18.706 HOMEWORK 10

DUE NOV. 18, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each.
Theorem 1. Let R be a central simple algebra of finite dimension over a field k. Let S be a simple k algebra and $\varphi_{1}, \varphi_{2}: S \rightarrow R$ be two k-linear ring homomorphisms. Then there exists an invertible element $u \in R$ such that $\varphi_{2}(s)=u \varphi_{1}(s) u^{-1}$ for all $s \in S$.

ExERCISES

Problem 1. Let k be a field with $\operatorname{char}(k) \neq 2$. For $a, b \in k^{\times}$let $\left(\frac{a, b}{k}\right)$ denote the cyclic algebra of dimension 4 over k given by

$$
\left(\frac{a, b}{k}\right)=k\langle x, y\rangle /\left(x^{2}-a, y^{2}-b, x y+y x\right)
$$

(1) Show that every 4-dimensional central simple algebra over k is isomorphic to $\left(\frac{a, b}{k}\right)$ for some $a, b \in k^{\times}$.
(2) Show that $\left(\frac{a, b}{k}\right) \cong M_{2}(k)$ if and only if $u^{2}-b v^{2}=a$ has a solution $(u, v) \in k^{2}$. In particular, show that $\left(\frac{a, 1-a}{k}\right)$ is isomorphic to $M_{2}(k)$.
(3) Let $k(\sqrt{c})$ be a quadratic extension of k. When does $k(\sqrt{c})$ embed into $\left(\frac{a, b}{k}\right)$?
(4) Show that $\left(\frac{a, b}{k}\right) \otimes_{k}\left(\frac{a, c}{k}\right) \cong\left(\frac{a, b c}{k}\right) \otimes M_{2}(k)$. Hence in the Brauer group $\operatorname{Br}(k)$, the sum of the classes of $\left(\frac{a, b}{k}\right)$ and $\left(\frac{a, c}{k}\right)$ is the class of $\left(\frac{a, b c}{k}\right)$.

Hint: construct a module of $\left(\frac{a, b}{k}\right) \otimes_{k}\left(\frac{a, c}{k}\right)$ that is 8 -dimensional over k, and identify its endomorphism algebra with $\left(\frac{a, b c}{k}\right)$.

