18.706 HOMEWORK 9

DUE NOV. 9, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each. Convention: a central simple algebra over k is assumed to be finite-dimensional as a k-vector space.

Theorem 1. Let R be a central simple algebra over a field k.
(1) $[R: k]:=\operatorname{dim}_{k} R$ is a square.
(2) Let $L \subset R$ be a subfield that is a maximal commutative subalgebra. Then $[L: k]^{2}=[R: k]$.

Theorem 2. Let R be a central simple algebra over a field k. Let S be a simple k-algebra and φ_{1}, φ_{2} : $S \rightarrow R$ be two k-linear ring homomorphisms. Then there exists an invertible element $u \in R$ such that $\varphi_{2}(s)=u \varphi_{1}(s) u^{-1}$ for all $s \in S$.

Exercises

Problem 1. Let R be a central simple algebra over k, and $R_{1} \subset R$ a central simple subalgebra over k. Let $R_{2}=Z_{R}\left(R_{1}\right)$ (centralizer of R_{1} in R).
(1) Show that R_{2} is also central simple over k and $Z_{R}\left(R_{2}\right)=R_{1}$.
(2) When R is a division algebra, show that $\left[R_{1}: k\right]\left[R_{2}: k\right]=[R: k]$.
(3) When R is not a division algebra, does the equality in (2) still hold?

Problem 2. Let $k=\mathbb{F}_{p}((t))$, and $L=\mathbb{F}_{p^{n}}((t))$. Let $\sigma \in \operatorname{Gal}(L / k)$ be the automorphism of L fixing k that is the Frobenius on $\mathbb{F}_{p^{n}}$. Form the cyclic algebra $R_{n, d}=L\langle x ; \sigma\rangle /\left(x^{n}-t^{d}\right)$ for $d \in \mathbb{Z}$.
(1) Show that the isomorphism class of $R_{n, d}$ depends only on $d \bmod n$.
(2) When d is prime to n, show that $R_{n, d}$ is a central division algebra over k. You may follow the hints below:

- An $R_{n, d}$-module is the same as an L-vector space V together with a semilinear endomorphism $x: V \rightarrow V$ (semilinar in the sense that $x(c v)=\sigma(c) x(v), c \in L, v \in V)$.
- Although $\operatorname{det}(x \mid V)$ is not well-defined, its valuation is well-defined (independent of the choice of an L-basis).
- Calculate $\operatorname{det}\left(x \mid R_{n, d}\right)$.
- Write $R_{n, d}$ as a sum of simple $R_{n, d}$-modules, get another calculation of $\operatorname{det}\left(x \mid R_{n, d}\right)$. Conclude that $R_{n, d}$ is a simple $R_{n, d}$-module.
(3) (Optional) If $\operatorname{gcd}(d, n)=e$, show that $R_{n, d} \cong M_{e}\left(R_{n / e, d / e}\right)$.

