18.706 HOMEWORK 7

DUE OCT.21, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each.

Theorem 1. Let R be a ring and M be an R-module. Then there exists an injective R-module I and an essential extension $M \hookrightarrow I$. Moreover, for another such essential extension $M \hookrightarrow I'$ with I' injective, there exists an isomorphism $I \xrightarrow{\sim} I'$ that is the identity on M.

Theorem 2. Let C be a category and $\operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ be the category of contravariant functors $C \to \operatorname{Set}$. Then the functor $h : C \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ sending $X \in C$ to the functor $h_X(Y) = \operatorname{Hom}_{\mathcal{C}}(Y, X)$ (for all $Y \in C$) is a fully faithful embedding.

EXERCISES

Problem 1. Let k be a field. A Frobenius k-algebra (always assuming k is in the center) is a finitedimensional k-algebra R equipped with a k-linear function $\tau : R \to k$ such that the bilinear pairing $R \times R \to k$ given by $(x, y) \mapsto \tau(xy)$ is nondegenerate.

- (1) Let G be a finite group. Show that k[G] is a Frobenius k-algebra.
- (2) Let V be a finite-dimensional k-vector space with a quadratic form q. Show that the Clifford algebra $R = \operatorname{Cl}(V,q)$ is a Frobenius k-algebra.
- (3) If k'/k is a finite extension, and R is a Frobenius k'-algebra, show that R is also a Frobenius k-algebra.
- (4) If R is a Frobenius k-algebra, show that R is injective as a left R-module (such a ring is called *self-injective*).

Problem 2. Let $R \to S$ be a ring homomorphism. Describe the endomorphism ring of the forgetful functor $\omega : (S - \text{Mod}) \to (R - \text{Mod})$.