18.706 HOMEWORK 5

DUE OCT.7, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each.

Theorem 1. Let G be a group and k be a field of characteristic zero. Let V_1, V_2 be two finite-dimensional representations of G over k with the same characters. Then the semisimplifications of V_1 and V_2 are isomorphic.

Note: the semisimplification of V is $\oplus (S^{\oplus m_S(V)})$, where the sum of is over all irreducible representations of G over k, and $m_S(V)$ is the multiplicity of S in any composition series of V.

Exercises

Problem 1. Let C_n be the cyclic quiver with n vertices, i.e., C_n has vertices v_1, \dots, v_n and arrows $e_i : v_i \to v_{i+1}$ for $1 \le i \le n$ (convention: $v_{n+1} = v_1$). Let k be an algebraically closed field.

(1) Classify simple representations of C_n over k.

(2) (Optional) Classify indecomposable representations of C_n over k.

Problem 2. Let k be a field of characteristic p > 0 and $A_n(k)$ be the Weyl algebra $k \langle x_1, \dots, x_n, \partial_1, \dots, \partial_n \rangle$ with relations $[\partial_i, x_j] = \delta_{ij}$, $[x_i, x_j] = 0$ and $[\partial_i, \partial_j] = 0$ for all $1 \le i, j \le n$.

- (1) Show that x_i^p and ∂_i^p are in the center of $A_n(k)$.
- (2) Show that $Z(A_n(k))$ is isomorphic to the polynomial ring over k with free generators $\{x_i^p, \partial_i^p\}_{1 \le i \le n}$.