18.706 HOMEWORK 3

DUE SEP.23, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each.

Theorem 1. A ring R is semisimple if and only if it is a finite product $\prod_{i=1}^{s} M_{n_i}(D_i)$, where D_i are division rings.

Theorem 2. The following are equivalent for a ring R:

- (1) R is simple and left artinian.
- (2) R is left primitive (i.e., R has a faithful simple left module) and left artinian.
- (3) $R \cong M_n(D)$ for some division ring D.

Exercises

Problem 1. Let k be a field. Let R be a simple k-algebra with Z(R) = k (here Z(R) denotes the center of R).

- (1) Define a ring structure on $R \otimes_k R^{op}$ in which R and R^{op} commute with each other.
- (2) Show that R is a simple $R \otimes_k R^{op}$ -module under left and right multiplication.
- (3) Suppose dim_k R = n, show that $R \otimes_k R^{op} \cong M_n(k)$ as k-algebras.

Problem 2. Let R be a k-algebra (it implicitly means k is in the center of R), and M be a semisimple module of R with $\dim_k M < \infty$. Show that

- (1) $S = \operatorname{End}_R(M)$ is a semisimple ring.
- (2) The action map $R \to \operatorname{End}_S(M)$ is surjective.