
Notes on Equivariant Derived Categories

Zhiwei Yun

January 19, 2006

This is a brief review of the construction and properties of equivariant derived categories following [1].
By a sheaf we always mean a constructible sheaf of vector spaces over a fixed coefficient field. Standard
operations of sheaves are understood to be derived.

1 Definition of equivariant sheaves

Let G be a topological group(usually assumed to be a Lie group) acting on a topological space X. Let
α : G×X → X and p : G×X → X be action and projection.

Definition 1. A sheaf F on X is called G-equivariant if there is an isomorphism φ : α∗F ∼= p∗F satisfying
the natural cocycle condition.

Denote by ShG(X) the abelian category of G-equivariant sheaves on X, and by Sh(X) the abelian
category of sheaves on X.

There is an alternative definition using simplicial spaces and sheaves. Let [G\X]. be the simplicial space
defined in [2]. Then a G-equivariant sheaf on X is, by definiton, a Cartesian sheaf on [G\X]., i.e., a sheaf
Fn on each [G\X]n and an isomorphism φθ : θ∗Fn → Fm for each structure map θ : [G\X]m → [G\X]n
satisfying natural compatibility conditions.

Proposition 1. The two definitions of equivariant sheaves are equivalent.

This is a combinatorial exercise.

Proposition 2. If the action of G on X is free and let X̄ be the quotient, then the pull-back functor defines
an equivalence of categories Sh(X̄) → ShG(X).

2 Acyclic resolutions

Let n be a natural number or infinity.

Definition 2. A map f : X → Y is called (universal) n-acyclic, if for any base change Y ′ → Y and the
resulting map f ′ : X ′ → Y ′, and any sheaf F on Y ′, the natural map

F → τ≤nf ′∗f
′∗F

is an isomorphism in Db(Y ′).

For example, if Z is a space with Hi(Z) = 0 for 1 ≤ i ≤ n, then the projection X ×Z → X is n-acyclic.

Proposition 3. If f : X → Y is n-acyclic and I is an interval of length ≤ n, then

f∗ : DI(Y ) → DI(X)

is an equivalence of categories.
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Definition 3. A G-map p : P → X from a free G-space to X is called a G-resolution(or simply a resolution)
of X.

We denote by ResG(X) the category of G-resolution of X and G-maps between them. Finite product
exists in this category (fibered product over X with diagonal action). There is a distinguished object in this
category, namely the action map

α : G×X → X

with G action on G×X by left multiplication on G.
We can talk about n-acyclic resolutions, smooth resolutions etc. We always assume X has ∞-acyclic

resulotions, which is the case when pt admits ∞-acyclic resolutions.

3 Equivariant derived categories

We shall give two equivalent definitions. The first one is ”categorical” or ”stacky”. Let Db (resp. D+)be
the fibered category over the category Top of topological spaces with fiber over X ∈ Top the bounded (resp.
bounded below) derived category of sheaves on X. Let Φ : ResG(X) → Top be the functor sending P to the
G-quotient P̄ . We define Db

G(X) (resp. D+
G(X))to be the ”fiber” Db(Φ) (resp. D+(Φ))over the functor Φ.

In down to earth language, to give an object of Db(X) amounts to give an object F(P ) ∈ Db(P̄ ) for each
P ∈ ResG(X) and for each G-map f : P → R over X inducing f̄ : P̄ → R̄ an isomorphism f∗F(R) ∼= F(P )
compatible with compositions.

This definition can be rephrased as follows. Let p : P → X be a G-resolution of X and π : P → P̄ be the
quotient map. Let Db

G(X,P ) be the category with objects (FX ,F(P ), φ) where FX ∈ Db(X),F(P ) ∈ Db(P̄ )
and φ an isomorphism

φ : p∗FX ∼= π∗F(P ).

Morphisms are defined in a natural way. For a G-map f : P → R of resolutions over X, there is a natural
pull-back functor:

f∗ : Db
G(X,R) → Db

G(X,P ).

We define D+
G(X,P ) in the same way. Moreover, for an interval I of integers, we denote by DI

G(X,P ) the
full subcategory of Db

G(X,P ) consisting of objects (FX ,F(P ), φ) with FX ∈ DI(X).
Db
G(X) has a natural structure of a triangulate category. A diagram

F ′ → F → F ′′ → F ′[1]

is an exact triangle if for all P ∈ ResG(X),

F ′(P ) → F(P ) → F ′′(P ) → F ′(P )[1]

is an exact triangle, or equivalently,
F ′X → FX → F ′′X → F ′X [1]

is an exact triangle.

Proposition 4. Let n ≥ the length of the interval I. Let P be an n-acyclic resolution of X, then the natural
functor:

DI
G(X) → DI

G(X,P )

is an equivalence of categories. If n = ∞, we have the similar statement for Db.

In particular,

Proposition 5. If the action of G on X is free and let X̄ be the quotient, then Db
G(X) ∼= D(X̄).
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In practice, to give an object of Db
G(X), we only need to assign F(P ) ∈ Db(P̄ ) for P in a sufficiently rich

subcategory of ResG(X). Basically, we require this subcategory to have products, contain the distinguished
resolution and contain sufficiently acyclic resolutions. We will use this remark in defining standard operations
of equivariant sheaves.

The second definition is simplicial. Let Db
Car([G\X].) be the derived category of simplicial sheaves on

the simplicial space [G\X]. with Cartesian cohomology sheaves.

Theorem 1. There is a natual functor

α : Db
G(X) → Db

Car([G\X].)

which is an equivalence of triangulated categories.

We sketch a proof. First we construct the functor α. Each G∆n ×X → X is a G-resolution of X with
G-quotient [G\X]n. Therefore an object F ∈ Db

G(X) determines Fn ∈ Db([G\X]n). The collection (Fn)n≥0

satisfies compatibility and Cartesian condition, hence defines an object α(F) ∈ Db
Car([G\X].).

Let P → X be an ∞-acyclic resolution of X with G-quotient P̄ . Consider the following commutative
diagram

Db
G(X,P ) Db

G(X) Db
Car([G\X].)

Db(P̄ ) Db
G(P ) Db

Car([G\P ].)
?

β

-∼=

?

β

-αX

?

γ

-∼= -αP

By the properties of ∞-acyclic resolutions, we see β and γ are fully faithful. We claim αP is an equivalence.
In fact, the simplicial space [G\P ]. is isomorphic to the (augmented) simplicial space cosq(P → P̄ )(notation
is the same as in [2]). And the claim follows from the following general result.

Proposition 6. If X → S locally admits a section, the the pull-back by the augmentation map:

Db(S) ∼= Db
Car(cosq(X → S)).

is an equivalence of triangulated categories.

Now the diagram shows αX is fully faithful. But an object (Fn) ∈ Db
Car([G\P ].) comes fromDb

Car([G\X].)
if and only if each Fn comes from Db([G\X]n). In particular, F0 ∈ Db(P ) comes from DbX, and therefore
(Fn) is the image ofsome object F ∈ Db

G(X,P ) via αX . This shows the essential surjectivity.

Note that the distinguished resolution is sent to X by Φ, therefore for each F ∈ Db
G(X) we get an object

FX ∈ Db(X). This defines the forgetfull functor:

For : Db
G(X) → Db(X).

(Similar for D+.) In particular, we can pull-back both the natural t-structure and the perverse t-structure
from Db(X) to Db

G(X).

Proposition 7. The pull-back of the natural t-structure via For is a t-structure on Db
G(X). The heart of

this t-structure is naturally equivalent to ShG(X).

This is a consequence of the above theorem and the combinatorial exercise in section 1.
In fact, F ∈ D≤aG (X) (resp. D≥aG (X)) if and only if for any resolution P , F(P ) ∈ D≤a(P̄ ) (resp.

D≥a(P̄ )).
However, it is not in general true that Db(ShG(X)) is equivalent to Db

G(X).
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Proposition 8. Suppose we are in the complex algebraic setting. The pull-back of the perverse t-structure
via For is a t-structure on Db

G(X). The heart of this t-structure is, by definition, the abelian category of
G-equivariant perverse sheaves, denoted PervG(X).

This easily follows from the simplicial definition. A Cartesian complex (Fn) ∈ Db
Car([G\X].) (where

Fn ∈ Db([G\X]n)) is in pD≥0 of the perverse t-structure if and only if Fn ∈p D≥n dim(G)([G\X]n). This
criterion enables us to check

Hom(pD≤0,pD<0) = 0.

If X is equipped with a G-invariant stratification S, we can define Db
G,S(X) to be the full subcategory

of complexes with S-constructible cohomology sheaves (viewed as a complex on X via For). Similarly, we
can define PervG,S(X).

All the above constructions carry over to the D+ case.

4 Change of groups: restriction, induction and quotient functors

Let H be a subgroup of G. We shall define a restriction functor

ResGH : Db
G(X) → Db

H(X)

in the following way. Let F ∈ Db
G(X). For any H-resolution p : P → X consider the induced G-resolution

p′ : P ′ = G ×H P → X where P ×H X means twisted product with respect to the right H-multiplication
on P and left H-action on X. We have P̄ = P̄ ′ where the first bar is the H-quotient and second is the
G-quotient. We define:

ResGH(F)(P ) = F(P ′).

If K is a subgroup of H, we have an obvious transitivity relation:

ResHK ◦ResGH = ResGK .

In particular, if H is the trivial group, ResGH becomes the forgetful functor.
Let X be an H-space and X ′ = G×H X the induced G-space and ι : X → X ′ the inclusion sending x

to (1, x). We shall define a functor
ι∗ : Db

G(X ′) → Db
H(X)

in the following way. Let F ∈ Db
G(X ′) and P an H-resolution of X. Then P ′ = G ×H X is a G-resolution

of X ′. We also have P̄ = P̄ ′ with bars understood as above. We define:

(ι∗F)(P ) = F(P ′).

Proposition 9. The functor constructed above is an equivalence of categories, called the induction equiva-
lence.

The restriction functor has a left adjoint functor IndGH! and a right adjoint functor IndGH∗. The definitions
logically depend on the six operation formalism of the next subsection, nevertheless we shall give them here
for coherence. Let H be a subgroup of G and X a G-space. Let α : X ′ = G×H X → X be the action map
and ι : X → X ′ as above. Now the restriction can be viewed as a composition:

ResGH = ι∗ ◦ α∗ : Db
G(X) → Db

G(X ′) → Db
H(X).

Therefore the right adjoint is easily seen to be

IndGH∗ = α∗ ◦ (ι∗)−1 : Db
H(X) → Db

G(X ′) → Db
G(X).

To define the left adjoint, observe that
α∗ = D−1

α ⊗ α!
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where Dα is the relative dualizing complex of α. Hence

ResGH = ι∗ ◦ (D−1
α ⊗ α!).

Therefore the left adjoint is easily seen to be

IndGH! = α! ◦ (Dα ⊗ (ι∗)−1) : Db
H(X) → Db

G(X ′) → Db
G(X).

Summarizing:

Proposition 10. For any F1 ∈ Db
G(X) and F2 ∈ Db

H(X), we have

HomDb
H(X)(ResGH F1,F2) = HomDb

G(X)(F1, IndGH∗ F2)

and
HomDb

H(X)(F2,ResGH F1) = HomDb
G(X)(IndGH! F2,F1).

Let’s describe the induction functor IndGH∗ in down-to-earth language. Consider the commutative dia-
gram:

G×X

pr

²²

π // G×H X

α

²²
X X

where pr is the projection onto the second factor. For F ∈ Db
H(X), pr∗F is H-equivariant with respect to

the anti-diagonal action of H on G×X, hence descends to a sheaf F ′ ∈ Dd(G×H X). Finally, IndGH∗ F =
α∗F ∈ Db

G(X).
Let K be a normal subgroup of H with quotient G. Consider X as an K-space, the quotient is denoted

by π : X → K\X. It inherits a G-action. We shall define a quotient functor

Quo : Db
G(K\X) → Db

H(X)

in the following way. Let F ∈ Db
G(K\X). For any H-resolution p : P → X, let K\P be the K-quotient.

Then K\P is a K-resolution of K\X. And we have P̄ = K\P where the bars are understood in an obvious
way. We define:

Quo(F)(P ) = F(K\P ).

In particular, if K = H, we get the usual quotient functor:

Quo : Db(X̄) → Db
H(X).

Proposition 11. If the K-action on X is free, then the functor Quo defined above is an equivalence of
categories, called the quotient equivalence.

5 The six operation formalism

Let X and Y be G-spaces and f : X → Y be a G-map. We first define the functor

f! : Db
G(X) → Db

G(Y )

in the following way. Let F ∈ Db
G(X) and P be a resolution of Y . Then PX = P ×Y X is a resolution of X.

We denote by f̄ the natural projection map of quotient spaces P̄X → P̄ . We define:

(f!F)(P ) = f̄!F(PX).
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For a morphism h : P → R of resolutions, the proper base change theorem ensures that

(f!F)(P ) = h̄∗(f!F)(R).

The next is the pull-back functor:

f∗ : Db
G(Y ) → Db

G(X).

Let F ∈ Db
G(Y ). To define an object in Db

G(X), we may only consider resolutions of the form PX = X×Y P
where P is a resolution of Y since they are rich enough. We define:

(f∗F)(PX) = f̄∗F(P )

where f̄ is the same as above.
To define the functors f∗ and f !, we could proceed in the same way. However, in order for the sheaves

defined to be Cartesian with respect to morphisms of resolutions, we need these morphisms to be smooth so
that we can apply smooth base change theorem. Therefore we consider the subcategory SResG(X) consisting
of resolutions p : P → X where p is smooth and smooth G-maps between them. For a nice Lie group G, this
subcategory is rich enough, so that we can only assign sheaves to these smooth resolutions. With ResG(X)
replaced by SResG(X), we can construct f∗ and f ! in exactly the same way as above.

The tensor functor
⊗ : Db

G(X)×Db
G(X) → Db

G(X)

is defined by
(F1 ⊗F2)(P ) = F1(P )⊗F2(P )

for any smooth resolution P . The inner Hom functor

Hom : Db
G(X)◦ ×Db

G(X) → Db
G(X)

is defined by
Hom(F1,F2)(P ) = Hom(F1(P ),F2(P ))

for any smooth resolution P .
We define the constant sheaf CX ∈ ShG(X) to be the one assigning a constant sheaf to each resolution.

The relative dualing sheaf of a G-map f : X → Y to be Df = f !CY . The (absolute) dualizing sheaf DX of
X is Dπ where π : X → pt. The Verdier duality functor

D : Db
G(X) → Db

G(X)

is defined by
DF = Hom(F , DX).

Proposition 12. All these functors satisfy the usual adjointness,duality and base change properties.

Let H be a subgroup of G.

Proposition 13. All these functors commute with ResGH , the induction equivalence and the quotient equiv-
alence. IndGH∗ commutes with f∗ and f ! and IndGH! commutes with f! and f∗.

All the above constructions extends trivially to D+
G.

Let Z be a G-stable locally closed subset of X. Then it makes sense to take the intermediate extension
of the constant sheaf on Z, therefore the intersection cohomology complex ICZ̄ ∈ PervG(X) is defined.
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6 The general pull-back and push-forward functors

In this section, we consider the following situation. Let φ : H → G be a homomorphism of Lie groups and
f : X → Y be a φ-map, i.e.,X is an H-space, Y is a G-space and the map f is H-G-equivariant. We want
to define pull-back functor:

fG∗H : Db
G(Y ) → Db

H(X).

Let F ∈ Db
G(Y ), P ∈ ResH(X) and R ∈ ResG(Y ). We assume there is a φ-morphism h : P → R such that

the diagram
P X

R Y
?
h

-

?
f

-

is commutative. Such a map h is called compatible. We define:

(fG∗H F)(P ) = h̄∗F(R).

This definition is independent of R:for another choice h′ : P → R′, we consider h′′ : P → R′′ = R×Y R′ and
use Cartesian property of F to deduce canonical isomorphisms

h̄∗F(R) ∼= h̄′′∗F(R′′) ∼= h̄′∗F(R′).

Since such P ’s (the ones with compatible maps to some R ∈ ResG(Y )) form a rich enough subcategory of
ResH(X), we have actually defined f∗F as an object of Db

H(X).
Special cases:

• If φ : H ↪→ G is the inclusion of a subgroup and f = id : X → X, then fG∗H = ResGH .

• If φ is injective and Y = G×H X and f the natural inclusion of X into Y , then fG∗H is the induction
equivalence.

• If φ : H → G is surjective with kernel K, K acts freely on X and f : X → Y = K\X the quotient
map, then fG∗H is the quotient equivalence.

Next we define push-forward functor

fGH∗ : D+
H(X) → D+

G(Y ).

For F ∈ D+
H(X), R a G-resolution of Y and and P an ∞-acyclic resolution of X. Consider the compatible

map h : P ′ = P ×Y R→ R. We define:

(fGH∗F)(R) = h̄∗F(P ′).

It is easy to see this definition is independent of the choice of P as long as P is ∞-acyclic. In order for
the Cartesian condition to hold, we have to use certain base change theorem. Therefore we have to restrict
ourselves to those ”good” resolutions(maybe infinite dimensional spaces) any ”good” morphisms between
them which enable us to apply base change. Fortunately for nice Lie groups, this subcategory is rich enough.

Special cases:

• If φ : H ↪→ G is the inclusion of a subgroup and f = id : X → X, then fGH∗ = IndGH∗.

• If φ is the injective and f : X → Y = G ×H X the natural inclusion, then fGH∗ is the inverse of the
induction equivalence.

• If φ : H → G is surjective with kernel K, K acts freely on X and f : X → Y = K\X the quotient
map, then fGH∗ is the inverse of the quotient equivalence.
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Sometimes the push-forward functor is not as intuitive as it looks like. For example, let G =< 1 > be
the trivial group and Y = pt. Then the push-forward:

f<1>
H∗ : D+

H(X) → D+(pt)

is NOT first restricting to D+(X) then taking global sections. It is the equivariant cohomology functor that
we will define in the next section.

Proposition 14. fG∗H is left adjoint to fGH∗; they satisfy the obvious transitivity relations. Moreover, fG∗H
preserves the natural t-structure.

Note that in general fGH∗ does not send Db
H(X) to Db

G(Y ). For example, when G is trivial and Y = pt,
this is the equivariant cohomology functor, which is usually not bounded.

7 Classifying space and equivariant cohomology

Let G be a connected Lie group throughout this section. Consider the category D+
G(pt). Let EG be a

contractible free G-space and BG = G\EG the classifying space of G. By definition,

D+
G(pt) = D+

G(pt, EG)

consisting of triples (Fpt,F(EG), φ) where Fpt ∈ D+(pt) is a complex of vector spaces, F(EG) ∈ D+(BG)
and φ an isomorphism of their pull-backs on EG. Therefore, we have an equivalence

D+
G(pt) = D+

const(BG)

where const denotes cohomologically constant(which is the same as locally constancy since BG is now simply
connected) of finite rank.

Let AG be the DG-algebra isomorphic to the cohomology ring AG = H∗(BG) with zero differentials.
Note that the cohomology group of any complex in D+(BG) is in a natural way a graded module over AG,
i.e., we have the global section functor

H : D+(BG) → AG −mod.

For a G space X with π : X → pt,we define the equivariant cohomology and equivariant cohomology with
compact support functors by:

HG(X,−) = H ◦ π∗ : D+
G(X) → AG −mod

and
HG,c = H ◦ π! : D+

G(X) → AG −mod.

We define equivariant (intersection) cohomology (with compact support) of X to be:

HG(X,CX),HG,c(X,CX), IHG(X) = HG(X, ICX), IHG,c(X) = HG,c(X, ICX).

Theorem 2. Let G be a connected Lie group. Then we have a canonical equivalence of triangulated categories

D+(AG −mod) ∼= D+
G(pt)

Df (AG −mod) ∼= Db
G(pt)

where the LHS are the derived category of bounded below (resp. finitely generated) DG-modules over AG.

8



We indicate the main ingredients of the proof. First we recall the general construction of a canonical
sheaf of DG-algebras on a smooth manifold. Let X be an inductive limit of smooth manifolds by smooth
embeddings(such as a smooth model for BG). Let Ω·X be the de Rham complex of X. It is a soft resolution
of the constant sheaf CX and it is a sheaf of DG-algebras in a natural way. Let AX be the complex of global
sections of Ω·X :

AiX = Γ(X,ΩiX).

This is a DG-algebra in a natural way. We have a pair of functors:

D+(AX −mod)
L // D+(X)
Γ
oo

defined as follows. For M ∈ D+(AX −mod), the localization functor L takes M to Ω·X ⊗LAX
M where ⊗L

means the the left derived functor of the tensor product, i.e., we first resolve M then take tensor product.
For F ∈ D+(X), the global sections functor Γ takes F to Γ(X,Ω·X ⊗F). The key lemma is:

Lemma 1. The localization and global sections functors induce equivalence of subcategories:

D+(⊕AX) ∼= D+(⊕CX)

Df (⊕AX) ∼= Df (⊕CX)

where the LHS means the full triangulated subcategory of D+(AX −mod) generated by bounded-below (resp.
finite) direct sums of shifts of AX and the RHS means the similar subcategory of D+(X).

Now the proof of the theorem for the Db part becomes a diagram chasing:

Df (AG −mod)
ψ // Df (ABG −mod) // Db

const(BG)oo

Df (⊕AG)

ι0

OO

ψ // Df (⊕ABG)

ι1

OO

L // Df (⊕CBG)
Γ

oo

ιBG

OO

We first define ψ : AG → ABG. We know AG = H(ABG). Now since for any connected Lie group G,
AG is always a polynomial ring. Therefore we can define ψ by simply assigning values for each generator and
make ψ a quasi-isomorphism of DG-algebras. This shows the two ψ’s in the diagram are equivalences. ι0 is
also an equivalence(cf.[1]). L and Γ are inverses to each other by the lemma. Finally, ιBG is an equivalence
since for F ∈ Db

const(BG) we can truncate it so it has a finite filtration with constant graded pieces.
The assertion for D+ does not follow directly from the similar diagram because it is not apriorily obvious

that ιBG : D+(⊕CX) → D+
const(X) should be an equivalence of categories. For details, see [1].

This canonical equivalence sends the hypercohomology functor to the global sections functor:

D+(AG −mod)
H

((PPPPPPPPPPPP
// D+

const(BG)

RΓwwooooooooooo

AG −mod

It enjoys functoriality with respect to group homomorphisms. To be more precise, let φ : H → G be a
homomorphism of connected Lie groups. Then we have

Bφ : BH → BG

and
Φ : AG → AH .
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This Φ further induces the extension of scalars functor

Φ∗ : D+(AG −mod) → D+(AH −mod)

and the restriction of scalars funtor

Φ∗ : D+(AH −mod) → D+(AG −mod).

We have the following commutative diagram:

D+(AH −mod) //

Φ∗
²²

D+
H(pt) //

1G
H∗

²²

D+
const(BH)

Bφ∗
²²

D+(AG −mod) //

Φ∗

OO

D+
G(pt) //

1G∗
H

OO

D+
const(BG)

Bφ∗

OO

where 1 : pt→ pt is the identity map.

8 Discrete group actions

In this section, all groups are endowed with discrete topology. In this case, a lot of constructions can be
carried in the categories ShG(X).

Let φ : H → G be a surjection with kernel K and f : X → Y be a φ-map. Then

Proposition 15. The functor
f∗ : ShG(Y ) → ShH(X)

has a right adjoint
fK∗ : ShH(X) → ShG(Y )

defined by first taking direct image then taking K-invariants. Furthermore, if K acts freely on X and
f : X → Y = K\X is the quotient map, then the above functors are equivalences inverse to each other.

Let H be a subgroup of G. Then restriction functor

ResGH : ShG(X) → ShH(X)

has a left adjoint
IndGH : ShH(X) → ShG(X)

In face, given F ∈ ShH(X), pull it back to G×X, it becomes an H-equivariant sheaf on G×X, where H
acts on G by right multiplication and acts on X by left action. This action is free. By the above proposition,
this descends to a sheaf F̃ on G×H X. Let α : G×H X → X be the action, then we define

IndGH F = α!F̃ .

The main result is:

Theorem 3. Let ∗ = b,+. The natural functor

D∗(ShG(X)) → D∗G(X)

is an equivalence of triangulated categories.
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We sketch a proof. The statement for D+ follows from the statement for Db by truncating and taking
limit. For Db, it reduces to showing that, for F1,F2 ∈ Db(ShG(X)),

HomDb(ShG(X))(F1,F2) = HomDb
G(X)(F1,F2).

Let p : P → X be an ∞-acyclic resolution with quotient P̄ . Then

HomDb
G(X)(F1,F2) = HomDb(P̄ )(F1(P ),F2(P )) = HomDb(ShG(P ))(p

∗F1, p
∗F2).

Therefore it reduces to show

HomDb(ShG(X))(F1,F2) = HomDb(ShG(P ))(p
∗F1, p

∗F2).

A devissage reduces to the case F1 = IndG<1>(CU ) for some open U in X. Then we apply the adjoint
property of Ind and Res.

Now we return to the situation of the beginning of the section where f : X → Y = K\X. Assume K
acts properly discontinuously on X and the coeffient field of all sheaves has characteristic 0. Then we have

Proposition 16. We have:

• fK∗ is exact. Both f∗ and fK∗ extending to derived categories;

• f∗ = fG∗H , fK∗ = fGH∗;

• fK∗ ◦ f∗ = idD+
G(Y );

• f∗ induces an equivalence of categories between ShG(Y ) and a full subcategory of ShH(X) consisting
sheaves with trivial action of stabilizers on the stalks.

There is an algebraic analogue. Suppose everything is complex algebraic and H,G,K are affine algebraic
groups. Assume K acts on X with finite stabilizeers and assume the GIT quotient f : X → Y = K\X exists
and is affine.

Proposition 17. We have:

• fGH∗ : D+
H(X) → D+

G(Y ) preserves the natural t-structure;

• fGH∗ ◦ fG∗H = idD+
G(Y );

• fGH∗ preserves the perverse t-structure up to shift:

fGH∗ : PervH(X) → PervG(Y )[dimK];

• fGH∗ICX = ICY [dimK].
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