposition. Without changing e and g¥, we can assume that
G is of adjoint type. Write e = > . n;x; for some integers n;. For each simple
coroot a; of G, let A; be the corresponding fundamental coweight. By [MVO07,
Proposition 13.1], the G¥-module H*(L_woo‘i)) is the Schur module with highest
weight —wg()\;), where wq stands for the element of longest length in the Weyl
group of G. Therefore, the Lie algebra element x; sends the lowest weight vector
Vlow (With weight —\;) to a generator of the rank 1 weight space of weight —\; + a;.
For j # i, clearly x; - vjoy = 0. Therefore, e - vjoy is ni-times a generator of the
rank 1 weight space of weight —\; + ay.

Translating to geometry, this means that the action of ¢;(Lqet) sends the fun-
damental class [Gr_y,] € H‘<2pv’_w0()‘i)>(I;wO(Ai)) to n;-times a generator of
H2= @0 —wo)) (270 (which is a free Z-module of rank one). By the dis-
cussion at the beginning of the proof, we can identify Hi_<2pv7_“’0()‘i))(I;wo()"'))
with H(Gr_y,). Hence c1(Lqet) sends 1 € HO(Gr_y,) to n;-times a generator
of H%(Gr_y,) (which is unique up to sign). To calculate this number n;, it suf-
fices to calculate the class Cl(ﬁdct)‘gr,xi € H?(Gr_,,), or its further restriction to
H?(G -t=) (because the inclusion G - t~* < Gr_, is a homotopy equivalence).

Now the restriction of ¢1(Lget) to G-t~ is n;-times the generator of H2(G-t=),
which is a free Z-module of rank 1. Let ¢; : SL(2) — G be the homomorphism
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corresponding to the coroot a; of G. Then ¢;(SL(2)) -t~ = SL(2)/By = P! is the
generating 2-cycle of the partial flag variety G-t ~*¢ (by the Bruhat decomposition),
and n; equals the degree of the restriction of Lqer to ¢;(SL(2)) -t

Let Ad : G — GL(g) denote the adjoint representation of G. The degree of Cﬁg
on ¢;(SL(2))-t~* = P! is the same as the pairing of C’{(ﬁﬁg”t—)\i € HA({t™}) =
X*(T) with o). By (&), this degree equals

= Y (@Y, =Y ) = (A, i)k
avepv
1
By Lemma L2 c; (Eﬁg) =dadc1(Laet) = 5(9, 0)kirc1 (Ldet ), therefore the degree of
Laet on ¢5(SL(2)) -t is

e — 2(Nis i )kit (@, o)k

(6,0)ki (0, 0)kin

Since 6 is a short coroot, we conclude that n; = |a;|?. O

Next we determine the element h € t¥ @ X*(T) ® Q.

5.7. Proposition. Identifying tV with X*(T) and t¥ @ X*(T) with the dual of
Xe(T) @ Xo(T), the element h is the (Q-valued) symmetric bilinear form

—2(\, kil
(er)Kil
Proof. Write h = > h; ® g;, where h; € tV,g; € X*(T). Since the cup product

with ¢] preserves the T-equivariant MV-filtration, there is an induced action e’
on the associated graded pieces H{RC(S \» —)- The element h is given by the action

h(A 1) =

eT. More precisely, for A € X¢(T), the action of eT on the A-weight subspace
is given by the multiplication of Y (h;, A)g;. Translating back to geometry, this
means that the cup product of ¢! on Hf .(Sx,—) should be the multiplication
by Y (hi,A\)g; (where as before, g; € X*(T) = HZ(pt)). On the other hand, ¢]
acts on H7 (Sx, —) via its restriction to Sy. Since {t*} = S, is a T-equivariant
homotopy equivalence, the action of ¢ on HT*«’C(S \» —) 18 given by the multiplication
of i(cf) € H7({t},Q) = Xo(T) ® Q.

Applying ([@J) to the line bundle Eﬁg associated with the adjoint representation
Ad of G, and using Lemma 2] we see that the restriction of ¢’ to HZ({t}}) is

given by:
-2
o T \2 \Y
ix(cp) = —=—— (¥, A)a”.
(0,0)ku wiThy
Therefore,
-2
h=— a¥ ®av.
0.0 2,

If we view h as a bilinear form on X,(T'), then for any A, u € Xo(7),

o _2Zave V<O‘v’)‘><avuu> . _2()\7H)Ki1
A ) = Epgvg)Kil 0,0k
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5.8. Remark. Let ng be the least positive integer such that ngh € t¥ @ X*(T') (or

equivalently, such that nge” € g¥ ® Ry). Clearly, we have ng = ngaer. On the

other hand, for G is almost simple, this number can be found in [So00, Table C], in

which n¢ is denoted by ¢,. We reproduce these numbers explicitly in the following

list:

_ #m(G)
ecd(#Z(G), #m1(G))

e ng = 2if G is PSp,,, (for m odd), SOL,, (for m odd), PSOy,,, or PEy;

[ nG:3ifGiS PEG;

® Ng = 4if G is PSO4m+2;

e ng = 1 otherwise.

na if G is of type A;

Here P stands for the adjoint form, and SOffm are the two quotients of Spin,,,, by
Z/2 which are not isomorphic to SOyy,.

6. PROOF OF THE MAIN RESULT

Recall the morphism 7 : Spec HI (Grg) — BY x Spec Ry defined in Proposition
[B3(1) and its non-equivariant counterpart o : Spec H.(Grg) — BY. It is clear that
the action of 0.4, on the fiber functor H3(—)®g, HI (Grg) commutes with the cup
product action of ¢I'. Therefore, 57 further factors through the homomorphism

ol : Spec Hf(grg)[l/ng] — BEVT,

of group schemes over Spec Rp[1/ng]. Here BY. is the centralizer group scheme of
el € g¥(Rr[1/ng)) in BY x Spec Rr[1/ng]. Since e is already an element in g,

we also have the homomorphism
o : Spec H,(Grg) — ZV x Uev — B;/
of group schemes over Z (the first arrow above follows from Proposition B:3|(4)).

6.1. Theorem. Assume that G%" is almost simple.

(1) The homomorphism o : Spec H.(Grg) — B is a closed embedding, and
is an isomorphism over SpecZ[1/ls], where b = 1,2 or 3 is the square
of the ratio of lengths of the long and short coroots of G. In particular,
Spec H,.(Grg) — ZY x U is also an isomorphism over Spec Z[1/{g].

(2) The homomorphism o' : Spec H (Grg)[1/ng] — BYr is a closed embed-

].

Proof. Step 1. We first prove that o7 and o are closed embeddings, i.e., T
O(BYy) — HI(Gre)[1/ng] and 7 : O(BY) — H.(Grg) are surjective. It suffices
to prove the surjectivity of 7 because any homogeneous lifting of a Z[1/ng|-basis
of H.(Grg)[1/ng] to HI (Grg)[1/ng] generates HY (Grg)[1/ng] as an Ry[l/ng)-
module, and we can choose these liftings to be in the image of 77 since O(BY) —
O(BY) is surjective.

Fix a dominant coweight A of G. Consider the following diagram:

ding, and is an isomorphism over Spec Rp| 7
anag

T .

(61) H, (Qm\) = s (2pV \) (Ii\) L O(Bé/)
H*(grg)\) H*(gTG')
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where H,(Z?) is the Z-dual of H*(Z}). In the following, we describe the various
arrows in this diagram and verify its commutativity.

First we concentrate on the triangle in (6I)). We have the natural morphisms
between complexes on Gr<y:

Z - TX~(2p", N)] = J2.
Taking duals of their cohomology, we get the triangle in (G.IJ), which is therefore
commutative.

Next we examine the square in (G.I). The map S is defined to be the matrix
coefficient of the GV-module H*(Z?) with respect to the lowest weight vector

Viow = [g'l“g)\] S I’I_(va’>\> (I;\)
More precisely, for u € H,.(Z7),

B(u)(g) = (u,g - viow), Vg € B .
We check that commutativity of the square in (61). For u € H.(Z2) and the
H.(Grg)-valued point 0.4, € BY (H.(Grg)), we have

(62) Tﬁ(u) = B(u)(gcan) = <U7Ucanvlow> = Z<u7 h"- Ulow>hi € H*(gTG)
where {h'},{h;} are dual bases of H*(Grg) and H.(Grg). On the other hand,
the map H*(Grey) — H*~ (227X (Z}) sends h — h - Ugu, hence the adjoint map
H._2pv 2y (I}) = H.(Gr<y) sends u — Y, (u, h' - vjo)h;. Combining with (6.2,
we have verified that the square in (GIJ) is commutative.

From diagram (6.1), we conclude that the image of O(B)) — H.(Grg) contains
the image of H.(G - t*) = H.(Gry) — H.(Grg) for any A € X¢(T). When G is
of adjoint type, by [B58, Theorem 1], there exists a single A (called the “gener-
ating circle” by Bott), such that the image of H,.(G - t) — H.(Grg) generates
H.(Grg) as a Z-algebra. This implies that O(BY) — H.(Grg) is surjective in
the case G is adjoint. By Proposition B3|(4), this means that Spec H,(Grg) =
Spec Hy(Grg) ® Hy(Grgse) — ZY x UV is a closed embedding when G is ad-
joint. Since Spec Ho(Grg) = ZV, we conclude that H,(Grgse) — U is also a
closed embedding. For general G, using Proposition B:3[(4) again, we conclude that
Spec H,(Grg) — Z¥ x UV is always a closed embedding.

Step II. We prove that BY.[1/{¢] is flat over R}, := Ry

]. Consider the
fGTLG
morphism over R/.:

¢ = Ad(—)e” — e’ : BY x Spec Ry — u" x Spec RYy.

Then BY:[1/c] = ¢71(0), ie., BY:[1/{g] is the closed subscheme of the BY x
Spec R/ (which is smooth over R/.) cut out by dimu" equations. Hence the fiber
dimensions of BY, — Spec R/ are at least dim BY — dimu" = r, the rank of GV.
If we can show that all the fibers of B-[1/{g] — Spec R7 are r-dimensional, then
BYr[1/Lg] will be locally a complete intersection over R7.. Using that all the fibers
are of the same dimension again and that R/ is regular, we can conclude that By
is flat over R/ (see [M80), 20.D] with obvious modifications). Therefore, it suffices
to show that for any closed point s € Spec R/, the fiber (BY)s has dimension r.
Since Ry is graded, Spec R admits a natural G,,-action with fixed point locus
z : SpecZ — Spec R defined by the augmentation ideal of Ry. Moreover, this
fixed point locus is attracting: for each point s € Spec R, let n € Spec Ry be the
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generic point of the G,,-orbit of s, then the closure of 7 intersects the fixed point
locus z(SpecZ). In other words, n specializes to a point sg € z(SpecZ) of the same
residue characteristic as s. Hence dim(BY), = dim(B), < dim(BY,)s,. Therefore,
in order to show that all fibers of B [1/{c] — Spec R’ have dimension r, it suffices
to show that all (geometric) fibers of BY[1/¢g] — SpecZ[1/{g] have dimension 7.

Let k be an algebraic closure of IF,, for some prime p not dividing £¢. We would
like to show that BY ®zk has dimension r over k. We base change the situation from
Z to k without changing notation. So in the rest of this paragraph B is over k,
etc. By Proposition[5.6] the element e has the form ), n;x; where each n; # 0 in k.
We can choose ¢t € T (k) such that Ad(t)e = Y. x; (because [[a; : TV (k) — (k)"
is surjective). Therefore, we only need to treat the element e; = . x;. It is well
known that BY, = Z" x U, ; therefore, it suffices to show that dim U, = r—dim Z".
This equality follows from the main result of [K87]. This proves that BY. is flat
over R/p.

The above argument also shows that BY[1/q] is flat over Z[1/4¢].

Step III. Now we can finish the proof.

(2) The equivariant version. In view of Step I, it remains to prove that

1
KGHG]

O(BJr)[1/tc] = HI(Gre)l

1
is injective. Since both O(BY;)[1/{¢] and Hf(grg)[z—] are flat over R/, it
ana

suffices to show that O(BY)[1/lc] @, Q@ — HI(Gre) ®r, Q is injective where
Q@ = Frac(Ry).
Recall from Remark [B.4] that we have a commutative diagram

TQ

Spec(H (Grc) ©rr Q) B,

TV x Spec @

where e € bY(Q) is the value of €T over the generic point of Spec Ry. By the
equivariant localization theorem, the localization map Loc, in ([BI0) is an isomor-
phism. On the other hand, by Proposition [1.7] eq is a regular semisimple element
in b¥(Q), hence the projection B;, — T x Spec (@ is also an isomorphism. This
shows that the closed embedding 7¢ is in fact an isomorphism, and (2) is proved.
(1) The non-equivariant version. As a consequence of the equivariant ver-
sion, o : Spec H.(Grg) — BY is an isomorphism over Q (we base change o7 to
SpecQ — SpecZ = Spec Rr). Therefore, 7@ Q : O(BY) ® Q — H,.(Grg,Q) is an
isomorphism. Since O(BY)[1/4¢] is flat over Z[1/{s] by Step II, hence torsion-free,
we conclude that 7[1/0g] : O(BY)[1/¢c] — H.(Grg)[1/4s] is injective. Combining
this with Step I, (1) is proved. O

6.2. Remark.

(1) Inverting £ in the statement of the above theorem is necessary because e
is not regular modulo ¢, hence the fiber of BY over Fy, does not have the
same dimension as Spec H.(Grg,Fy,). However, the proof of the above
theorem implies that Spec H,(Grg) is always isomorphic to the Zariski
closure in B of its generic fiber.
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(2) The theorem shows that no primes other than ¢¢ need to be inverted,
even for those “bad primes” of G (i.e., those dividing the coefficients of the
highest root in terms of a linear combination of simple roots). For example,
let G be the exceptional group G. Then Bott (cf. [B58]) shows that

H,(QK) = Zu,v,w]/(2v — u?).
On the other hand, one can show (using formulae in [K87]) that
O(BY)=Z[A,C,D,E,F]/(2C — 3A% 3(D — A%),3(E + C? — 3A%)).

We find that H.(QK,F2) = O(B)) @ Fy although 2 is considered as a bad
prime for group Gs.

6.3. Description of the cohomology. Dually, we have a description of the coho-
mology of Grg. Recall that if H is an affine group scheme over some commutative
ring k, the algebra of distributions on H (cf. [J03|, §1.7]) is defined as

Dist(H) = {f : O(H) — k|f is k-linear, f(m"*!) = 0 for some n}.

Here m is the augmented ideal of O(H). It has a natural algebra structure dual to
the coalgebra structure on O(H). Dist(H) can be also regarded as the algebra of
left invariant differential operators on H. If, in addition, H is infinitesimally flat
(i.e. O(H)/m"*! is flat over k for any n), then Dist(H) has a natural structure of
a Hopf algebra over k.

Now let H = BY. It is proved by Springer (cf. [Sp66]) that B, ® F,, is smooth
if the prime p is good (i.e. not bad) for GV. This fact, together with the flatness of
BY over Z[1/£g] as shown in the course of proving Theorem [B.] implies that BY
is smooth over Z', where Z' is obtained from Z by inverting the bad primes of G.
In particular, B is infinitesimally flat over Z'.

6.4. Corollary. Assume that G is almost simple and simply-connected. Then there
is an isomorphism of algebras over 7Z,

(6.3) ™ H*(Grg) = Dist(U)),
which is an isomorphism of Hopf algebras over Z'.

Proof. Observe that ZV is trivial in this case, hence UY = BY. In the course of
proving Theorem we have shown that 7: O(UY) — H.(Grg) is surjective, and
is an isomorphism up to torsion. Observe that Dist(U)) can be identified with the
graded dual of O(U)) because elements in the augmentation ideal of O(UY) all
have positive degrees. Taking the graded dual of 7 we get the desired isomorphism
7* in ([@3). O
6.5. Description of the G-equivariant homology. In this subsection, we as-
sume that G is almost simple and simply-connected. We now interpret the G-
equivariant homology HY(Grg) in terms of the regular centralizer group scheme
of GV. Let us recall that a prime p is called a torsion prime of G if H*(G,Z) has
p-torsion. Let S; be the multiplicative set generated by the torsion primes of G,
and let Zg, be the corresponding localization, i.e., the localization away from the
torsion primes. Borel (see [B53]) proved that

(6.4) Rg ® Zs, = (Rr ® Zs,)".

Since Ng(T) acts on Grg, it induces an action of W = Ng(T)/T on H (Grg) com-
patible with the natural W-action on Ry. The natural map HS (Grg) — HI (Grg)
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then factors through the W-invariants of HI (Grg). Using the isomorphism (6.4)),
it is easy to show that

HE(Gre,Zs,) = H (Gra, Zs,)"

as Hopf algebras over Rg ® Zg, .

On the other hand, let Sy be the multiplicative set generated by bad primes of
GV and those dividing n + 1 if G is of type A,. Clearly, £g,ng € So, and the
result in [B60] implies S1 C S. Let Zg, be the localization of Z with respect to
Ss. Consider the universal centralizer scheme IV over gV (i.e., the fiber of IV over
x € g¥ is the centralizer GY). After inverting primes in S2, we have the following
identifications:

(6.5) (g¥))G) x SpecZg, — (t' )W) x SpecZs, — (Spec Rg ® Zs,)

where the latter isomorphism uses the element f in Proposition .7 It can be
shown that the restriction of IV to the regular locus (g¥)"®9 x SpecZg, descends
to a smooth group scheme JY over Spec(Rg ® Zg,) = (gV/G) x Spec Zg,. In fact,
this is essentially proved in [NO6] with all primes dividing #W inverted; but further

argument shows that only primes in Sy need to be inverted.

6.6. Proposition. There is a natural isomorphism of group schemes over
Spec(Rg ® Zg, ):
Spec HY (Gra, Zs,) = JV.

Sketch of proof. Let 7 : Spec(Rr ® Zs,) — Spec(Rg ® Zs, ), then by the definition
of the regular centralizer, we have a closed embedding 3 : BYy — GYr = n*JY
(from now on we view B as a scheme over Spec(Rr ® Zs,)). Using the flat-
ness of B and 7*J" over Rg ® Zg,, it is easy to see that 3 is an isomorphism.
Therefore, the coordinate ring O(JV) can be identified with the W-invariants of
O(BYr) = O(GYr). Recall from (G5) that HS (Gre,Zs,) is also identified with
the W-invariants of HI (Grg,Zs,). It remains to show that the W-actions on
HI(Grg,Zs,) and O(BY;) correspond to each other under the isomorphism ¢ in
Theorem [6.1)(2). For this, it is enough to argue over Frac(Rr) and use equivariant
localization (Remark B.4)) again. The details are left to the reader. (]
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