18.706 HOMEWORK 9

DUE NOV. 9, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each. Convention: a central simple algebra over k is assumed to be **finite-dimensional** as a k-vector space.

Theorem 1. Let R be a central simple algebra over a field k.

- (1) $[R:k] := \dim_k R$ is a square.
- (2) Let $L \subset R$ be a subfield that is a maximal commutative subalgebra. Then $[L:k]^2 = [R:k]$.

Theorem 2. Let R be a central simple algebra over a field k. Let S be a simple k-algebra and $\varphi_1, \varphi_2 : S \to R$ be two k-linear ring homomorphisms. Then there exists an invertible element $u \in R$ such that $\varphi_2(s) = u\varphi_1(s)u^{-1}$ for all $s \in S$.

EXERCISES

Problem 1. Let R be a central simple algebra over k, and $R_1 \subset R$ a central simple subalgebra over k. Let $R_2 = Z_R(R_1)$ (centralizer of R_1 in R).

- (1) Show that R_2 is also central simple over k and $Z_R(R_2) = R_1$.
- (2) When R is a division algebra, show that $[R_1 : k][R_2 : k] = [R : k]$.
- (3) When R is not a division algebra, does the equality in (2) still hold?

Problem 2. Let $k = \mathbb{F}_p((t))$, and $L = \mathbb{F}_{p^n}((t))$. Let $\sigma \in \text{Gal}(L/k)$ be the automorphism of L fixing k that is the Frobenius on \mathbb{F}_{p^n} . Form the cyclic algebra $R_{n,d} = L\langle x; \sigma \rangle / (x^n - t^d)$ for $d \in \mathbb{Z}$.

- (1) Show that the isomorphism class of $R_{n,d}$ depends only on $d \mod n$.
- (2) When d is prime to n, show that $R_{n,d}$ is a central division algebra over k. You may follow the hints below:
 - An $R_{n,d}$ -module is the same as an *L*-vector space *V* together with a semilinear endomorphism $x: V \to V$ (semilinar in the sense that $x(cv) = \sigma(c)x(v), c \in L, v \in V$).
 - Although det(x|V) is not well-defined, its valuation is well-defined (independent of the choice of an *L*-basis).
 - Calculate $det(x|R_{n,d})$.
 - Write $R_{n,d}$ as a sum of simple $R_{n,d}$ -modules, get another calculation of det $(x|R_{n,d})$. Conclude that $R_{n,d}$ is a simple $R_{n,d}$ -module.
- (3) (Optional) If gcd(d, n) = e, show that $R_{n,d} \cong M_e(R_{n/e,d/e})$.