18.706 HOMEWORK 11

DUE DEC.2, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each.
Theorem 1. Let R be a ring with a multiplicative subset S satisfying conditions:

- For any $s \in S, a \in R, s R \cap a S \neq \varnothing$.
- If $a \in R, s \in S$ and sa=0, then there exists $s^{\prime} \in S$ such that as ${ }^{\prime}=0$.

Then there exists a ring R_{S} with a ring homomorphism

$$
\varphi: R \rightarrow R_{S}
$$

satisfying
(1) $\varphi(S)$ consists of invertible elements in R_{S}.
(2) $\left(R_{S}, \varphi\right)$ is initial in the category of pairs $\left(R^{\prime}, \varphi^{\prime}: R \rightarrow R^{\prime}\right)$ satisfying (1).
(3) Every element in R_{S} has the form $\varphi(a) \varphi(s)^{-1}$ for some $a \in R, s \in S$.
(4) $\operatorname{ker}(\varphi)=\{a \in R \mid$ as $=0$ for some $s \in S\}$.

ExERCISES

A multiplicative subset S of R is called a right Ore set if the two conditions in the above theorem are satisfied. It is a left Ore set if it is a right Ore set in $R^{o p}$.

Problem 1. Let R be a ring. For $x \in R$ denote $a d(x): R \rightarrow R$ the map $a \mapsto x a-a x$. An element $x \in R$ is said to be ad locally nilpotent if for any $a \in R, \operatorname{ad}(x)^{n} a=0$ for some $n \geq 1$ (depending on a). Show that a multiplicative set consisting of ad locally nilpotent elements is both a left and a right Ore set.

Problem 2. (1) Let R_{0} be a ring and $\sigma: R_{0} \rightarrow R_{0}$ be an injective ring homomorphism. Let $R=$ $R_{0}\langle x ; \sigma\rangle$ be the skew polynomials in one variable x over R_{0} with commutation relation $x a=\sigma(a) x$ for $a \in R_{0}$. Show that the set S of powers of x is a left Ore set in R, and that it is a right Ore set if and only if σ is bijective.
(2) (Optional) Suppose R_{0} is a commutative domain and σ is bijective. Show that all nonzero elements in R form a right Ore set. (Hint: you may first consider the case where R_{0} is a field.)

