18.706 HOMEWORK 2

DUE SEP.16,2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each.

Theorem 1. Let M be an R-module equipped with two finite composition series $0 \,\subset M_1 \,\subset M_2 \,\subset \cdots \,\subset M_a = M$, and $0 \,\subset M'_1 \,\subset M'_2 \,\subset \cdots \,\subset M'_b = M$ (namely M_i/M_{i-1} and M'_j/M'_{j-1} are simple R-modules for $1 \leq i \leq a, 1 \leq j \leq b$). Then a = b. Moreover, there are canonical permutation $\sigma : \{1, \cdots, a\} \xrightarrow{\sim} \{1, \cdots, b\}$ and canonical isomorphisms $M_i/M_{i-1} \xrightarrow{\sim} M'_{\sigma(i)}/M'_{\sigma(i)-1}$, for all $1 \leq i \leq a$.

EXERCISES

- **Problem 1.** (1) Construct a \mathbb{C} -algebra S such that an S-module is the same as a \mathbb{C} -vector space V together with an antilinear involution $\sigma: V \to V$ (antilinear means $\sigma(av) = \overline{a}v$ for $a \in \mathbb{C}, v \in V$).
 - (2) Show that a \mathbb{C} -vector space V together with an antilinear involution $\sigma : V \to V$ is the same structure as a vector space V_0 over \mathbb{R} .
 - (3) Combining (1) an (2), we get an equivalence of categories between S-modules and \mathbb{R} -vector spaces. How do you see this equivalence directly? What is S in more familiar terms?

Problem 2. Let (V, q) be an *n*-dimensional quadratic space over a field k. Recall the Clifford algebra Cl(V, q) = T(V)/I where I is the two-sided ideal generated by $v \cdot v - q(v)$ for $v \in V$.

- (1) Let $\{v_1, \dots, v_n\}$ be a basis of V. For a subset $I = \{i_1, \dots, i_r\} \subset \{1, 2, \dots, n\}$ such that $i_1 < i_2 < \dots < i_r$, let v_I be the image of $v_{i_1} \cdots v_{i_r}$ in $\operatorname{Cl}(V, q)$. When $I = \emptyset$ set $v_{\emptyset} = 1$. Show that $\{v_I\}_{I \subset \{1, 2, \dots, n\}}$ form a k-basis of $\operatorname{Cl}(V, q)$.
- (2) Let $k = \mathbb{R}$ and n = 2. Assume q is nondegenerate. Describe Cl(V,q) in more familiar terms according to the signature of q.
- (3) Suppose V has an orthogonal decomposition $V = V_1 \oplus \langle u, v \rangle$ such that q(u) = 0 = q(v) and q(u+v) = 1. Show that Cl(V,q) is isomorphic to the ring of 2-by-2 matrices with entries in $Cl(V_1,q_1)$ (where q_1 is the restriction of q to V_1).

Hint: Find a left ideal $I \subset Cl(V,q)$ that is a free module of rank two under the right multiplication by $Cl(V_1,q_1)$.