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Abstract. Nested boundary layers mean that one boundary layer lies inside
another one. In this paper, we consider one such problem, namely,

{
ε3xy′′(x) + x2y′(x) − (x3 + ε)y(x) = 0, 0 < x < 1,

y(0) = 1, y(1) =
√

e.

An asymptotic solution, which holds uniformly for x ∈ [0, 1], is constructed
rigorously. This result also provides an explicit formula for the exponentially
small leading term in the interval where the exact solution exhibits such be-
havior. This phenomenon has never been mentioned in the existing literature.

1. Introduction. An interesting problem in singular perturbation theory is to
consider the nested boundary layers, which mean that one boundary layer lies inside
another one. A well-known boundary value problem with such a phenomenon is
given by

ε3xy′′(x) + x2y′(x) − (x3 + ε)y(x) = 0 (1.1)

with boundary conditions

y(0) = 1, y(1) =
√

e; (1.2)

see Bender and Orszag [2, p.453]. By using the method of matched asymptotics,
the authors of [2] constructed the one-term asymptotic solution

yunif =
2
√

x

ε
K1

(
2
√

x

ε

)
+ e−

ε
x + e

x2

2 − 1, (1.3)

where the first three terms represent the leading terms in the expansions of the
inner-inner solution, inner solution and outer solution, respectively, and the fourth
term results from the matching of the inner solution and outer solution.

The two boundary layers arise from the two corresponding distinguished limits ε
and ε2. Distinguished limits are those proper stretchings which produce a nontrivial
balance between two or more terms of the equation. To determine the distinguished
limits, we let

y(x) = Y (X) and X = x/δ.
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With these new variables, (1.1) becomes

ε3

δ
X

d2Y

dX2
+ δX2 dY

dX
− δ3X3Y − εY = 0. (1.4)

For the scaling δ = ε, the second and fourth terms of (1.4) are of comparable size
while the first and third are smaller. Regarding the other choice δ = ε2, it is clear
that the first and fourth terms are of same order while the rest are smaller.

As we all know, for single boundary layer problems, the inner solution matches
the outer solution and also satisfies one boundary condition. Unfortunately, the
inner solution for the boundary value problem (1.1) − (1.2)

Yin(X ; ε) = e−1/X

[
1 + ε

(
1 − 2

3X3
+

1

4X4

)]
+ · · · , (1.5)

where X = x/ε, does not satisfy the boundary condition y(0)=1 since Yin(X ; ε) van-
ishes exponentially fast as X → 0+. Intuition suggests that an additional boundary
layer very near x = 0 might be required in order to satisfy the condition y(0) = 1.
Since δ = ε2 is the only other distinguished limit for (1.1), Bender and Orszag
obtained the inner-inner solution

Ȳ (X̄ ; ε) = 2
√

X̄K1(2
√

X̄) + · · · , (1.6)

where X̄ = x/ε2. Combining (1.5) and (1.6) with the outer solution, one obtains
the uniformly valid one-term asymptotic solution (1.3).

However, in lieu of matching the inner-inner solution Ȳ (X̄; ε) with the inner
solution Yin(X, ε), Bender and Orszag claimed that the two solutions match auto-
matically because they both vanish exponentially. Indeed, they are exponentially
small, but they may not be of the same order. Thus, the solution (1.3) is only valid
up to O(ε) and cannot give the correct leading term in the matching region where
the exact solution may be exponentially small.

The treatment of the nested boundary layers problem is based on Prandtl’s prin-
ciple of matched asymptotics. However, the lack of rigor in Prandtl’s boundary
layer theory does raise concern from mathematicians who believe that arguments
based on purely heuristic reasoning may lead to incorrect results. Examples of this
nature can be found in [7, pp. 239-245] and [9]. With the same purpose, we are
going to reinvestigate the problem (1.1) − (1.2) and to derive a uniformly valid
asymptotic solution by a mathematically rigorous argument. Moreover, we can
find explicitly the exponentially small leading term in the interval where the exact
solution exhibits such behavior.

Before proceeding, let us look at one more example: a triple-deck problem. For
a nested boundary-layer problem, the domains of validity of the outer solution,
inner solution and inner-inner solution are called outer region, inner region and
inner-inner region, accordingly. Furthermore, these layers are also known as decks,
especially by physicists; in other words, they are called right deck, middle deck and
left deck, respectively. Hence, a nested boundary-layer problem is also referred to
as a triple-deck problem. Several typical examples are given in [4] and [5]. In [4,
pp. 304-307], Nayfeh considered the boundary-value problem

{
ε3y′′(x) + x3y′(x) + (x3 − ε)y(x) = 0

y(0) = α, y(1) = β,
(1.7)
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and gave the composite expansion

yc(x) = βe1−x + βe1−ε/2x2

+ αe−x/ε − βe + · · · . (1.8)

To illustrate that yc(x) is close to the exact solution, Nayfeh presented a figure in
[4, p.307] to compare yc(x) with the numerical solution. In Figure 1, we plot the
numerical solution, Nayfeh’s solution yc(x) and our rigorously established approxi-
mate solution Y (x) given in (6.8).
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Figure 1. Comparison of the composite solution yc(x) and the
asymptotic solution Y (x) with the exact numerical solution when
α = 2.0, β = 1.0 and ε = 0.05.

2. Preliminary transformations. For the general singularly perturbed two-point
boundary value problem (B.V.P.)

εy′′(x) + a(x)y′(x) + b(x)y(x) = 0 (2.1)

with the boundary conditions

y(0) = A and y(1) = B, (2.2)

it is now well-known that if a(x) is positive, then the asymptotic solution which
holds uniformly in the interval [0, 1] is given by

yunif(x) = Bexp

(∫ 1

x

b(t)

a(t)
dt

)
+

{
A − Bexp(

∫ 1

0

b(t)

a(t)
dt)

}
e−a(0) x

ε . (2.3)

This formula can be easily derived by using Prandtl’s boundary layer theory; see,
e.g., [2, p.425]. Moreover, yunif in (2.3) approximates the true solution of (2.1) in
the sense that

y(x) = yunif(x) + O(ε),

where the O-term is uniform with respect to x ∈ [0, 1]; cf. [2, p.479]. As we have
mentioned before, heuristic reasoning may lead to incorrect results. For instance, if
the boundary value B in (2.2) is zero, then (2.3) becomes

yunif(x) = Ae−a(0) x
ε ,
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which is exponentially small for x > 0 and asymptotically equal to zero with respect
to the error estimate O(ε). A more accurate formula for the B.V.P. (2.1) − (2.2) is

y(x) = B exp

(∫ 1

x

b(t)

a(t)
dt

)
[1 + O(ε)]

+
a(0)

a(x)

{
A − B exp (

∫ 1

0

b(t)

a(t)
dt)

}
exp

(∫ x

0

b(t)

a(t)
dt

)

× exp

(
−1

ε

∫ x

0

a(t)dt

)
[1 + O(ε)] .

One can establish this result by using the Liouville-Green (WKB) approximation,
which provides good asymptotic solutions to differential equations of the type

y′′(x) + (λ2p(x) + q(x))y(x) = 0, (2.4)

where λ is a positive large parameter and p(x) is positive. The basic idea in obtain-
ing an asymptotic solution to (2.4) is to introduce the Liouville transformation

ξ =

∫
p1/2(x)dx and w = p1/4(x)y(x). (2.5)

When the coefficient function p(x) in (2.4) has a zero (turning point), say x = x0,
then there is an ambiguity in taking the square root of the function p(x), and hence
the Liouville transformation (2.5) is not well defined. However, a good approxima-
tion can be obtained by introducing the Langer transformation [3], which can also
be used to obtain asymptotic solutions to internal boundary-layer problems (e.g.,
when a(x) in (2.1) has a zero in the interval (0, 1); see [8]).

A third situation arises when p(x) in (2.4) has a simple pole at x0. Again, the
transformation for this case was first introduced by Langer, extended and popular-
ized by Olver; see [6]. Our treatment of (1.1) is based on this transformation. The
key idea behind this transformation is to get a good approximate equation for (1.1),
and to estimate the error term by using the method of successive approximation.

Motivated by the inner-inner solution in (1.3), we will try to derive an equation
which is a perturbation of Weber’s equation for modified Bessel functions. As we
all know, the ordinary differential equation

d2w

dz2
=

1

4z
w (2.6)

has two linearly independent solutions
√

zK1(
√

z) and
√

zI1(
√

z).

Hence, we will seek a transformation which converts (1.1) into a perturbed equation
of (2.6). To this end, we introduce new independent and dependent variables

ζ = ζ(x) and y(x) = A(x)U(ζ(x)). (2.7)

Straightforward calculation gives

dy

dx
= A′(x)U(ζ(x)) + A(x)

dU

dζ

dζ

dx

and

d2y

dx2
= A′′(x)U(ζ) + 2A′(x)

dU

dζ

dζ

dx
+ A(x)

(
dU

dζ

d2ζ

dx2
+

d2U

dζ2

(
dζ

dx

)2
)

.
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With the new variables, (1.1) becomes

ε3A(x)

(
dζ

dx

)2
d2U

dζ2
+

(
2ε3A′(x)

dζ

dx
+ ε3A(x)

d2ζ

dx2
+ xA(x)

dζ

dx

)
dU

dζ

+
(
ε3A′′(x) + xA′(x) − (x2 +

ε

x
)A(x)

)
U = 0.

(2.8)

To eliminate the first order derivative of U(ζ), we set

2ε3A′(x)
dζ

dx
+ ε3A(x)

d2ζ

dx2
+ xA(x)

dζ

dx
= 0. (2.9)

Upon solving (2.9), we have

A(x) = (ζ′(x))−
1
2 exp

{
− x2

4ε3

}
. (2.10)

Substituting (2.10) into (2.8) yields

d2U

dζ2
− U

4ζ
=

{
1

ε3

1

(ζ′(x))2

(
x2

4ε3
+ x2 +

1

2
+

ε

x

)
− 1

4ζ

}
U

+

{
ζ(x)

(ζ′(x))3

(
2ζ′′′(x) − 3(ζ′′(x))2

ζ′(x)

)}
U

4ζ
.

(2.11)

Again, set
1

ε3

1

(ζ′(x))2

(
x2

4ε3
+ x2 +

1

2
+

ε

x

)
− 1

4ζ
= 0. (2.12)

Solving (2.12), we obtain

ζ
1
2 (x) =

1

ε

∫ x

0

√
1

t
+

t2

4ε4
+

1

2ε
(1 + 2t2) dt. (2.13)

As a consequence, ζ = ζ(x) is a well-defined and one-to-one mapping from [0, 1]
into [ζ−, ζ+], where

ζ− = ζ(0) = 0, and ζ+ = ζ(1).

Let us summarize the result in the following lemma.

Lemma 1. Under the transformations (2.7), (2.10) and (2.13), (1.1) is converted
into

d2U

dζ2
− U

4ζ
= φ(ζ)

U

4ζ
, (2.14)

where

φ(ζ) =
ζ(x)

(ζ′(x))3

(
2ζ′′′(x) − 3(ζ′′(x))2

ζ′(x)

)
. (2.15)

3. Conversion to an integral equation. We construct two linearly indepen-
dent solutions W1(ζ) and W2(ζ) to the associated homogeneous equation of (2.14),
namely,

d2U

dζ2
− U

4ζ
= 0, (3.1)

such that
W1(ζ−) = 1, W1(ζ+) = 0,

W2(ζ−) = 0, W2(ζ+) = 1.

By straightforward calculation, we have

W1(ζ) =
√

ζK1(
√

ζ) − P
√

ζI1(
√

ζ),
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W2(ζ) =

√
ζI1(

√
ζ)

Q
,

where

P =
K1(

√
ζ+)

I1(
√

ζ+)
, Q =

√
ζ+I1(

√
ζ+).

Moreover,

W{W1(ζ), W2(ζ)} =
1

2Q
.

By considering the right-hand side of (2.14) as an inhomogeneous term of the
homogeneous equation (3.1), we can convert (2.14) into the integral equation

U(ζ) = λW1(ζ) + µW2(ζ) +

∫ ζ+

ζ
−

G(ζ, s)φ(s)
U(s)

4s
ds, (3.2)

where λ, µ are arbitrary constants, and G(ζ, s) is the Green’s function defined by

G(ζ, s) =





W1(ζ)W2(s)

W{W1(s), W2(s)}
= 2QW1(ζ)W2(s), ζ− ≤ s ≤ ζ ≤ ζ+,

W1(s)W2(ζ)

W{W1(s), W2(s)}
= 2QW1(s)W2(ζ), ζ− ≤ ζ ≤ s ≤ ζ+.

(3.3)

4. Construction of the Solution.

Lemma 2. Let ρ be a positive constant. We have the order estimates

φ(x) = O(
x2

ε2
) for 0 ≤ x ≤ ρε4/3, (4.1)

φ(x) = O(
ε6

x4
) for ρε4/3 ≤ x ≤ 1. (4.2)

Proof. For convenience, we put

f(t) =

√
1

t
+

t2

4ε4
+

1

2ε
(1 + 2t2) for 0 < t ≤ 1. (4.3)

From (2.13), (2.15) and (4.3), it follows that

φ(ζ) = φ1(x) + φ2(x),

where

φ1(x) = −3

4

1

ζ(x)
(4.4)

and

φ2(x) = ε2f−6(x)

{
3

16

1

x4
+

1

4ε

1

x3
+

9

4x

(
1

4ε4
+

1

ε

)

+
1

4ε

(
1

4ε4
+

1

ε

)
− 3x2

4

(
1

4ε4
+

1

ε

)2}
.

(4.5)

Let us first consider the case 0 < t ≤ x ≤ ρε4/3. Assume temporarily that x is
much smaller than ε4/3 (i.e., x ≪ ε4/3), so that

f(t) =
1√
t

{
1 +

1

2
(

t3

4ε4
+

t

2ε
)[1 + O(

t3

ε4
,
t

ε
)]

}
, (4.6)

ζ
1
2 (x) =

2
√

x

ε

{
1 + (

x3

56ε4
+

x

12ε
)[1 + O(

x3

ε4
,
x

ε
)]

}
, (4.7)
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and

φ1(x) = − 3

16

ε2

x
+ (

3x2

448ε2
+

ε

32
)[1 + O(

x3

ε4
,
x

ε
)], (4.8)

where O(h, k) is used to indicate that the error term is of the order O(h) + O(k).
Coupling (4.5) and (4.6) yields

φ2(x) =
3ε2

16x
+

(
27x2

64ε2
− ε

32

)
[1 + O(

x3

ε4
,
x

ε
, ε3)]. (4.9)

Hence,

φ(x) = φ1(x) + φ2(x) =
3

7

x2

ε2
[1 + O(

x3

ε4
,

x

2ε
, ε3)] = O(

x2

ε2
). (4.10)

Since we are only interested in the leading order estimate for φ(x), our earlier
assumption “x ≪ ε4/3” can now be dropped because x3/ε4 is still bounded.

For the second case ρε4/3 ≤ x ≤ 1, (2.13) and (4.3) imply that

ζ1/2(x) =
1

ε

∫ x

0

f(t)dt ≥ 1

ε

∫ x

0

t

2ε2
dt =

x2

4ε3
.

Thus, we have

|φ1(x)| =

∣∣∣∣−
3

4

1

ζ(x)

∣∣∣∣ ≤
12ε6

x4
= O(

ε6

x4
).

In a similar manner, it can be shown that φ2(x) = O(ε6/x4).

Lemma 2 implies that φ(x) is much smaller than 1, thus we can use the solution of
the homogeneous equation (3.1) to approximate the solution of the inhomogeneous
equation (2.14). In the following lemma, we are going to estimate the error term
caused by discarding the inhomogeneous term of (2.14).

Lemma 3. As ε → 0, we have
∫ ζ+

ζ
−

G(ζ, s)
|φ(s)|

4s
W1(s)ds = W1(ζ)O(ε1/3), (4.11)

∫ ζ+

ζ
−

G(ζ, s)
|φ(s)|

4s
W2(s)ds = W2(ζ)O(ε1/3). (4.12)

Proof. Define

M1(ζ, ε) :=

∫ ζ

ζ
−

G(ζ, s)
|φ(s)|

4s
W1(s)ds,

M2(ζ, ε) :=

∫ ζ+

ζ

G(ζ, s)
|φ(s)|

4s
W1(s)ds,

N1(ζ, ε) :=

∫ ζ

ζ
−

G(ζ, s)
|φ(s)|

4s
W2(s)ds,

N2(ζ, ε) :=

∫ ζ+

ζ

G(ζ, s)
|φ(s)|

4s
W2(s)ds.

First of all, we recall some asymptotic formulas of K1(z) and I1(z):

K1(z) ∼ 1

z
as z → 0, (4.13)

I1(z) ∼ z

2
as z → 0, (4.14)
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K1(z) ∼
√

π

2z
e−z as z → ∞, (4.15)

I1(z) ∼ ez

√
2πz

as z → ∞. (4.16)

By making the change of variable given in (2.13) with z and s replacing x and ζ,
we obtain

M1(ζ, ε) = O(1)W1(ζ)

∫ x

0

I1(
√

s(z))K1(
√

s(z)) |φ(s(z))|

× 2
√

s(z)
1

ε

√
1

z
+

z2

4ε4
+

1

2ε
(1 + 2z2)dz.

(4.17)

To proceed further, we divide our discussion into three cases. Let k1, k2 be positive
constants.

Case I: 0 < x ≤ k1ε
2.

For 0 < z < x, we have from (4.6), (4.7) and (4.10)

f(z) =
1√
z
[1 + O(

z3

ε4
,
z

ε
)], (4.18)

s1/2(z) =
2
√

z

ε
[1 + O(

z3

ε4
,
z

ε
)], (4.19)

φ(z) =
3z2

7ε2
[1 + O(

z3

ε4
,
z

ε
, ε3)]. (4.20)

A combination of (4.13), (4.14), (4.17), (4.18), (4.19) and (4.20) gives

M1(ζ, ε) = O(1)W1(ζ)

∫ x

0

√
s

2

1√
s

3

7

z2

ε2

4
√

z

ε

1

ε

1√
z
dz = W1(ζ)O(ε2). (4.21)

Case II: k1ε
2 ≤ x ≤ k2ε

4
3 .

On account of (4.15), (4.16) (4.19), (4.20) and (4.21), we have

M1(ζ, ε) = W1(ζ)O(ε2) + O(1)W1(ζ)

∫ x

k1ε2

e
√

s

√
2πs

1
4

√
π

2

e−
√

s

s
1
4

3

7

z2

ε2
2
√

s
1

ε

1√
z
dz

= W1(ζ)O(ε
1
3 ).

(4.22)

Case III: k2ε
4/3 ≤ x ≤ 1.

In a similar manner, we obtain

M1(ζ, ε) = W1(ζ)O(ε
1
3 ) + O(1)W1(ζ)

∫ x

k2ε
4
3

e
√

s

√
2πs

1
4

√
π

2

e−
√

s

s
1
4

ε6

z4
2
√

s
1

ε

z

2ε2
dz

= W1(ζ)O(ε
1
3 ).

(4.23)

Therefore,

M1(ζ, ε) = W1(ζ)O(ε
1
3 ) for ζ− ≤ ζ ≤ ζ+.
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For real positive z, K1(z) is a monotonically decreasing function, while I1(z) is
a strictly increasing function. Making use of this property, we get

M2(ζ, ε) =
1

2
W1(ζ)

∫ ζ+

ζ

I1(
√

ζ) |φ(s)| [K1(
√

s) − PI1(
√

s)]2

(K1(
√

ζ) − PI1(
√

ζ))
ds

≤ 1

2
W1(ζ)

∫ ζ+

ζ

I1(
√

s) |φ(s)| (K1(
√

s) − PI1(
√

s))ds

= W1(ζ)O(ε
1
3 ).

Hence, as ε → 0,
∫ ζ+

ζ
−

G(ζ, s)
|φ(s)|

4s
W1(s)ds = M1(ζ, ε) + M2(ζ, ε) = W1(ζ)O(ε1/3) (4.24)

uniformly for all ζ ∈ [ζ−, ζ+].
Similar arguments show that

N1(ζ, ε) = W2(ζ)O(ε
1
3 ) and N2(ζ, ε) = W2(ζ)O(ε

1
3 ).

Thus, (4.12) follows.

Remark. Lemma 3 infers that there exist positive constants ε0 and γ0 such that
for 0 < ε ≤ ε0, ∫ ζ+

ζ
−

G(ζ, s)
|φ(s)|

4s
W1(s)ds ≤ W1(ζ)γ0ε

1/3 (4.25)

and ∫ ζ+

ζ
−

G(ζ, s)
|φ(s)|

4s
W2(s)ds ≤ W2(ζ)γ0ε

1/3. (4.26)

Theorem 1. There exists a constant ε0 > 0 such that for 0 < ε ≤ ε0, equation
(2.14) has two linearly independent solutions

w1(ζ) =
√

ζK1(
√

ζ)(1 + O(ε
1
3 )) (4.27)

and

w2(ζ) =
√

ζI1(
√

ζ)(1 + O(ε
1
3 )), (4.28)

where the O-symbols hold uniformly with respect to ζ ∈ [ζ−, ζ+].

Proof. In (3.2), we let λ = 1 and µ = 0. Then

U(ζ) = W1(ζ) +

∫ ζ+

ζ
−

G(ζ, s)
φ(s)

4s
U(s)ds. (4.29)

We define a sequence Uj(ζ), j = 0, 1, ..., by U0(ζ) = 0 and

Uj(ζ) = W1(ζ) +

∫ ζ+

ζ
−

G(ζ, s)
φ(s)

4s
Uj−1(s)ds (j ≥ 1). (4.30)

Clearly, U1(ζ) = W1(ζ). Now suppose that for a particular value j, we have

|Uj(ζ) − Uj−1(ζ)| ≤ W1(ζ)(γ0ε
1
3 )j−1, (4.31)

as indeed is the case when j = 1. From (4.30), we get

Uj+1(ζ) − Uj(ζ) =

∫ ζ+

ζ
−

G(ζ, s)
φ(s)

4s
(Uj(s) − Uj−1(s)) ds (j ≥ 1). (4.32)
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Hence, (4.25) and (4.32) give

|Uj+1(ζ) − Uj(ζ)| ≤
∫ ζ+

ζ
−

G(ζ, s)
|φ(s)|

4s
W1(s)(γ0ε

1
3 )j−1ds

= (γ0ε
1
3 )j−1

∫ ζ+

ζ
−

G(ζ, s)
|φ(s)|

4s
W1(s)ds

≤ W1(ζ)(γ0ε
1
3 )j .

(4.33)

By induction, (4.31) holds for all j ≥ 1, and the series

Ũ1(ζ) :=
∞∑

j=0

[Uj+1(ζ) − Uj(ζ)]

converges. From (4.33), it follows that

Ũ1(ζ) ≤ U1(ζ) +

∞∑

j=1

|Uj+1(ζ) − Uj(ζ)|

≤ W1(ζ) +

∞∑

j=1

W1(ζ)(γ0ε
1
3 )j

= W1(ζ)(1 + O(ε
1
3 )).

(4.34)

Since Ũ1(ζ) = lim
n→∞

(Un(ζ)) = lim
n→∞

∑n−1
j=0 [Uj+1(ζ) − Uj(ζ)], taking limits (as j →

∞) on both sides of (4.30) shows that equation (2.14) has a solution Ũ1(ζ) satisfying

Ũ1(ζ) =W1(ζ)(1 + O(ε
1
3 ))

=(
√

ζK1(
√

ζ) − P
√

ζI1(
√

ζ))(1 + O(ε
1
3 )).

(4.35)

Similar arguments show that equation (2.14) has another solution

Ũ2(ζ) = W2(ζ)(1 + O(ε
1
3 )) =

√
ζI1(

√
ζ)

Q
(1 + O(ε

1
3 )). (4.36)

Since P and Q depend only on ε, and w1(ζ) and w2(ζ) are just linear combinations

of Ũ1(ζ) and Ũ2(ζ), the result stated in the theorem is proved.

Now, we are ready to construct the solution to B.V.P. (1.1) − (1.2). Coupling
(2.10) and (2.13), we have

A(x) =

√
ε

2

(
1

x
+

x2

4ε4
+

1

2ε
(1 + 2x2)

)− 1
4

exp

{
− x2

4ε3

}
ζ−

1
4 (x). (4.37)

By Theorem 1, it is straightforward to show that B.V.P. (1.1) − (1.2) has two
linearly independent solutions

y1(x) =

√
ε

2

(
1

x
+

x2

4ε4
+

1

2ε
(1 + 2x2)

)− 1
4

exp

{
− x2

4ε3

}
ζ

1
4 (x)K1(

√
ζ)(1 + O(ε

1
3 )),

(4.38)

y2(x) =

√
ε

2

(
1

x
+

x2

4ε4
+

1

2ε
(1 + 2x2)

)− 1
4

exp

{
− x2

4ε3

}
ζ

1
4 (x)I1(

√
ζ)(1 + O(ε

1
3 )).

(4.39)
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In view of (4.7), (4.13), (4.14) and (4.15), we obtain

lim
x→0

y1(x) =
ε

2
(1 + O(ε

1
3 )), lim

x→0
y2(x) = 0, (4.40)

y1(1) =

√
επ

2

(
1

4ε4

)− 1
4

exp

{
− 1

4ε3

}
exp

{
−
√

ζ(1)
}

(1 + O(ε
1
3 )). (4.41)

The last estimate indicates that y1(1) is exponentially small as ε → 0.
Let us define

Y1(x) =
2

ε
y1(x), (4.42)

Y2(x) =

√
ey2(x)

y2(1)
. (4.43)

The solution to the B.V.P. (1.1) − (1.2) is given by

Y (x) = Y1(x) +

(
1 − Y1(1)

Y2(1)

)
Y2(x). (4.44)

Note that Y1(1)/Y2(1) = 2y1(1)/(ε
√

e) is exponentially small as ε tends to 0.
In summary, we have the following theorem.

Theorem 2. There exists a constant ε0 > 0 such that for 0 < ε ≤ ε0, the boundary-
value problem (1.1) − (1.2) has the unique solution

Y (x) = Y1(x) + Y2(x), (4.45)

where Y1(x) and Y2(x) are given by (4.42) and (4.43), respectively.

5. Simplification of our solution. To simplify our solution (4.45), we have to
study the behavior of ζ1/2(x).

Theorem 3. There is a positive number ρ0 such that

ζ
1
2 (x) = 2

√
x

ε

(
1 + O(

x3

ε4
, ε

1
3 )

)
for 0 ≤ x ≤ ρ0ε

4
3 (5.1)

and

ζ
1
2 (x) =

c0

ε
1
3

+
x2

4ε3
+

1

2
log x − 2

3
log ε +

x2

2

− ε

x

(
1 + O(

ε4

x3
, ε

1
3 )

)
+ O(ε

1
3 log ε) for ρ0ε

4
3 ≤ x ≤ 1.

(5.2)

Proof. By the definition of ζ1/2(x) in (2.13), we have

ζ
1
2 (x) =

1

ε

∫ x

0

√√√√
(

t2

4ε4
+

1

t

)(
1 +

1
2ε (1 + 2t2)

t2

4ε4 + 1
t

)
dt. (5.3)

It is easy to verify that

1

2ε
(1 + 2t2)

t2

4ε4
+

1

t

= O(ε
1
3 ) for 0 < t ≤ 1 . (5.4)
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By the binomial expansion, we have

ζ
1
2 (x) = ε−

1
3

∫ x/ε4/3

0

√
t2

4
+

1

t
dt +

1

4

∫ x/ε4/3

0

1√
t2

4 + 1
t

dt

[
1 + O(ε

1
3 )

]

+
1

2ε2

∫ x

0

t2√
t2

4ε4 + 1
t

dt

[
1 + O(ε

1
3 )

]
.

(5.5)

The first two integrals on the right-hand side of (5.5) can be evaluated by symbolic
calculation (Mathematica 5.2), and the result is

ζ
1
2 (x) =

2
√

x

ε
2F1

(
−1

2
,
1

6
;
7

6
;− x3

4ε4

)
+

1

3
arcsinh

(
x

3
2

2ε2

)
[1 + O(ε

1
3 )]

+
1

2ε2

∫ x

0

t2√
t2

4ε4 + 1
t

dt[1 + O(ε
1
3 )].

(5.6)

This result can also be verified by using integral representations of the above two
special functions. Now the theorem follows from (5.6) and the lemmas 4, 5 and
6.

Lemma 4.

2
√

x

ε
2F1

(
−1

2
,
1

6
;
7

6
;− x3

4ε4

)
=

2
√

x

ε

(
1 + O(

x3

ε4
)

)
for 0 ≤ x ≤ ρ0ε

4
3 (5.7)

and

2
√

x

ε
2F1

(
−1

2
,
1

6
;
7

6
;− x3

4ε4

)
=

c0

ε
1
3

+
x2

4ε3
− ε

x

(
1 + O(

ε4

x3
)

)
for ρ0ε

4
3 ≤ x ≤ 1,

(5.8)

where c0 =
Γ(− 2

3 )Γ( 7
6 )2

4
3

Γ(− 1
2 )

≈ 2.64996, and ρ0 = 2
2
3 .

Proof. We know that the hypergeometric series

2F1(a, b; c; z) =

∞∑

n=0

(a)n(b)n

(c)n

zn

n!
(5.9)

is absolutely convergent for |z| ≤ 1, provided that Re(c − a− b) > 0. In particular,

2F1(− 1
2 , 1

6 ; 7
6 ;− x3

4ε4 ) is convergent for | x3

4ε4 | ≤ 1 and (5.7) follows.
Referring to [1, p.559], we have the following connection formula

2F1(a, b; c; z) =
Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(−z)−a

2F1(a, 1 − c + a; 1 − b + a;
1

z
)

+
Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(−z)−b

2F1(b, 1 − c + b; 1 − a + b;
1

z
)

for (|arg(−z)| < π).

(5.10)

With a = − 1
2 , b = 1

6 , c = 7
6 and z = − x3

4ε4 , equation (5.10) becomes

2F1

(
−1

2
,
1

6
;
7

6
;− x3

4ε4

)
=

Γ(7
6 )Γ(2

3 )

Γ(1
6 )Γ(10

6 )

(
x3

4ε4

) 1
2

2F1

(
−1

2
,−2

3
;
1

3
;−4ε4

x3

)

+
Γ(7

6 )Γ(− 2
3 )

Γ(− 1
2 )Γ(1)

(
x3

4ε4

)− 1
6

2F1

(
1

6
, 0;

5

3
;−4ε4

x3

)
.

(5.11)
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Furthermore, it can be simplified to

2F1

(
−1

2
,
1

6
;
7

6
;− x3

4ε4

)
=

1

8

x
3
2

ε2 2F1

(
−1

2
,−2

3
;
1

3
;−4ε4

x3

)
+ c0

ε
2
3

2x
1
2

, (5.12)

where c0 =
Γ( 7

6 )Γ(− 2
3 )2

4
3

Γ(− 1
2 )

≈ 2.64996. Multiplying both sides of (5.12) by 2
√

x
ε and

making use of (5.9), we obtain (5.8).

Lemma 5.

1

3
arcsinh

(
x

3
2

2ε2

)
=

x
3
2

6ε2

(
1 + O(

x3

ε4
)

)
for 0 ≤ x ≤ ρ0ε

4
3 ,

and

1

3
arcsinh

(
x

3
2

2ε2

)
=

(
1

2
log x − 2

3
log ε

)
+

ε4

3x3

(
1 + O(

ε4

x3
)

)
for ρ0ε

4
3 ≤ x ≤ 1.

Lemma 6.

1

2ε2

∫ x

0

t2√
t2

4ε4 + 1
t

dt =
x

7
2

7ε2

(
1 + O(

x3

ε4
)

)
for 0 ≤ x ≤ ρ0ε

4
3 ,

and
1

2ε2

∫ x

0

t2√
t2

4ε4 + 1
t

dt =
x2

2
+ O(ε

8
3 ) for ρ0ε

4
3 ≤ x ≤ 1.

Lemmas 5 and 6 can be proved by using some basic calculus and the asymptotic
formulas of arcsinh z [1, p.88].

From Theorem 3 and the asymptotic formulas of K1(z) and I1(z), the solution
Y (x) in (4.45) can be simplified to

Y (x) =





2
√

x
ε K1

{
2
√

x
ε (1 + o(1))

}
exp

{
− x2

4ε3

}
(1 + o(1)) for 0 < x ≪ O(ε

4
3 ),

exp
{

x2

2 − ε
x(1 + o(1))

}
(1 + o(1)) for O(ε

4
3 ) ≪ x ≤ 1 .

(5.13)
We claim that, for O(ε2) ≪ x ≪ O(ε), the solution Y (x) is exponentially small. To

see this, we note from (5.13) that the terms K1

(
2
√

x
ε

)
exp

(
− x2

4ε3

)
for O(ε2) ≪ x ≤

O(ε4/3) and exp
(

x2

2 − ε
x

)
for O(ε4/3) ≤ x ≪ O(ε) are both exponentially small.

To compare our solution with Bender and Orszag’s solution, we evaluate the
solution at some particular points. For example, at x = ε41/28, Bender and Orszag’s
solution (1.3) gives

yunif(ε
41/28) =

2
√

ε41/28

ε
K1

(
2
√

ε41/28

ε

)
+ e

− ε

ε41/28 + e
(ε41/28)2

2 − 1 ∼ ε41/14

2
,

while our solution yields

Y (ε41/28) ∼
√

π

ε
(ε41/28)

1
4 exp

{
− (ε41/28)2

4ε3
− 2

√
ε41/28

ε

}

∼
√

π

ε15/112
exp{− 2

ε15/56
− 1

4ε1/14
}.
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Moreover, at x = ε7/6, Bender and Orszag’s solution (1.3) gives

yunif(ε
7/6) =

2
√

ε7/6

ε
K1

(
2
√

ε7/6

ε

)
+ e

− ε

ε7/6 + e
(ε7/6)2

2 − 1 ∼ ε7/3

2
,

while our solution gives

Y (ε7/6) ∼ exp

{
ε(7/6)2

2
− ε

ε7/6
(1 + o(1))

}
∼ exp{− 1

ε1/6
}.

In conclusion, for O(ε2) ≪ x ≪ O(ε) Bender and Orszag’s asymptotic solution
(1.3) seems to be incorrect since it shows that the leading term in the asymptotic
approximation of the exact solution is of algebraic order, whereas our solution (4.45)
shows that the true solution decays exponentially; this phenomenon has never been
mentioned in the existing literature.

6. Triple-deck problem. Based on the experience from studying problem (1.1)
− (1.2), we believe that our method also works for problem (1.7). In fact, problem
(1.7) is much simpler than problem (1.1) − (1.2) due to the lack of singularity at
the origin. Since the techniques are the same, we present only a brief outline of the
derivation of an asymptotic solution to the triple-deck problem (1.7).

In parallel to Lemma 1, we have

Lemma 7. Under the transformations

ζ(x) =
1

2ε3

∫ x

0

√
t6 + 4ε4 + ε3(6t2 − 4t3)dt (6.1)

and

y(x) = (ζ′(x))
− 1

2 exp

{
− x4

8ε3

}
U(ζ(x)), (6.2)

(1.7) is converted to

d2U

dζ2
− U = φ(ζ)U, (6.3)

where

φ(ζ(x)) =
1

2

ζ′′′(x)

(ζ′(x))3
− 3

4

(ζ′′(x))2

(ζ′(x))4
. (6.4)

The estimate φ(ζ) = O(ε2/3) implies that

d2U

dζ2
− U = 0 (6.5)

can be used as a perturbed equation to (6.3), and guarantees success of the succes-
sive approximation method used in Sect. 4. As before, one can show that equation
(1.7) has two linearly independent solutions

y1(x) =
√

2ε3
(
x6 + 4ε4 + ε3(6x2 − 4x3)

)− 1
4 exp

{
− x4

8ε3

}

× exp

{
− 1

2ε3

∫ x

0

√
t6 + 4ε4 + ε3(6t2 − 4t3)dt

}
(1 + O(ε

1
3 ))

(6.6)
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and

y2(x) =
√

2ε3
(
x6 + 4ε4 + ε3(6x2 − 4x3)

)− 1
4 exp

{
− x4

8ε3

}

× exp

{
+

1

2ε3

∫ x

0

√
t6 + 4ε4 + ε3(6t2 − 4t3)dt

}
(1 + O(ε

1
3 )).

(6.7)

The solution which satisfies the boundary conditions of (1.7) is given by

Y (x) =
α√
ε
y1(x) +

β

y2(1)
y2(x), (6.8)

where y1(x) and y2(x) are given in (6.6) and (6.7), respectively.
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