Galois theory for differential equations
(Picard–Vessiot theory) Lecture 1.

Consider the differential equation

$\frac{dF}{dz} = AF$, where $A \in \mathfrak{gl}_n(C(z))$.

Let U be a simply connected open set in C avoiding the poles of $A(z)$. Then we have a basis $\vec{f}_1, \ldots, \vec{f}_n$ of the space of solutions of (*) on U, $\vec{f}_i = (f_{ij})$, $j = 1, \ldots, n$, where $f_{ij}(z)$ are holomorphic functions on U. Consider the field $L = C(z)(\{f_{ij}\})$, a subfield of the field of meromorphic functions on U. It is called the solution field of (*). It is easy to see that L does not depend on the choice of U.

Definition. The differential Galois group of (*) is the group G of automorphisms of L which act trivially on $C(z)$ and commute with $\frac{d}{dz} : L \to L$.

Remark. Note that $\frac{d}{dz}$ preserves L since

$\frac{d}{dz} f_{ij} = \sum a_{ij}(z) f_{kj}(z)$. In other words, L is a differential field.
Proposition. The group G admits an embedding into $GL_n(\mathbb{C})$ which is defined canonically up to conjugation in $GL_n(\mathbb{C})$. Moreover, $G \subseteq GL_n(\mathbb{C})$ is a Zariski closed subgroup, so G is an affine algebraic group.

Proof. Let $F = (f_{ij})$ be the matrix solution of (x). Then $\forall g \in G$, since $g(A) = A$ and g commutes with $\frac{d}{dz}$, we have that $g(F)$ is also a solution of (x), hence $g(F) = F \rho(g)$, where $\rho : G \to GL_n(\mathbb{C})$ is a map. Moreover, $g(h)(F) = g(F \rho(h)) = F \rho(g) \rho(h)$, so ρ is a homomorphism. Finally, $\rho(g) = 1$ implies $g(F) = F$, hence g acts trivially on L, so $g = 1$. Thus ρ is injective, i.e., an embedding $G \to GL_n(\mathbb{C})$. Moreover, if we change the basis $\vec{F}_1, \ldots, \vec{F}_n$ by a matrix S, then ρ gets conjugated by S. Hence ρ is defined canonically up to conjugation.

Now let us show that $G \subseteq GL_n(\mathbb{C})$ is Zariski closed. To this end, note that
we have a natural homomorphism
\[\varphi : C(\mathbb{Z})[[x_{ij} \mid i, j \in [1, n]]] \rightarrow L, \] sending \(x_{ij} \) to \(f_{ij} \).
Let \(I \subset C(\mathbb{Z})[[x_{ij}]] \) be the kernel of \(\varphi \).
Then \(\varphi : R = C(\mathbb{Z})[[x_{ij}]] / I \rightarrow L \), and \(\varphi \) identifies \(L \) with \(\text{Frac}(R) \).
Now, given \(g \in G \subset GL_n(\mathbb{C}) \),
g maps \(F \) to \(Fp(g) \), hence defines an automorphism of \(\text{Rat}(F) \) by \(X \mapsto Xp(g) \),
\(X = (x_{ij}) \). Thus, \(G \subset GL_n(\mathbb{C}) \) is the subgroup of all \(g \in GL_n(\mathbb{C}) \) such that the map
\(X \mapsto Xp \) preserves the ideal \(I \), i.e., the subvariety \(\text{Spec}_R \mathcal{R} \subset \text{Mat}_n(\mathbb{C}) \), where for any \(M \in \text{Spec}_R \mathcal{R} \) we must have
\[u(Mg) = 0 \quad \forall u \in I. \] This is a system of polynomial equations on \(g \) which give rise to a closed subset in \(GL_n(\mathbb{C}) \) in Zariski topology.

Examples 1. Suppose all \(f_{ij} \) are algebraic functions, i.e., \(f_{ij} \in C(\mathbb{Z}) \). Then \(L \) is a finite Galois extension of \(C(\mathbb{Z}) \), since \(\text{Aut}(C(\mathbb{Z}) / \mathcal{R}(\mathbb{Z})) \)
we have that \(g(F) \) satisfies (*), so
\[g(F) : y \in L, \] hence \(g : L \to L. \) Thus in this case \(G = \text{Gal}(L/\mathbb{Q}(z)) \).

2. \(n = 1 \), \(\frac{dF}{dz} = \frac{\lambda}{z} F. \)

Then \(F = z^\lambda. \) If \(\lambda \in \mathbb{Z} \), \(L = \mathbb{C}(z) \) and \(G = 1. \)
If \(\lambda \in \mathbb{Q} \), \(\lambda = \frac{p}{q} \) (in lowest terms), \(L = \mathbb{C}(z)(z^{1/q}) \)
and \(G = \mathbb{Z}/q\mathbb{Z}. \) If \(\lambda \notin \mathbb{Q} \) then \(L = \mathbb{C}(z)(z^\lambda) \)
and \(G = \mathbb{C}^* = GL_1(\mathbb{C}) = \mathbb{C}_m. \)

3. \(n = 2 \), \(\frac{dF}{dz} = \begin{pmatrix} 0 & \frac{1}{z} \\ 0 & 0 \end{pmatrix} F. \)

So \(\frac{df_2}{dz} = 0, \frac{df_1}{dz} = \frac{1}{z} f_2. \)

So we get \(F = \begin{pmatrix} 1 & \log z \\ 0 & 1 \end{pmatrix} \) and \(L = \mathbb{C}(z)(\log z). \)

Under differential automorphisms \(\log z \mapsto \log z \),
so \(\begin{pmatrix} 1 & \log z \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log z + c \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \log z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}. \)
Thus \(G = \{ (1, c)^n \in GL_2 \mid c \in \mathbb{C} \} = \mathbb{C} = \mathbb{C}_a. \)
Fundamental theorem of differential Galois theory:

The assignment $H \mapsto L^H$ is a bijection between closed subgroups $H \leq G$ and subfields $K \subset \mathbb{C}$ invariant under $\frac{d}{dz}$. The inverse is given by $K \mapsto \text{Aut}_{\mathbb{C}}(L/K, d/dz)$.

We will discuss the proof later.

In particular, we have $L^G = \mathbb{C}(z)$.

Theorem. Assume that the differential equation (*) has regular singularities. Then G is the Zariski closure $\overline{\Gamma}$ of the monodromy group $\Gamma \subset GL_n(\mathbb{C})$.

Proof. First of all, it is clear that $\Gamma \subset G$, hence $\Gamma \subset G$. To prove the opposite inclusion, consider $f \in L^\Gamma$. This function is single-valued, and has polynomial growth at poles of $A(z)$ since (*) has regular singularities. Hence, by removable singularity theorem f is meromorphic, hence $f \in \mathbb{C}(z)$. Thus $\overline{\Gamma} = G$.
Example. Consider the equation
\[\frac{dF}{dt} = \left(\frac{A}{t^2} + \frac{B}{t^2 - 1} \right) F, \quad A, B \in \mathbb{C}. \]
This is a regular equation, so \(G = \Gamma \).
We claim that for generic \(A, B \) we have \(\Gamma = \text{SL}_2(\mathbb{C}) \). First of all, \(\Gamma \subseteq \text{SL}_2(\mathbb{C}) \) since \(A, B \) have trace 0. On the other hand, \(\Gamma \) contains matrices \(PQ \) conjugate to \(e^{2\pi i A} \), \(e^{2\pi i B} \), and \(PQ \) is conjugate to \(e^{2\pi i (A+B)} \).
Looking at eigenvalues, we see that such matrices should define an irreducible representation on \(\mathbb{C}^2 \). So \(\Gamma = \text{SL}_2(\mathbb{C}) \) or \(\Gamma = \text{SL}_2(\mathbb{C}) \), but the last possibility can't happen since \(\Gamma \) has no abelian subgroup of index 2 (basically, \(\Gamma \) is a free group).

Theorem. (Inverse problem of differential Galois theory). Any affine algebraic group over \(\mathbb{C} \) can be the differential Galois group of an equation \((\ast) \).
Proof. It is known that \(\forall \Gamma \subseteq \text{GL}_n(\mathbb{C}) \) with \(n \) generators there exists
a regular differential equation(*) with
moles in G and regular singularities
for which the monodromy group is \(\Gamma \).
So it remains to show that for any
algebraic group \(G \leq GL_n(\mathbb{C}) \) there exists
a finitely generated subgroup \(\Gamma \leq G \)
such that \(\overline{\Gamma} = G \). To construct such \(\Gamma \),
construct a sequence of elements
\(\delta_1, \ldots, \delta_n \in G \) such that
\[\dim \langle \delta_1, \ldots, \delta_n \rangle > \dim \langle \delta_1, \ldots, \delta_{n-1} \rangle \]
until we reach \(\dim G \).
To this end, we proceed by induction.

If \(\dim \langle \delta_1, \ldots, \delta_{n-1} \rangle < \dim G \),
let \(x \in \text{Lie} G \), \(x \notin \text{Lie} \langle \delta_1, \ldots, \delta_{n-1} \rangle \),
and consider the 1-parameter subgroup
\(e^{tx} \) (in the sense of complex Lie groups).
Set \(\delta_n \) to be a generic element of this
subgroup. Then \(\text{Lie} \langle \delta_1, \ldots, \delta_n \rangle \ni x \), so
\[\dim \langle \delta_1, \ldots, \delta_n \rangle = \dim \langle \delta_1, \ldots, \delta_{n-1} \rangle. \]
Thus we have \(\delta_1, \ldots, \delta_n \) such that
\(\langle \delta_1, \ldots, \delta_n \rangle \) and we can add fin. many elements to
generate the whole G.

Liouville extensions.

Let $K \subset \text{Mer}(U)$ be a differential subfield of Mer(U).

Additive extension: $L = K\left(u \right)$ where
\[
\frac{du}{dz} = \alpha(z), \quad \alpha \in \text{Hol}(U).
\]
Thus,
\[
L = K\left(\int \alpha(z) \, dz \right).
\]
Note that if $\int \alpha(z) \, dz \notin K$ then $G = G_a$.

Multiplicative extension: $L = K\left(u \right)$ where
\[
\frac{du}{dz} = \alpha(z)u, \quad \alpha \in \text{Hol}(U), \quad \text{i.e.,}
\]
\[
L = K\left(\int \alpha(z)u \, dz \right).
\]
If $u \notin K$ and u is not algebraic over K then
\[
G = G_a.
\]

$\text{Gal}(L:K)$

Def. A Liouville extension $K \subset L \subset \text{Mer}(U)$ is a differential field extension which
obtained by a succession of additive, multiplicative and algebraic extension. So if $K \subset L$ is a Liouville extension, then all $f \in L$ express "in quadrature".

Theorem. $K \subset \mathbb{C}(z)$ is a Liouville extension if and only if G^0 is a solvable group (composition factors G_a and G_m).

Proof. Suppose $L \supset \mathbb{C}(z)$ is Liouville. Then we have a chain

$$L = L_n \supset L_{n-1} \supset \cdots \supset L_0 = \mathbb{C}(z)$$

where $L_{i+1} = L_i(u)$ is an additive or multiplicative extension or L_{i+1} is an algebraic Galois extension of L_i let $G_i = \text{Aut}(L_n/L_i, \frac{d}{dx})$.

Then $1 = G_n \subset G_{n-1} \subset \cdots \subset G_0 = G$.

Moreover, G_i are normal subgroups in G and $G/G_i = \text{DGal} (L_i/L_0, \frac{d}{dx})$.

Finally, $G_i^{-1}/G_i = \text{DGal} (L_i/L_{i-1}, \frac{d}{dz}) = \bigcup G_m$.
This implies \(G_0 \) is solvable. Concretely, if \(G_0 \) is solvable, form a sequence

\[
G = G_n \supset G_{n-1} \supset \cdots \supset G_0 = 1
\]

with \(G_i \) normal in \(G \) and

\[
G_i/G_i = \{
\{ G_{a_i}, \quad G_{m_i}
\}
\text{ finite.}
\]

Take \(L_i = L_i G_i \). Then \(L_i \) form a sequence such that \(L_{i+1} \) is an additive, multiplicative or finite Galois extension of \(L_i \).

Corollary. The equation \(\frac{dF}{dz} = \frac{A}{z} + \frac{B}{z-1} \) does not admit solutions in quadratures in the above sense.

Remark. In fact, solutions of this equation express via hypergeometric functions.
Lecture 2.

Finite zone potentials.

Consider the Schrödinger operator

\[L = \Delta^2 + u(x) \]

where \(u \) is a smooth or holomorphic function of one variable called a potential.

Def. \(u(x) \) and \(L \) are called **finite zone** if there exists a differential operator of odd order, \(M = a_0 \Delta^{2n+1} + \cdots + a_{2n+1} \)

which commutes with \(L \).

Remark It is clear that if \([L, M] = 0 \) then \(a_0 = \text{const} \), so we may assume that \(a_0 = 1 \). Also it's easy to check that \(a_1 = \text{const} \), so by subtracting \(a_1 \), \(L^n \)

we can assume that \(a_1 = 0 \).

Example. 1. \(L = \Delta^2 \) is finite zone (\(M = 0 \)).

2. Consider \(L = \Delta^2 - \frac{\alpha}{x^2}, x \in \mathbb{R} \), and look for \(M = \Delta^3 + a \Delta + b \). We have

\[[\Delta^2 - \frac{\alpha}{x^2}, \Delta^3 + a \Delta + b] = 0. \]

This gives

\[(\alpha a' + a' \alpha) \Delta + (\alpha b' + b' \alpha) - \left[\frac{\alpha}{x^2}, \Delta^3 \right] \]

\[= 2 \alpha \Delta = 0. \]
Simplifying, we get
\[2a' \theta^2 + a'' \theta + b'' + 2b' \theta + \left(\frac{6}{x^3} \theta^2 + \frac{18}{x^4} \theta - \frac{24}{x^5} \right) \theta \]
\[- \frac{2\alpha}{x^3} = 0 \]

This yields:
\[2a' = \frac{6\alpha}{x^3} \]
\[a'' + 2b' = -\frac{18\alpha}{x^4} \]
\[b'' - \frac{2\alpha a}{x^3} = + \frac{24\alpha}{x^5} \]

This gives:
\[a = -\frac{3\alpha}{2x^2} + C_1 \]
\[-\frac{9\alpha}{x^4} + 2b' = -\frac{18\alpha}{x^4} \quad \Rightarrow \]
\[b' = -\frac{9\alpha}{2x^4} = \quad \begin{array}{c}
\text{Boxed: } b = +\frac{3\alpha}{2x^3} + C_2 \\
\text{(can assume } C_2 = 0)\end{array} \]
\[+ \frac{18\alpha}{x^5} - \frac{2\alpha}{x^3} \left(\frac{3\alpha}{2x^2} + C_1 \right) = + \frac{24\alpha}{x^5} \]

This implies that \(C_1 = 0 \) and
\[\theta^2 = 2\alpha. \]

So \(\theta = 0 \) (solution we already know) and
\[\alpha = 2. \]
Thus, we get: the operator $L = \frac{-3}{x^2} \frac{\partial^3}{\partial x^3} - \frac{2}{x^2}$ is finite zone, with $M = \frac{3}{x^2} \frac{\partial}{\partial x} + \frac{3}{x^3}$.

More generally, it is easy to show that $L = \frac{-\alpha}{x^2}$ is finite zone if $\alpha = m(m+1)$ for $m \in \mathbb{Z}_{\geq 0}$, and $M = \partial^{2m+1} + \cdots$.

Exercise. Compute M.

Proposition. If L is finite zone and $[L,M] = 0$ with $M = \partial^{2m+1} + a_2 \partial^{2m-1} + \cdots$ (of minimal odd order), $M^* = -M$ then there exists a polynomial P of degree $2m+1$ such that $M^2 = P(L)$.

Proof. Consider the operator M^2. Then $A = M^2 - L^{2m+1}$ has order $\leq 4m+1$, and it commutes with L, so has constant leading coefficient. If A has even order, subtract a multiple of L^{s-m} to obtain an operator of lower order. If A has odd order, by assumption this order $2s+1$ is $\geq 2m+1$, so subtract cML to lower the order.

Continuing this procedure, we will eventually get 0, so $M^2 = Q(L)M + P(L)$. But $M^* = -M$, which implies that $Q = 0$ and $M^2 = P(L)$.
Remark: We can always assume $M^* = -M$ by replacing M with $\frac{M - M^*}{2}$.

The equation $\mu^2 = P(x)$ defines a hyperelliptic algebraic curve, called the spectral curve. The meaning of this curve is the following:

Consider the space V_2 of solutions of the eigenvalue equation

$$L\psi = \lambda^2\psi.$$

Then M acts on this space, and the eigenvalues of M are μ such that $\mu^2 = P(x)$, i.e., $\mu = \pm \sqrt{P(x)}$.

For generic λ, these eigenvalues are distinct, so the joint eigenvalue problem

$$L\psi = \lambda^2\psi \quad M\psi = \mu\psi$$

has a 1-dimensional solution space, hence solutions express in quadratures.

Note that the coefficients of M are rational, so if $u(x)$ is rational, it is easy to deduce...
Indeed, \(M = \sqrt{P(x)} \), where RHS is understood in terms of pseudodifferential operators. This means that the Galois group \(G \) of the equation \(L\psi = x^2 \psi \) (or, rather, the Galois group of the associated 2x2 system) is \(\mathbb{C}^* \leq \text{SL}_2(\mathbb{C}) \).

We can also compute the Galois group over \(\mathbb{C}(x^2) \). Then it's a nonsplit torus, and all 1-dimensional tori over a field \(F \) are classified by quadratic extensions \(E/F \) (namely, \(T = \{ z \in E \mid N(z) = 1 \} \}). In our case, \(E \) is the field of functions on the spectral curve \(X \).

Assume that \(u(x) \to 0 \) as \(x \to \infty \) (and \(u \) is rational).

Proposition. The eigenfunction \(L\psi = x^2 \psi \), where we take the branch \(M\psi = \sqrt{P(x^2)} \psi \), where we take the branch.

\[\psi(x, \lambda) = e^{x\lambda} Q(x, \lambda) \] where \(Q \) is a rational function, \(Q \to 1 \) as \(x \to \infty \).

Proof: This follows since the system reduces to a first order equation with rational coefficients.
Remark. This means that the spectral curve has genus 0 in this case (and is singular).

Def. The function \(y \) is called the Baker-Abhiezer function.

Example. For \(L = 3^2 - \frac{2}{x^2} \),
\[y = e^{\lambda x} \left(1 - \frac{1}{\lambda x} \right). \]

Exercise. Compute \(P \) in this case.

Corollary. If \(L \) is finite zone then it has no monodromy at the poles. Ex. \(3^2 - m(m+1) \) is finite zone \(\leftrightarrow m \in \mathbb{Z} \).

Prop. The converse also holds.

(we will skip the proof).

Now consider \(L = 3^2 - 2 \sum_{i=1}^{n} \frac{1}{(x-x_i)^2} \).

The "no monodromy" condition at \(x \) results in the system of equations
\[\sum_{j \neq i} \frac{1}{(x_i - x_j)^3} = 0 \quad (**). \]

i.e. \(x \) is a critical point of the Calogero-Moser Hamiltonian.
\[H = \sum_{i \neq j} \frac{1}{(x_i - x_j)^2}. \]

Theorem. This system has no solutions unless \(N = \frac{m(m+1)}{2} \) (i.e., \(L \) can be finite only in this case).

Proof. Let us assume that \(L \) is finite. Then \(L_t = \theta^2 - 2 \sum_{j=1}^{N} \frac{1}{(x - t \varepsilon_j)^2} \) is finite for all \(t \) (by scaling). Taking limit \(t \to 0 \), we get

\[L_0 = \theta^2 - \frac{2N}{\varepsilon^2} \]

is finite zone. Hence \(N = \frac{m(m+1)}{2} \). \(\Box \)