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1 Introduction

Let F be a field and let H be a reductive group over F . Consider a linear
representation of H on a finite dimensional F -vector space V (considered as
an affine space)

ρ : H → GL(V).
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Let (VH , π) be the categorical quotient (cf. [1]) where π is a morphism
V → VH . One may construct the categorical quotient by taking

VH := Spec(O(V)H), π : V → Spec(O(V)H),

where O(V)H is the ring of invariant regular functions on the affine space V
and π is the natural morphism induced by the inclusion O(V)H ↪→ O(V).

In this paper we will consider two (series of) representations ρ that arise
from the relative trace formulae of Jacquet–Rallis’s approach to the Gan–
Gross–Prasad conjecture for unitary groups (cf. [4], [9]):

• The general linear case: H = GLn−1 acts on the Lie algebra V = gln
of GLn.

• The unitary case: H = Un−1 (a unitary group in n− 1 variables) acts
on the Lie algebra of Un.

We explain in more details. In the first case, we embed GLn−1 into GLn by
taking g to the block-diagonal matrix diag[g, 1]. Then the first representation
is the restriction of the adjoint representation of GLn on its Lie algebra
gln to the subgroup H = GLn−1. To describe the second case, let E/F
be a quadratic extension. Let W be a (non-degenerate) Hermtian space of
dimension n− 1. Let V = W ⊕ Eu be the orthogonal sum of W and a one-
dimensional Hermitian space Eu with a generator u of norm one. We restrict
the adjoint representation of U(V ) on u(V ) to the subgroup H = U(W ).

Now we let F be a non-archimedean local field of characteristic zero
(though the results below should hold when the characteristic is large enough).
By abuse of notations, we will use V to denote the the set of F -points of V
and similarly for V/H etc., and π the continuous map from V to V/H. Then
V/H has a distinguished point, also denoted by 0, being the image of 0 ∈ V .
By the H-nilpotent cone, denoted by N , we mean the pre-image π−1(0) of
0. An element in N is called H-nilpotent. An element X ∈ V is called H-
regular (H-semisimple, resp.) if its stabilizer has minimal dimension (if its
H-orbit is closed, resp.). When there is no confusion, we will drop the word
H and simply speak of nilpotent,regular and semisimple. The terminology is
clearly borrowed from the example where ρ is the adjoint representation of a
reductive group H on its Lie algebra h. In that case, all the notions coincide
with the usual ones.

Let C∞c (V) be the space of locally constant and compactly supported
functions on V . Then for f ∈ C∞c (V) and a semisimple element x ∈ V with
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stabilizer Hx, the orbit H · x ' H/Hx is a closed subset of V so that the
orbital integral (relative to H) for a suitable Haar measure

O(x, f) =

∫
H/Hx

f(h · x)dx

is absolutely convergent. We now focus on the two cases above, where the
stabilizer of a regular semisimple element is trivial. We consider the orbital
integrals, first introduced by Jacquet–Rallis in [4], for regular semisimple
elements twisted by a character η of H (cf. §2.1). The character η is trivial
in the unitary case; in the general linear case, η is the quadratic character
associated to the quadratic extension E/F (considered as a character of
GLn−1(F ) by composing with the determinant). Then our first result is a
density principle in the sense of [6, p. 100]:

Theorem 1.1. Assume that n = 3. Consider the regular orbital integrals as
(H, η)-invariant distributions on V. Then they span a weakly dense subspace
in the space of all (H, η)-invariant distributions (namely, if all of regular
semisimple orbital integrals of f ∈ C∞c (V) vanish, then so does T (f) for
every (H, η)-invariant distribution T ).

As demonstrated by [6], the density principle does not hold in general for
symmetric pairs (not even the the rank one case).

In the two cases above, their categorical quotients are isomorphic (cf.
[9]; the case n = 3 is given explicitly below in terms of invariants). This
isomorphism induces a bijection between the set of regular semisimple orbits
in gln and the disjoint union of regular semisimple orbits in u(V ) where
V = W ⊕ Eu and W runs over all isomorphism classes of Hermitian spaces
over E. In terms of the matching of orbits, Jacquet–Rallis conjectured ([4])
the existence of smooth matching of test functions. Denote byW1,W2 the two
isomorphism classes of Hermirian spaces of dimension n−1, and Vi = W⊕Eu
where u has norm one. Our second result is to establish a refined version of
their conjecture when n = 3:

Theorem 1.2. Assume that n = 3. Given f ∈ C∞c (V), there exists a pair
fi ∈ C∞c (u(Vi)), i = 1, 2, that matches f . Conversely, given a pair fi ∈
C∞c (u(Vi)), i = 1, 2, there exists f ∈ C∞c (V) that matches fi ∈ C∞c (u(Vi)), i =
1, 2. Moreover, their nilpotent orbital integrals (defined in §2.1) also match.

This is proved in §4.2. We refer to Prop. 4.4 in §4.2 for the precise mean-
ing of matching nilpotent orbital integrals. The existence part is now proved
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in [9] for all n. However, the current proof is different and yields a refined
version of smooth matching that gives the relation between nilpotent orbital
integrals. Some further application requires this refinement. In this aspect,
the work of Jacquet–Chen ([2]) is a prototype which requires the existence
of a refined version of smooth matching. In a sequel of this paper, we will
pursue similar application to the refined Gan–Gross–Prasad conjecture.

To prove the two theorems, we study the “singularity” of the regular
semisimple orbital integral near 0 ∈ V/H. We want to have a germ expan-
sion of the orbital integral O(·, f) in a neighborhood of 0 ∈ V/H and one
hopes this expansion only involves the nilpotent orbital integrals (whose def-
inition is not clear in general). When ρ is the adjoint representation of a
reductive group H and F is non-archimedean, this is known as the Shalika
germ expansion (on Lie algebra). However, the explicit form the singularity,
namely, the so-called Shalika germ, is hard to obtain. The question makes
sense in the above general setting and when the germ expansion exists we
may call it a relative Shalika germ expansion. In the study of various rela-
tive trace formulae by Jacquet and many others, similar notion was already
introduced (for example, in a series of work by Jacquet–Ye [5], which does
not exactly fit this framework since the group H appeared there is not reduc-
tive). The main technical part of this paper is to establish an explicit germ
expansion (Theorem 2.7 and 2.8). The case n = 2 was known already in [3].
One main difficulty in the case n ≥ 3 is that, contrary to the classical Shalika
germ expansion, there are infnitely many nilpotent orbits. To the arthur’s
knowledge, our result is the first of such examples. It is not surprising that
the germ expansion turns out to be a continuos “sum” of nilpotent orbital
integrals. The question for n > 3 looks formidable for the moment. One of
the purpose of this paper is to draw the reader’s attention to this type of
question.

Note that a large part of the treatment of the unitary case uses technique
similar to the general linear case. The reader may skip the unitary case
without losing the idea of the proof. The paper is organized as follows. We
will only consider the case n = 3. In section 2, we classify nilpotent orbits
in both representations, and state the germ expansion. Then we deduce
the application to the density principle. In section 3, we show the germ
expansion. In section 4, we prove the refined version of the existence of
smooth matching.

Some notation: F is a non-archimedean local field of characteristic zero
and OF its ring of integers. Let $ be a uniformizer and k = OF/($) the
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residue field of cardinality q. Let E/F be a quadratic extension and let η be
the quadratic character of F× associated to E/F by class field theory. We
denote by η1 the character η| · |−1.

Acknowledgement. The author thanks the anonymous referee for pointing
out the application to the density principle and for several comments on
improving the exposition. He also thanks the Institute for Advanced Studies
at the Hong Kong University of Science and Technology for their hospitality
where the result was represented in a workshop in Dec. 2011. The author is
partially supported by NSF Grant DMS #1001631.

2 Germ expansion of relative orbital integrals

We first define the relevant orbital integrals for nilpotent orbits. Then we
present the main results of relative germs.

2.1 Nilpotent orbital integral

We first classify nilpotent orbits then study their orbital integrals.

Nilpotent orbits in the general linear case. An element in gl3 can be
written as

X =

[
A u
v d

]
, A ∈ gl2.

We define an invariant subspace V of gl3 of codimension two consisting of all
X such that

tr(A) = 0, d = 0.(2.1)

It is easy to see that, as an H-module, gl3 is a direct sum of V and a two
dimensional vector space with trivial H-action. We thus consider only the
H-module V . Then the ring of H-invariants are generated by (cf.[9])

−det(A), vu, vAu ∈ O[V ]H .

They define an H-invariant morphism π from V to A3, the affine 3-space
(with the trivial H-action). This allows us to identify the categorical quotient
V//H with (A3, π) (cf. [9]). We also define a discriminant

∆(X) = −det(A)(vu)2 − (vAu)2.
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Then X ∈ V is H-regular-semisimple if and only if ∆(X) 6= 0. The condition
∆ = 0 defines a hypersurface of A3. We fix a section of π : V → A3:

s : A3 −→V(2.2)

(λ, a, b) 7→

 0 λ 1
1 0 0
a b 0

 .
It is obviously an adaption of the classical companion matrix. It has the
property of the usual companion matrix does, namely: the image of s lies
in the H-regular locus. Recall that the H-regularity of X means that the
stabilizer of X has minimal dimension among all elements in V . In this case,
the minimality condition amounts the fact that the stubblier of s(λ, a, b)
is always trivial for any (λ, a, b) ∈ A3. Moreover, it is self-evident how to
generalize this section to gln.

Let η be the quadratic character associated to a quadratic extension E/F .
We will be interested in the (η-twisted) orbital integral of regular semisimple
X

O(X, f) =

∫
H

f(h ·X)η(H)dh,

where we for short write η(h) = η(det(h)). Our goal is to calculate the germ
of the function O(X, f) around X = 0. We see that the germ depends only
the nilpotent orbital integrals ( defined below) in a way that resembles the
classical Shalika germ expansion. The difference has been indicated in the
introduction part.

We now classify the H-orbits in the nilpotent cone N := π−1(0) of V
together with their stabilizers. More precisely, X ∈ V is nilpotent if and only
if

A2 = 0, vAiu = 0, i = 0, 1.

Then it is not hard to analyze them case by case. We omit the intermediate
steps which are elementary and we only enumerate a complete set of rep-
resentatives as follows. it consists of a continuous family and eight discrete
orbits. The continuous family is

n(c) :=

 0 c 1
0 0 0
0 1 0

 , c ∈ F

with stabilizer N . The others are
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(1)

n0,+ =

 0 1 0
0 0 1
0 0 0

 , n1,+ =

 0 1 1
0 0 0
0 0 0

 , n2,+ =

 0 0 1
0 0 0
0 0 0


their stabilizers are respectively: {1}, N , B+ = A+N with A+ con-
sisting of matrices of the form diag[1, x]. The stabilizer of ni,+ is of
dimension i for i = 0, 1, 2.

(2) their transposes denoted by ni,−, i = 0, 1, 2 respectively,

(3)

n0 =

 0 1 0
0 0 0
0 0 0

 , 0,

their stabilizers are respectively: ZN (where Z is the center of H), H.

Note that we list them in the order such that the later ones are limits of
the earlier ones. Moreover, obviously three of them: n2,±, 0, cannot support
non-zero (H, η)-invariant distribution as the character η has non-trivial re-
striction on their stabilizers. We will see that they won’t enter into the germ
expansion.

Nilpotent orbits in the unitary case. Let E = F [
√
τ ], τ ∈ F× \ (F×)2.

In fact, as in [9], we need to consider
√
τ · u(V ). There are two isomor-

phic classes of hermitian space of a fixed dimension. We will use Ji ∈
Hern−1(E), i = 0, 1 to denote the two isomorphism classes of hermitian ma-
trix and let H = U(Ji) be the unitary group:

tgJig = Ji.

Let Qi = diag[Ji, 1] and ui be the Lie algebra of the corresponding unitary
group U(Qi). Then

√
τu(Qi) consists of Y ∈Mn(E) satisfying

tY = Q−1
i Y Qi.

And H acts on
√
τui induced by the restriction of the adjoint action of U(Qi)

on its Lie algebra.
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We now specify to case n = 3. We first consider the case−det(J0) ∈ NE×.

Recall that E = F [
√
τ ]. We may set J0 =

[ √
τ

−
√
τ

]
. It is easy to see

that we then may identify SU(J0) with SL2. Let J = diag[J0, 1] and consider
the action of H = U(J0) on a subspaceW0 of

√
τu0 consisting of Y such that

Y =

[
A w
w′ d

]
, tr(A) = 0, d = 0.

Such Y can be written as

Y =

 α λ′ z1

λ −α z2

−z̄2

√
τ z̄1

√
τ 0

 , α, λ, λ′ ∈ F√τ , z1, z2 ∈ E.

Modulo the U(J0)-action, a regular seimisimple element can be written as 0 λ2 1
λ1 0 z2

−z̄2

√
τ
√
τ 0

 , λ1, λ2 ∈
√
τF, z2 ∈ E.

The ring of H-invariants is generated by

(λ1λ2, (z2 − z̄2)
√
τ , (λ1 − λ2z2z̄2)

√
τ).

This defines a morphism π : W → A3 and (A3, π) defines a categorical
quotient of W by H ([9]).

The nilpotent orbits are classified as follows

n(c) :=

 0 β
√
τ 1

0 0 0
0
√
τ 0

 , β ∈ F ;n1 =

 0 0 1
0 0 1
−
√
τ
√
τ 0

 ,

n0,± =

 0 β±
√
τ 0

0 0 0
0 0 0

 , β± ∈ F×/NE×, η(β±) = ±1,

and finally 0. We will show that n1 does not appear in the germ expansion.
When −det(J1) ∈ F× \ NE×, the associated unitary group U(J1) is

anisotropic. In this case the only nilpotent element in an analogous sub-
space W1 ⊂

√
τu1 is zero itself.

8



Nilpotent orbital integrals

Before we proceed, we need to define the orbital integrals for nilpotent ele-
ments. In our setting, the nilpotent orbital integral usually diverges. This is
different from the classical case when ρ is the adjoint representation, where
by Deligne and Ranga Rao’s theorem ([7]), the nilpotent orbital integral is
absolutely convergent. In our situation, we have to use analytic continuation
to define the nilpotent orbital integrals.

The general linear case. For X ∈ N whose stabilizer HX is contained
in SL2, we denote

O(X, f, s) =

∫
H/HX

f(h ·X)η(h)|h|sdh̄,(2.3)

where the quotient measure on dh̄ will be self-evident in view of the explicit
list above and will be discussed in more details below. As we will show, this
integral is absolutely convergent when Re(s) is large enough and meromor-
phic extends to all s ∈ C as a rational function of q−s. When it has no pole
at s = 0, we will denote for simplicity O(X, f) = O(X, f, 0).

For f ∈ C∞c (V), we say that f has period radius (at least) r if f is invariant
under translation by elements X ∈ V in the ball in V of radius r. We say
that f has support radius (at most) D if the support of f is contained in
the ball in V of radius D. We will frequently use the Iwasawa decomposition
H = KB = KAN = KNA, where K = SL2(O). We define fK to be the
function in C∞c (V) by

fK(X) =

∫
K

f(k ·X)dk.

We now also make convention for the measures. We fix a measure on F and a
measure on K such that vol(K) = 1. We will then choose the Haar measure
on H by

dh = |y|−2dkdxdydu, h = k

[
x

y

] [
1 u

1

]
.

As the stabilizer HX for nilpotent X is trivial or N , ZN , or their transpose,
we may choose a measure e du on N and |x|−1dx on Z, and similarly for the
transpose of N .
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Lemma 2.1. • The integral

O(n0,±, f, s) =

∫
H

f(h · n0,±)η(h)|h|sdh(2.4)

can be analytically extended to all s ∈ C with only a simple pole at
s = 1/2. They are all rational functions of q−s. For each of them, the
value at s = 0 defines an (H, η)-invariant distributions.

• The integral

O(n0, f) =

∫
H/ZN

f(h · n0)η(h)dh̄(2.5)

is absolutely convergent and defines an (H, η)-invariant distributions.

Proof. The assertion for n0 is trivial. We now prove the one for n0,+. By
Iwasawa decomposition we have

O(n0,+, f, s) =

∫
u∈F

∫
x,y∈F×

fK

 0 xy−1 ux
0 0 y
0 0 0

 η(xy)|xy|sdudxdy
|y|2

.(2.6)

Substitute x→ xy and then u→ u(xy)−1:

O(n0,+, f, s) =

∫
u∈F

∫
x,y∈F×

fK

 0 x u
0 0 y
0 0 0

 η(x)|xy2|sdudxdy
|x||y|2

.(2.7)

When Re(s) > 1/2, it is easy to see the absolute convergence from the formula
above. The rest follows from the Tate’s thesis.

Lemma 2.2. The integral

O(n1,±, f, s) =

∫
H/N−

f(h · n1,±)η(h)|h|sdh̄(2.8)

can be analytically extended to all s ∈ C with a simple pole at s = 0. The
residue for n1,+, n1,− are given respectively by

1

2ζ(1) log q
O(n0, f),

1

2ζ(1) log q
η(−1)O(n0, f).
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Let

O′(n0, f) :=

∫
x∈F×

 0 0 0
x 0 0
0 0 0

 η(x) log |x|dx
log q

.

Then the constant term of the sum

O(n1,+, f, s) + η(−1)O(n1,−, f, s)−
1

ζ(1) log q
O′(n0, f),

denoted by O(n1,+,−, f), defines an (H, η)-invariant distribution. Moreover,
on the orbits of each of n1,±, there is an (H, η)-invariant distribution; but
none of them extend to an invariant distribution on V.

Proof. By definition we have

O(n1,+, f, s) =

∫
x,y∈F×

fK

 0 xy−1 x
0 0 0
0 0 0

 η(xy)|xy|sdxdy
|y|2

.

Substitute y → y−1x:

O(n1,+, f, s) =

∫
x,y∈F×

fK

 0 y x
0 0 0
0 0 0

 η(y)|x2y−1|sdxdy
|x|

.

Then it follows from the Tate’s thesis that this has a simple pole at s = 0
with residue

1

2ζ(1) log q

∫
y∈F×

fK

 0 y 0
0 0 0
0 0 0

 η(y)dy =
1

2ζ(1) log q
O(n0, f).(2.9)

Similarly for O(n1,−, f, s). For the (H, η)-invariance, one may prove it
directly. But in any way it follows from the formula in the next lemma.

Finally, it is easy to see the existence of (H, η)-invariant distribution on
the orbit of n1,+ (n1,−, resp.), but this distribution does not extend (H, η)-
invariantly to V .

Finally we have for the one-parameter family of nilpotent orbits

O(n(µ), f) =

∫
H/N

f(h · n(µ))η(h)dh̄.
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The integral converges absolutely from the following equivalent expression:∫
x,y∈F×

fK

 0 µxy x
0 0 0
0 y 0

 η(xy)dxdy.(2.10)

They all define (H, η)-invariant distributions.

Lemma 2.3. When |µ| is large enough, O(n(µ), f) is equal to

η(µ)

ζ(1)|µ|
O(n1,+,−, f) +

η(µ) log |µ|
ζ(1)|µ| log q

O(n0, f).

Proof. We break the integral (2.10) into two pieces according to |x| ≤ 1 or
not. Without loss of generality, we may assume that fK has period radius at
least 1 and support radius at most D. The part from |x| ≤ 1 can be written
as the sum of two terms:∫

x,y∈F×
fK

 0 µxy 0
0 0 0
0 y 0

 η(xy)|y|sdxdy|s=0,

−
∫
|x|>1,y∈F×

fK

 0 µxy 0
0 0 0
0 y 0

 η(xy)|y|sdxdy|s=0.

Both have a simple pole with opposite residues. When |µ| > D, in the second
term we must have |y| ≤ 1. So we rewrite the two terms respectively as

η(µ)

ζ(1)|µ|

∫
x,y∈F×

fK

 0 x 0
0 0 0
0 y 0

 η(x)|y|sdxd×y|s=0

and

− η(µ)

ζ(1)|µ|

∫
y∈F×

fK

 0 x 0
0 0 0
0 0 0

 η(x)

∫
|y|<|x/µ|

|y|sd×ydx|s=0

=− η(µ)

ζ(1)|µ|

∫
y∈F×

fK

 0 x 0
0 0 0
0 0 0

 η(x)

(
|x
µ
|s
∫
|y|<1

|y|sd×y
)
dx|s=0.
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Similarly the part from |x| > 1 can be written as the sum of two terms
when |µ| > D:

η(µ)

ζ(1)|µ|

∫
x,y∈F×

fK

 0 y x
0 0 0
0 0 0

 η(y)|x|sd×xdy|s=0

and

− η(µ)

ζ(1)|µ|

∫
|x|≤1,y∈F×

fK

 0 y 0
0 0 0
0 0 0

 η(y)|x|sd×xdy|s=0.

Finally we note

|x
µ
|s
∫
|y|<1

|y|sd×ydx+

∫
|x|≤1

|x|sd×x =
|$x/µ|s + 1

1− q−s
.

Its constant term is given by

log |x/µ|
log q

.

Together we obtain when |µ| > D:

η(µ)

ζ(1)|µ|
O(n1,+,−, f) +

η(µ) log |µ|
ζ(1)|µ| log q

O(n0, f).

We now call all the nilpotent orbital integrals in above lemmas relevant if
they define (H, η)-invariant distribution. We will see that the relevant ones
are precisely those “visible” by the germ expansion.

The unitary case. Now we discuss the nilpotent orbital integrals in the
unitary case.

Let T be the maximal torus of U(J0) consisting of elements of the form
diag(z, z̄−1), z ∈ E×. As SU(J0) = SL2 and U(J0) = T ·SU(J0) = SU(J0)·T ,
we have a variant of the Iwasawa decomposition

H := U(J0) = KTN,
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where K = SL2(O) and N ⊂ SL2 as before (by abuse of notations, from
now on, T, SU(J0) etc. mean theire F -points). We will fix a Haar measure
dz on E. Then we choose a Haar measure on H = KTN by

dh = dkdzdu, h = k

[
z

z̄−1

] [
1 u

1

]
.

where the Haar measure on K is normalized by vol(K) = 1. In this way we
define the nilpotent orbital integral

O(n, f) =

∫
H/N

fK(h · n)dh̄, n = n(c), n1,±,

and
O(0, f) = q−1vol(OE)L(1, η)f(0).

It is easy to see that all of them converges absolutely. We have an asymptotic
expansion analogous to Lemma 2.3.

Lemma 2.4. When |µ| is large enough, O(n(µ), f) is of the form

A
η(µ)

|µ|
+B

1

|µ|
.

Moreover, we may express the constants A and B explicitly in terms of
O(n1±, f).

Lemma 2.5. There is no H-invariant distribution on the orbit of n1 that
extend to an H-invariant distribution on W.

The proofs of the two lemmas are simple and we omit them.
For the other case J1, H is compact and we normalize the Haar measure

such that vol(H) = 1. There is only one nilpotent orbit: O(n, f) = f(0) if
n = 0.

Based on the second lemma, we call the orbit of n1 irrelevant and the
others are relevant. Again we will see that the relevant ones are precisely
those “visible” by the germ expansion.
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2.2 Theorem on relative germ expansion

We now state our results on relative germ expansion.

Definition 2.6. The space C1(F ) and C2(F ), resp., consists of locally con-
stant functions φ on F with the property: there are constants c1, c2 such that
when |x| is large enough, we have for C1(F )

φ(x) = c1η(x)|x|−1 + c2η(x) log |x||x|−1,

and for C2(F ) respectively:

φ(x) = c1|x|−1 + c2η(x)|x|−1.

Let f ∈ C∞c (V) and a pair {fi ∈ C∞c (Wi)i=0,1}. We will denote

φf (x) = O(n(x), f), φf0(x) = O(n(x), f0).(2.11)

Then φf ∈ C1(F ) and φf0 ∈ C2(F ) by Lemma 2.3 and 2.4.
The first theorem is for the germ expansion in the general linear case.

Recall that

X =

 0 1 1
λ 0 0
a b 0

 ,(2.12)

whose invariants are
(λ, a, b), ∆ = λa2 − b2.

Theorem 2.7. There is a neighborhood of 0 ∈ A3 on which the orbital inte-
gral O(X, f) at X = s(λ, a, b) is the sum of the following two terms

(i) ∫
F

φf (µ)Γµ(λ, a, b)dµ,

where the germ Γµ(λ, a, b) = 0 if (a2µ− 2b)2 + 4∆ is a non-square, and

Γµ(λ, a, b) =
2η(−u)|a|

|(a2µ− 2b)2 + 4∆|1/2
,

if (a2µ − 2b)2 + 4∆ is a square and u denotes one of the two roots of
a2µ = u− ∆

u
+ 2b.
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(ii) η(−1)(O(n0+, f) + η(∆)O(n0−, f)).

Conversely, let Ψ(λ, a, b) be a function in a neighborhood of 0 ∈ A3 such that
for some φ ∈ C1(F ) and two constant A1, A2,we have

Ψ(λ, a, b) =

∫
F

φ(µ)Γµ(λ, a, b)dµ+ A1 + A2η(∆).

Then there exists a function f ∈ C∞c (W) such that in a neighborhood (possibly
smaller) of 0, we have

Ψ(λ, a, b) = O(X(λ, a, b), f1),

when ∆ 6= 0.

We also have a germ expansion in the unitary case.

Theorem 2.8. Let fi ∈ C∞c (Wi), i ∈ {0, 1}. Let Y (λ, a, b) ∈ ui, i ∈ {0, 1} be
any element with invariants (λ, a, b) ∈ A3.

(1) There is a neighborhood of 0 ∈ A3 on which the orbital integral O(Y, f0)
at Y = Y (λ, a, b) with η(−∆) = 1 is the sum of the following two terms:

(i) ∫
F

φf0(µ)Γ̃µ(λ, a, b)dµ,

where

Γ̃µ(λ, a, b) =
2|a|

|τ((a2µ− 2b)2 + 4∆)|1/2

if τ((a2µ− 2b)2 + 4∆) is a square, and zero otherwise.

(ii) −O(0, f).

(2) There is a neighborhood of 0 ∈ A3 on which the orbital integral O(Y, f1)
at Y = Y (λ, a, b) with η(−∆) = −1 is given by

O(Y, f1) = O(0, f1).
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Conversely, let Φ(λ, a, b) be a function in a neighborhood of 0 ∈ A3 such that
for some φ ∈ C2(F ) and two constant A1, A2,we have

Φ(λ, a, b) =

∫
F

φ(µ)Γ̃µ(λ, a, b)dµ+ A1 + A2η(∆).

Then there exists a pair of function fi ∈ C∞c (Wi), i ∈ {0, 1} such that in a
neighborhood (possibly smaller) of 0, we have

Φ(λ, a, b) =

{
O(Y (λ, a, b), f0), η(−∆) = 1;

O(Y (λ, a, b), f1), η(−∆) = −1.

2.3 Application to the density principle

One immediate corollary of Theorem 2.7 and Theorem 2.8 is

Theorem 2.9. Let f ∈ C∞c (V) be such that all its regular orbital integrals
vanish. Then its relevant nilpotent orbital integrals vanish too.

From this we may deduce the density principle, Theorem 1.1 of Introduc-
tion.

Proof of Theorem 1.1. We show this in the general linear case. We let D(V)
denote the space of distributions on V . The unitary case is similar and easier.
Consider the invariants π : V → A3. Over each point in the complement
of ∆ = 0, the fiber consists of precisely one regular semisimple orbit. By
Bernstein’s localization principle (cf.[6, p. 99]), it is enough to show that
for any point x ∈ A3 lying on the hyperspace defined by ∆ = 0, and T ∈
D(π−1(x))H,η, we have T (f) = 0 for f ∈ C∞c (V) with vanishing regular
semisimple orbital integrals. We show this for the extreme case x = 0 (so we
are in the case N = π−1(0)). For the other point x, it is easier and essentially
use similar expansion for the case n = 2.

To treat the case x = 0, we note that by Theorem 2.9 above, it suffices
to show that the relevant unipotent orbital integrals are weakly dense in
D(N )H,η. Since the orbit H · n0,+ is characterized inside N by the condition
that u,Au are linearly independent, it is an open orbit. Consider the closed
subset N \N±,N± = H · n0,+

∐
H · n0,−. By the exact sequence

0→ D(N \N±)H,η → D(N )H,η → D(N±)H,η,

17



we are reduced to show that weak density of relevant nilpotent orbital inte-
grals in D(N \N±)H,η. Define an open subsubvariety of N

N0 := {X ∈ N|A 6= 0, u 6= 0, v 6= 0}

Then it defines a smooth subvariety of V (by checking the dimension of the
tangent space of every point) and the F -points of it (by abuse of notation
still denoted by N0) inherit an F -manifold structure. Then the closed subset
N \(N±

∐
N0) consists of finitely many H-orbits. By similar argument above

and Lemma 2.2 on the irrelevant orbit, we may show the relevant nilpotent
orbital integrals span D(N \ (N±

∐
N0))H,η. It remains to show that the

restriction of nilpotent orbital integrals O(n(µ), ·) to N0 are weakly dense in
D(N0)H,η. We consider the continuous map

H/N × F× → N0

(h, µ) 7→ hn(µ)h−1.

It is clearly bijective. One can also verify that it is subversive (namely, the
induced map at every point on tangent spaces is surjective), hence open.
In particular it is an homeomorphism and its inverse composed with the
projection to the second factor defines a continuous map N0 → F×. This is
H-equivariant for the trivial action of H on the target and each fiber consists
of precisely one H-orbit. Now the desired weak density follows again from
the localization principle of Bernstein.

3 Proof of the germ expansion

We will only prove the germ expansion in the general linear case. The unitary
case is similar and indeed simpler.

We use the Iwasawa decomposition H = KAN for K = SL2(O):

h = k

[
y

x−1y

] [
1 u

1

]
, dg = dk

dxdydu

|y|
.

Noting that[
x

1

] [
1 u

1

]
·
[

λ
1

]
=

[
u (λ− u2ε)x

1/x −u

]
,
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we may write O(X, f) for X = s(λ, a, b):∫
x,y∈F×,u∈F

fK

 u x(λ− u2) y
1/x −u 0
y−1a (b− au)xy−1 0

 η(x)
dxdydu

|y|
.(3.1)

Here as before we have a K-invariant function fK(X) :=
∫
K
f(k−1Xk)dk.

Without loss of generality, we may assume that f and hence fK has period
radius 1 and support radius D > 1.

We now split the integral over (x, y) ∈ (F×)2 into four cases. We sum-
marize the total contribution of each case at the end of each subsection. We
make the following convention:

• All integrals are understood as the value obtained by analytic continua-
tion. As all analytic continuation appeared in this paper is elementary,
we often do not mention it.

• For simplicity, we only write the integrand involving fK and the domain
of integration. For example the first equation below means∫

|y|>1,|x|>D,u∈F
fK

 0 (λ− u2)x y
0 0 0
0 (b− au)xy−1 0

 η(x)
dxdydu

|y|
.

Case (1): |y| > 1, |x| > D2.

Then |u| ≤ 1 is automatically true:

fK

 0 (λ− u2)x y
0 0 0
0 (b− au)xy−1 0

 ; {|y| > 1, |x| > D2, u}.

This is the sum of three terms

−fK

 0 (λ− u2)x y
0 0 0
0 (b− au)xy−1 0

 = −fK

 0 (λ− u2)x 0
0 0 0
0 (b− au)xy−1 0

 ; {x, |y| ≤ 1, u},

(3.2)

−fK

 0 (λ− u2)x y
0 0 0
0 (b− au)xy−1 0

 = −fK

 0 −u2x y
0 0 0
0 0 0

 , {|x| ≤ D2, |y| > 1, u}.

(3.3)
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(note: γ → 0 and |(λ − u2)x| ≤ D implies that |ux| ≤ (|u2x||x|)1/2 < D2)
and

fK

 0 (λ− u2)x y
0 0 0
0 (b− au)xy−1 0

 ; {x, y, u}.(3.4)

To summarize, Case (1) contributes: (3.2),(3.3),(3.4).

Case (2): |y| > 1, |x| ≤ D2.

Similarly |(λ−u2)x| ≤ D (and λ→ 0) implies that |ux| = (|u2x||x|)1/2 < D2.
We have (note: λ, a, b→ 0)

fK

 u −xu2 y
1/x −u 0
0 0 0

 ; {|x| ≤ D2, |y| > 1, u ∈ F}.

which is the sum of three terms:

−fK

 u −xu2 y
1/x −u 0
0 0 0

 = −fK

 0 −xu2 y
0 0 0
0 0 0

 ; {|x| > D2, |y| > 1, u ∈ F}.

(3.5)

−fK

 u −xu2 y
1/x −u 0
0 0 0

 = −fK

 u −xu2 0
1/x −u 0
0 0 0

 ; {x, |y| ≤ 1, u ∈ F},

(3.6)

and

fK

 u −xu2 y
1/x −u 0
0 0 0

 ; {x, y, u ∈ F}.(3.7)

(Note that all of them need to be regularized.)
To summarize, the Case (2) contributes: (3.5), (3.6), (3.7).
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Case (3): |y| ≤ 1, |x| > D2

As |x| > D (note λ→ 0), we have |u| ≤ 1:

fK

 0 (λ− u2)x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {|y| ≤ 1, |x| > D2}.

This is the sum of two terms:

fK

 0 (λ− u2)x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {|y| ≤ |a|, |x| > D2},

and

fK

 0 (λ− u2)x 0
0 0 0

y−1a (b− au)xy−1 0

 = fK

 0 (λ− u2)x 0
0 0 0
0 (b− au)xy−1 0

 ; {|a| < |y| ≤ 1, |x| > D2}.

(3.8)

In the first term, it is easy to see that |(b/a − u)x| ≤ D|y||a|−1 ≤ D and
|b/a− u| ≤ D/|x| ≤ 1/D, |u| < 1/D. Note that

(b/a)2 − u2 = (b/a− u)2 + 2(b/a− u)u.

We conclude that |((b/a)2 − u2)x| ≤ 1 (this possibly fails only when p = 2;
but the equality below holds if we assume in the beginning that the period
radius of the test function f is 1/|2|p):

fK

 0 (λ− u2)x 0
0 0 0

y−1a (b− au)xy−1 0

 = fK

 0 (λ− (b/a)2)x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {|y| ≤ |a|, |x| > D2}

which is the sum of

fK

 0 (λ− (b/a)2)x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {x, y, u}(3.9)

−fK

 0 (λ− (b/a)2)x 0
0 0 0
0 (b− au)xy−1 0

 ; {x, |y| > |a|, u}(3.10)
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and

−fK

 0 −(b/a)2x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {|x| ≤ D2, |y| ≤ |a|, u}.(3.11)

To summarize, Case (3) contributes:(3.8), (3.9), (3.10), (3.11).

Case (4): |y| ≤ 1, |x| ≤ D2.

fK

 u −u2x 0
1/x −u 0
y−1a (b− au)xy−1 0

 ; {|x| ≤ D2, |y| ≤ 1, u}.

We may write this as a sum of three terms:

fK

 u −u2x 0
1/x −u 0
y−1a (b− au)xy−1 0

 ; {x, y, u},(3.12)

−fK

 u −u2x 0
1/x −u 0
y−1a (b− au)xy−1 0

 = −fK

 u −u2x 0
1/x −u 0
0 0 0

 ; {|x| ≤ D2, |y| > 1, u},

(3.13)

and

−fK

 u −u2x 0
1/x −u 0
y−1a (b− au)xy−1 0

 ; {|x| > D2, y, u}.(3.14)

Subcase (4i): the term (3.13). It is the sum of two terms

−fK

 u −u2x 0
1/x −u 0
0 0 0

 ; {x, |y| > 1, u}(3.15)

and

fK

 u −u2x 0
1/x −u 0
0 0 0

 = fK

 0 −u2x 0
0 0 0
0 0 0

 ; {|x| > D2, |y| > 1, u}.

(3.16)
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Subcase (4ii) : the term (3.14). It is the sum of two terms:

− fK

 u −u2x 0
1/x −u 0
y−1a (b− au)xy−1 0

 ; |x| > D2, |y| > |a|,

=− fK

 0 −u2x 0
0 0 0
0 (b− au)xy−1 0

 ; {|x| > D2, |y| > |a|, u}(3.17)

(note: |u| ≤ 1 is automatic in this term) and

− fK

 u −u2x 0
1/x −u 0
y−1a (b− au)xy−1 0

 = −fK

 0 −u2x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {|x| > D2, |y| ≤ |a|, u}

In the second term, the same argument as in Case (3) allows us to replace
u2 by (b/a)2:

− fK

 0 −(b/a)2x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {|x| > D2, |y| ≤ |a|, u}.(3.18)

Combine (3.11) and (3.18):

− fK

 0 −(b/a)2x 0
0 0 0

y−1a (b− au)xy−1 0

 ; {x, y, u},(3.19)

plus

fK

 0 −(b/a)2x 0
0 0 0
0 (b− au)xy−1 0

 ; {x, |y| > |a|, u}.(3.20)

To summarize, Case (4) contributes:(3.12) (3.15),(3.16),(3.17),(3.19),(3.20),
minus (3.11).

Finish of the proof

We now put together all four cases.
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Lemma 3.1. The term (3.4) is equal to∫
F

O(n(µ), f)Γµ(λ, a, b)dµ,(3.21)

where the germ

Γµ(λ, a, b) =
2η(−u)|a|

|(a2µ− 2b)2 + 4∆|1/2
,

if (a2µ − 2b)2 + 4∆ is a square and η(−∆) = 1 (then u denotes one of the
two roots of u− ∆

u
= a2µ− 2b), and Γµ(λ, a, b) = 0 otherwise.

Proof. A suitable substitution in (3.4) yields

η(−1)|a|−1

∫
fK

 0 (u+b)2−a2λ
a2u

xy y
0 0 0
0 x 0

 η(xyu)
dxdydu

|u|
;x, y ∈ F×, u ∈ F.

Now substitute µ = (u+b)2−a2λ
a2u

. Then we have

a2µ = u− ∆

u
+ 2b,

|a|2dµ =
du

|u|
|u+

∆

u
|.

Notice the symmetry u → −∆
u

and we conclude that the integral is zero if
η(−∆) = −1. Now assume that η(−∆) = 1. Note that

(u+
∆

u
)2 = (a2µ− 2b)2 + 4∆.

The map u→ µ is 2-to-1. The lemma then follows easily.

Lemma 3.2. The sum of (3.3) and (3.5) is zero. The sum of (3.6) and
(3.15) is zero.

Proof. Recall that their values are understood in the sense of analytic con-
tinuation. We prove the second assertion. The first one is simpler. We
substitute u → u/x in both (3.6) and (3.15). We first consider the inner
integral of (3.6) and (3.15):∫

fK

 u −xu2 0
1/x u 0
0 0 0

 η(x)|x|−sdxdu; {x, u}.
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Note that [
1 u

1

]
·
[

0 0
1 0

]
=

[
1 −u2

1 −u

]
,[

1 u
1

]
=

[
0 1
−1 1/u

] [
1
u 1

] [
1/u

u

]
.

Since fK is invariant under

[
1

−1

]
and

[
0 1
−1 1/u

]
(

[
1 u

1

]
, resp.)

when |u| > 1 (|u| ≤ 1, resp.), we may write the integral as a sum according
to u > 1 or not:∫

fK

 0 0 0
1/x 0 0
0 0 0

 η(x)|x|−s−1dxdu; {x, |u| ≤ 1},

and ∫
fK

 0 0 0
u2/x 0 0

0 0 0

 η(x)|x|−s−1dxdu; {x, |u| > 1}.

The sum can be simplified as(∫
|u|≤1

du+

∫
|u|>1

|u|−2sdu

)∫
x∈F

fK

 0 0 0
1/x 0 0
0 0 0

 η(x)|x|−s−1dxdu.

It is easy to see that the first factor
(∫
|u|≤1

du+
∫
|u|>1
|u|−2s−2du

)
has a zero

at s = 0 and the second one is homomorphic at s = 0. But the integral∫
|y|≤1
|y|2s−1dy and

∫
|y|>1
|y|2s−1dy each has a simple pole at s = 0. Moreover

the residue of those two sum up to zero. Therefore (3.6) and (3.15) sum up
to zero. This completes the proof.

Lemma 3.3. The sum of the following terms is zero: (3.2), (3.8) (3.10)
(3.16) (3.17) (3.20).

Proof. The sum of (3.2) and (3.8) is equal to the sum of the same integral
over the domain

(I) |x| > D2, |y| ≤ |a|;
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(II) |y| ≤ 1, |x| ≤ D2.

The term for (I) is then reduced to

−fK

 0 (λ− (b/a)2)x 0
0 0 0
0 (b− au)xy−1 0

 ; {|x| > D2, |y| ≤ |a|}.

This term and the term (3.10) sum up to

fK

 0 (λ− (b/a)2)x 0
0 0 0
0 (b− au)xy−1 0

 = fK

 0 −(b/a)2x 0
0 0 0
0 (b− au)xy−1 0

 ; {|x| ≤ D2, |y| ≤ |a|}.

This last one and (3.20) together sum up to

−fK

 0 −(b/a)2x 0
0 0 0
0 (b− au)xy−1 0

 ; {|x| > D2, |y| ≤ |a|}.(3.22)

The term for (II) is equal to a sum of two terms

−fK

 0 −u2x 0
0 0 0
0 (b− au)xy−1 0

 ; {|x| ≤ D2, y},(3.23)

and

fK

 0 −u2x 0
0 0 0
0 (b− au)xy−1 0

 = fK

 0 −u2x 0
0 0 0
0 0 0

 ; {|x| ≤ D2, |y| > 1}.

The last term cancels the term (3.16).
The term (3.17) is the sum of two terms

−fK

 0 −u2x 0
0 0 0
0 (b− au)xy−1 0

 ; {|x| > D2, y},

and

fK

 0 −u2x 0
0 0 0
0 (b− au)xy−1 0

 = fK

 0 −(b/a)2x 0
0 0 0
0 (b− au)xy−1 0

 ; {|x| > D2, |y| ≤ |a|}.

The first one cancels (3.23) and the second one cancels (3.22). This completes
the proof.
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To finish the proof of Theorem 2.7, we note that (3.19) cancels (3.12).
The term (3.7) is the same as η(−1)O(n0+, f) and (3.9) is the same as
η(−∆)O(n0−, f). Finally, to show the converse, it suffices to show that all
φ ∈ C1(F ) can be one of φf . This is easy to prove and we omit it.

4 Existence of refined smooth transfer

We will restrict ourselves to the case the residue characteristic p 6= 2 for
some technical reason. We choose the additive measure on F such that
vol(OF ) = 1. And we choose τ such that E = F [

√
τ ] and its valuation

v(τ) ∈ {0, 1}.

4.1 An extended Fourier transform

Recall we have defined earlier the space C1(F ) and C2(F ).

Definition 4.1. Let C(F ) (C0(F ), resp.) be the span (intersection, resp.) of
C1(F ) and C2(F ).

We now define an extended Fourier transform which is an automorphism
of C(F ).

Definition 4.2. For φ ∈ C(F ), we define

φ̃(v) :=

∫
F×

φ(v + x)η(x)
dx

|x|
.(4.1)

We explain the meaning of this integral. Let C be greater than |v| and
such that when |x| > C, φ(x) is the linear combination of |x|−1, η(x)|x|−1

and η(x) log |x||x|−1. Then the integral is understood as a sum
∫
|x|≤C ... and∫

|x|>C ... where the first term is the value at s = 0 of the (analytic extension

of) Tate integral

ζ(1)−1

∫
F×

1|x|≤Cφ(v + x)η(x)|x|sd×x

and the second one is absolutely convergent.
We choose a non-trivial additive character ψ such that the self-dual mea-

sure dx gives OF volume one. Recall the gamma factor is given by

γ(s, χ) =
Z(1− s, f̂ , χ−1)

Z(s, f, χ)
, f ∈ C∞c (F )
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where the Fourier transform is defined as f̂(x) =
∫
F
f(y)ψ(−xy)dy and

Z(s, f, χ) =

∫
F

f(x)χ(x)|x|sd×x.

Proposition 4.3. 1. The transform φ 7→ φ̃ defines an automorphism of
C(F ) and C0(F ), respectively. And it takes C1(F ) (C2(F ), resp.) to
C2(F ) (C1(F ), resp.).

2. We have ˜̃
φ(v) = γ(1, η)2φ(v).

And the square of the gamma factor is

γ(1, η)2 =


(
L(0,η)
L(1,η)

)2

= (1+q−1)2

4
, η unramified,

η(−1)q−1, η ramified.

Proof. Consider the codimension four subspace W of C(F ) consisting of func-

tion φ ∈ C∞c (F ) such that φ̂(0) = 0. We claim that W is stable under the

transform and for φ ∈ W , we have the desired identity for
˜̃
φ. Let us denote

by φv the function φv(x) := φ(v + x). Then we have

φ̃(v) = ζ(1)−1Z(0, φv, η).

By the local functional equation we have

φ̃(v) = γ(1, η)ζ(1)−1Z(1, φ̂v, η) = γ(1, η)

∫
F

ψ(vx)φ̂(x)η(x)dx.

From φ̂(0) = 0 it follows that φ̂ · η ∈ C∞c (F ) and hence

φ̃(v) = γ(1, η)
̂̂
φ · η(−v).

We then immediately see that
̂̃
φ(0) = 0 and

˜̃
φ(v) = γ(1, η)2φ(v) (note that

η2 = 1).
Now we consider the following functions:

φ0 = 1OF
, φ1(x) =

{
η(x)
|x| , |x| > 1,

0, |x| ≤ 1,
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φ2(x) =

{
1
|x| , |x| > 1,

0, |x| ≤ 1,
φ3(x) =

{
η(x) log |x|
|x| , |x| > 1,

0, |x| ≤ 1.

Note that the φi’s and W together span C(F ) (and φ0, φ1 together span
C0(F ), etc.).

All of them are invariant under translation by OF . So when |v| ≤ 1, we
have in all four cases

φ̃(v) =

∫
F

φ(x)η(x)
dx

|x|
.

To calculate φ̃i(v) when |v| > 1, we will sometimes use when v 6= 0

φ̃(v) = η(v)

∫
F×

φ(vx)
η(x− 1)

|x− 1|
dx.

First we assume that η is unramified:

φ̃0(v) =

{
L(0,η)
ζ(1)

, |v| ≤ 1;
η(−v)
|v| , |v| > 1.

φ̃1(v) =

{
q−1, |v| ≤ 1;

−L(0,η)
ζ(1)

η(v)
|v| , |v| > 1.

φ̃2(v) =

{
−L(1,η)

qζ(1)
, |v| ≤ 1;

− 1
ζ(1) log q

η(v) log |v|
|v| + 1

2
L(1, η)(q−2 − 4q−1 − 1)η(v)

|v| , |v| > 1.

φ̃3(v) =

{
− ζ′(1)

ζ(1)
, |v| ≤ 1;

log q ζ(1)L(0,η)2

L(1,η)2
1
|v| − log qL(0,η)2

ζ(1)
η(v)
|v| , |v| > 1.

Now we assume that η is ramified. Then we have

φ̃0(v) =

{
0, |v| ≤ 1;
η(−v)
|v| , |v| > 1.

φ̃1(v) =

{
q−1, |v| ≤ 1;

0, |v| > 1.

φ̃2(v) =

{
0, |v| ≤ 1;
η(−1)

log qζ(1)
η(v) log |v|
|v| − η(−v)

|v| , |v| > 1.
φ̃3(v) =

{
− ζ′(1)

ζ(1)
, |v| ≤ 1;

− ζ′(1)
ζ(1)

1
|v| , |v| > 1.

From them we immediately prove the first part. Note that when η is
ramified, the gamma factor γ(1, η) is the Gauss sum G(η, ψ) for the quadratic
residue. Then we see that γ(1, η)2 = η(−1)|γ(1, η)|2 = η(−1)q−1. Then we
can verify the second part for φi’s.
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Remark 1. It seems that the transform actually extends to an automorphism
of the space of all locally constant functions f on F such that when |x| → ∞,
f(x) is a linear combination of functions of the forms η(x)m(log |x|)n/|x|k for
m = 0, 1, n ≥ 0, k ≥ 1. But we don’t need this in this paper.

4.2 Refined smooth transfer.

Let f ∈ C∞c (V) and a pair {fi ∈ C∞c (Wi)i=0,1}. Recall that φf ∈ C1(F ) and
φf0 ∈ C2(F ). Let

κE/F = eE/FL(1, η)−1 =

{
(1 + q−1), E/F unramified ;

2, E/F ramified .

where eE/F is the ramification index of E/F .

Proposition 4.4. If the functions f, {fi}i=0,1 match each other, then we
have

(i) φf0 = 2η(−1)κ−1
E/F φ̃f .

(ii) {
−O(0, f0) = η(−1)O(n0+, f) +O(n0−, f);

O(0, f1) = η(−1)O(n0+, f)−O(n0−, f).

Proof. The second assertion is clear in view of Theorem 2.7 and 2.8. We now
prove the first one.

Let
λ′ = λ/a2, b′ = b/a2,∆′ = ∆/a4 = λ′ − b′2.

So we have η(−∆′) = η(−∆) = 1. Substitute u by a2u in (3.21):

η(−1)|a|−1

∫
F

φf (u−∆′/u+ 2b′)η(u)du/|u|.

Fix b′. When we vary (λ, a, b) in a neighborhood of 0, b′, λ′ can take any
value in F . We let λ′ be close to b′2 so that ∆′ is close to zero.

We first simplify the germ on the linear side. By the local constancy
of φf at b′, when ∆′ is small enough, either u or ∆′/u is small so that
φf (u −∆′/u + 2b′) can be replaced by φf (−∆′/u + 2b′) or φf (u + 2b′). We
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may choose an appropriate ε > 0 (of size |∆′|1/2) so that we may write the
integral above as a sum of two terms:∫

|u|≥ε
φf (u+ 2b′)η(u)du/|u|

and (note: η(−∆′) = 1)∫
|u|<ε

φf (−∆′/u+ 2b′)η(u)du/|u| =
∫
|u|>|∆′|/ε

φf (u+ 2b′)η(u)du/|u|.

The sum differs from 2
∫
F
φf (u+ 2b′)η(u)du/|u| by an error term

φ(b′)

(∫
|x|<ε

η(u)du/|u|+
∫
|x|≤|∆′|/ε

η(u)du/|u|
)
.

It is easy to verify that the error gives zero (indeed, this is obviously true if
η is ramified; when η is unramified, note that η(−∆′) = 1). In summary, in
this case, the germ for V is given by

2η(−1)|a|−1

∫
F

φf (u+ 2b′)η(u)du/|u|.

Now we may also simplify the germ for W0 under the same choice of λ′.
Note that the germ can be written as

2|a|−1

∫
F

φf0(u+ 2b′)Γ′u(λ
′, b′)du

where Γ′u(λ
′, b′) = |τ(u2+∆)|−1/2 (0, resp.) if τ(u2+∆) is a square (otherwise,

resp.). Note that when |u|2 > |∆′|, it is obvious that τ(u2+∆′) is not a square.
We may choose ∆′ to be a non-square. Then we have by the local constancy
of φf0

2|a|−1φf0(2b
′)

∫
|u|2≤|∆′|

Γ′u(λ
′, b′)du.

By Lemma 4.5 below, this is equal to

2|a|−1φf0(2b
′)

1

2
κE/F .

Comparing with the germ for V , we have shown that

φf0(2b
′) = 2η(−1)κ−1

E/F φ̃f (2b
′).
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Lemma 4.5. Let θ : F → C be the function mapping x to |x|1/2 if x ∈ (F )2,
and zero otherwise. Let ∆ ∈ F× be such that η(−∆) = 1. Then the integral∫

F

du

θ(τ(u2 + ∆))
=

1

2
κE/F .

Proof. Obviously the integral depends only on the coset ∆(F×)2. We first
assume that E is unramified (so that τ is a non-square unit). It follows from
η(−∆) = 1 that v(∆) is even. It suffices to consider v(∆) = 0. If ∆ is a
square, then the integrand vanishes unless u is a unit. Let

N∆ := #{ū ∈ k|ū2 + ∆̄ ∈ (k)2} =

{
q−1

2
+ 1, (−1) ∈ (k×)2;

q−1
2
, (−1) /∈ (k×)2.

When (−1) ∈ (k×)2, there is an extra contribution from u ∈ ±
√
−∆ +$OF

given by

2

∫
$OF

du

θ(τu)
= 2

1

2
q−1 = q−1.

Together we show that the integral is equal to

q−1(q −N∆) +

{
q−1, (−1) ∈ (k×)2;

0, (−1) /∈ (k×)2.

which is always given by 1
2
(1 + q−1). If ∆ is a non-square, we have

N∆ := #{ū ∈ k|ū2 + ∆̄ ∈ (k×)2} =

{
q−1

2
, (−1) ∈ (k×)2;

q−1
2

+ 1, (−1) /∈ (k×)2.

Similarly, in this case when (−1) /∈ (k×)2, the contribution from u ∈ ±
√
−∆+

$OF is given by q−1. Together we still get 1
2
(1 + q−1).

We now assume that E is ramified. It follows from η(−∆) = 1 that v(∆)
is even and −∆ ∈ (F×)2or v(∆) is odd and −∆ ∈ −τ(F×)2. In the former
case, it suffices to consider the case ∆ = −1. Then the integrand vanishes
unless u ∈ ±1 +$OF . It is then easy to see that the integral is equal to

2

∫
$OF

du

θ(τu)
= 2 · 1

2
= 1.
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In the latter case it suffices to assume that ∆ = τ . Then the integrand
vanishes unless u ∈ $OF . It follows that the integral is equal to (note: by
our normalization, v(τ) = 1) ∫

$OF

du

|τ |
= 1.

Lemma 4.6. We have∫
F

η1(u2 + ξ)du =

{
κE/F |ξ/τ |−1/2, ξ ∈ −τ(F×)2;

0, otherwise.

Here η1(x) := η(x)|x|−1.

Proof. Substitution u → ξ/u yields a multiple η(ξ). Hence the integral
vanishes if η(ξ) = −1. Now we assume that

η(ξ) = 1.

Note that if the result holds for ξ, then it also holds for ξ(F×)2. We may
thus assume that v(ξ) is either 0 or −1. If v(ξ) = −1 which is only possible
when η is ramified (and then v(τ) = 1), the integral is equal to

(1 + η(ξ))

∫
|u|≤1

|ξ|−1du = 2q−1.

Hence we now assume that η(ξ) = 1 and |ξ| = 1. By the symmetry
u→ ξ/u, the integral is the sum of

2

∫
|u|2<|ξ|

|ξ|−1du = 2q−1,(4.2)

and ∫
|u|2=|ξ|

η1(u2 + ξ)du.(4.3)

First we consider the case that η is unramified. There are two cases according
to −τξ (mod (F×)2). If ξ ∈ −τ(F×)2, then u2 + ξ ∈ NE×, η(u2 + ξ) = 1 and
|u2 + ξ| = max{|u|2, |ξ|} = 1. In this case the integral is equal to

2q−1 + (1− q−1) = 1 + q−1 = L(1, η)−1.
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Then−τξ is not a square and hence −ξ = t2 is a square. From the expression:∫
|u|2=1

η1(u2 + ξ)du =

∫
|u|2=1

η1(u+ t)η1(u− t)du,

we break this as a some of three terms: u ≡ t, u ≡ −t (mod$OF ) and the
other u (mod$OF ). The first two yields:

2

∫
|u|2=1,u≡t

η1(u− t)du = 2

∫
$OF

η(u)
du

|u|
= −(1− q−1).(4.4)

The third one yields

(q − 1− 2)q−1 = 1− 3q−1.

Together with (4.2), we have showed that the integral is equal to zero.
Now we assume that η is ramified and we need to show the integral

vanishes. Since η(ξ) = 1 and |ξ| = 1, ξ is then a square. Let k denote the
residue field OF/($). We first assume that −ξ is not a square. Then it is
not hard to show that

Nξ := #{ū ∈ k×|ū2 + ξ̄ ∈ (k×)2} =
q − 3

2
.

Then we see that (4.3) is equal to

Nξq
−1 − ((q − 1)−Nξq

−1 = −2q−1.

Finally we assume that −ξ = t2 is a square. And the term (4.3) is a sum
of three terms: u ≡ t, u ≡ −t (mod$OF ) and the other u (mod$OF ). The
first two contributes zero as η is ramified (cf. (4.4) ). To calculate the third
one, we note that

Nξ := #{ū ∈ k×|ū2 + ξ̄ ∈ (k×)2} =
q − 5

2
.

Hence the third one contributes

Nξq
−1 − (q − 3−Nξ)q

−1 = −2q−1.

This completes the proof.
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Now we recall from [9] that we say that the functions f, {fi}i=0,1 are local
transfer of each other around zero, if there is a neighborhood of zero in A3

such that O(s(λ, a, b), f) is equal to O(Y (λ, a, b), fi) whenever s(λ, a, b) is in
this neighborhood.

Proposition 4.7. If f, {fi}i=0,1 satisfy the conditions in Prop. 4.4, then
f, {fi}i=0,1 are local transfer of each other around zero. In particular, by
Prop. 4.3, local transfer around zero always exists.

Proof. To show that f, {fi}i=0,1 are local transfer, we can use the germ ex-
pansion. It is easy to see that the discrete terms are equal. It suffices to treat
the continuous part. Denote by φ = φf0 and by the inverse extended Fourier

transform, φf is a constant times φ̃. We may ignore the constant since the
proof of Prop 4.4 already shows that for some (λ, a, b), the orbital integrals
match.

To compute the continuous part of the germ expansion of the orbital
integral of f , we substitute u by a2u in (3.21), use the definition of φ̃, and
up to some constants independent of (λ, a, b):∫

F

(∫
F

φ(u−∆/u+ 2b+ x)η1(x)dx

)
η1(u)du

=

∫
F

(∫
F

φ(u+ 2b+ x)η1(x+ ∆/u)dx

)
η1(u)du

=

∫
F

(∫
F

φ(u+ 2b+ x)η1(xu+ ∆)dx

)
du

=

∫
F

(∫
F

φ(x)η1((x− u− 2b)u+ ∆)dx

)
du.

Now we interchange the order of integration to obtain (note that the integrals
are regularized):∫

F

φ(x)

(∫
F

η1((x− u− 2b)u+ ∆)du

)
dx

=η(−1)

∫
F

φ(x)

(∫
F

η1((u+ b− x/2)2 − ((b− x/2)2 + ∆))du

)
dx

=η(−1)

∫
F

φ(x)

(∫
F

η1(u2 − ((b− x/2)2 + ∆))du

)
dx.

By Lemma 4.6, the inner integral is equal to
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{
κE/F |((b− x/2)2 + ∆)/τ | ((b− x/2)2 + ∆) ∈ τ(F×)2

0, otherwise.

This shows that up to a constant the continuous part of the germ expansion
of f does match that of f0. This completes the proof.

Finally we conclude with a new proof of existence of transfer for the case
n = 3.

Theorem 4.8. Given f ∈ C∞c (V), there exists {fi}i=0,1 such that they are
transfer of each other. And given {fi}i=0,1, there exists f ∈ C∞c (V) such that
they are transfer of each other.

Proof. By [9], it suffices to show the existence of local transfer around zero
for n ≤ 3. This follows from Prop. 4.7 and that the local transfer around
zero for n = 2 is proved in [3].

Remark 2. By Cayley transform as in [9], the theorem implies the existence
of smooth transfer on groups. It should also be evident how to translate
Prop. 4.4 to its analogue on groups.
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[3] Hervé Jacquet, Sur un résultat de Waldspurger, Ann. Sci. Éc. Norm.
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