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Selmer groups and the indivisibility of Heegner
points

Wei Zhang

For elliptic curves over Q, we prove the p-indivisibility of derived
Heegner points for certain prime numbers p, as conjectured by
Kolyvagin in 1991. Applications include the refined Birch–Swinerton-
Dyer conjecture in the analytic rank one case, and a converse to
the theorem of Gross–Zagier and Kolyvagin. A slightly different
version of the converse is also proved earlier by Skinner.
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1. Introduction and main results

In this article we confirm a refined conjecture of Kolyvagin [24] on the p-
indivisibility of some derived Heegner points on an elliptic curve E over Q
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for a good ordinary prime p ě 5 that satisfies suitable local ramification hy-
pothesis. When the analytic rank of E{Q is one, combining with the general
Gross–Zagier formula on Shimura curves [17, 45, 46] and Kolyvagin’s theo-
rem [23], we are able to prove the p-part of the refined Birch–Swinnerton-
Dyer conjecture. We also obtain a converse to the theorem of Gross–Zagier
and Kolyvagin, first proved by Skinner for semistable elliptic curves [36].
When the analytic rank is higher than one, together with Kolyvagin’s theo-
rem [24], one may naturally construct all elements in the p8-Selmer group
Selp8pE{Qq from Heegner points defined over ring class fields. In a subse-
quent paper [49], we will apply the main result of this paper to prove a
version of the Birch–Swinnerton-Dyer conjecture (for Selmer groups) à la
Mazur–Tate [27] and Darmon [12] in the anti-cyclotomic setting.

Let E be an elliptic curve over Q with conductor N . For any number
field F Ă Q, we denote by GalF :“ GalpQ{F q the absolute Galois group of
F . One important arithmetic invariant of E{F is the Mordell–Weil group
EpF q, a finitely-generated abelian group:

EpF q » ZrMW ‘ finite group,

where the integer rMW “ rMW pE{F q is called the Mordell–Weil rank. An-
other important arithmetic invariant of E{F is the Tate–Shafarevich group
of E{F , denoted byXpE{F q:

XpE{F q :“ KerpH1pF,Eq Ñ
ź

v

H1pFv, Eqq,

where the map is the product of the localization at all places v of F , and,
as usual, H ipk,Eq :“ H ipGalpk{kq, Eq for k “ F, Fv and i P Zě0. The
groupXpE{F q is torsion abelian, and conjectured to be finite by Tate and
Shafarevich. As a set, it is closely related to the set of isomorphism classes
of smooth projective curves C{F such that

JacpCq » E, CpFvq ‰ H, for all v.

Let p be a prime andXpE{F qrp8s the p-primary part ofXpE{F q. Incorpo-
rating the information of both EpF q and XpE{F q, there is the p8-Selmer
group denoted by Selp8pE{F q defined as follows (cf. [13, §2]). Let Erp8s be
the group of p-primary torsion points of EpQq. The Galois group GalQ acts
on Erp8s. Consider the local Kummer map

δv : EpFvq bQp{Zp Ñ H1pFv, Erp
8sq.
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Then Selp8pE{F q is defined as

Selp8pE{F q :“ KerpH1pF,Erp8sq Ñ
ź

v

H1pFv, Erp
8sq{Impδvqq,

where the map is the product of the localization at all places v of F . The
Zp-corank of Selp8pE{F q is denoted by rppE{F q.

The Mordell–Weil group EpF q, the p8-Selmer group Selp8pE{F q and
the p-primary part of Tate–Shafarevich group XpE{F qrp8s are related by
the following exact sequence:

0 Ñ EpF q bQp{Zp Ñ Selp8pE{F q ÑXpE{F qrp
8s Ñ 0.

This sequence may be called the p8-descent of E{F . Then we have an in-
equality

0 ď rMW pE{F q ď rppE{F q,

where the equality rMW pE{F q “ rppE{F q holds if and only ifXpE{F qrp8s
is finite. Therefore, assuming #XpE{F q ă 8, the Selmer rank rppE{F q is
independent of p.

We may also consider the p-Selmer group SelppE{F q and the p-torsion
XpE{F qrps of XpE{F q. We have the exact sequence of vector spaces over
Fp (the finite field of p elements):

0 Ñ EpF q b Z{pZÑ SelppE{F q ÑXpE{F qrps Ñ 0.

This sequence may be called the p-descent (or the first descent) of E{F .
Then we have a natural surjective homomorphism

SelppE{F q Ñ Selp8pE{F qrps,

where rps denotes the subgroup of p-torsion elements.
We will denote the action of GalQ :“ GalpQ{Qq on the p-torsion points

Erps by

ρE,p : GalQ Ñ AutpErpsq » GL2pFpq.

Throughout this paper we assume that ρE,p is surjective, p - N , and p ě 5.
Let LpE{Q, sq be the L-function associated to E{Q1. We take the nor-

malization such that the center of the functional equation is at s “ 1. The
vanishing order of LpE{Q, sq at s “ 1 is called the analytic rank of E{Q.

1Note that this L-function does not include the archimedean local L-factor.
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The theorem of Gross–Zagier and Kolyvagin asserts that if the analytic rank
of E{Q is at most one, then the Mordell–Weil rank is equal to the analytic
rank andXpE{Qq is finite. The proof of their theorem is through the study
of the Heegner points. To define these points, we let K “ Qr

?
´Ds be an

imaginary quadratic field of discriminant DK “ ´D ă 0 with pD,Nq “ 1.
Write N “ N`N´ where the prime factors of N` (N´, resp.) are all split
(inert, resp.) in K. Assume that N´ is square-free and denote by νpN´q
by the number of prime factors of N´. Then the root number for E{K is
p´1q1`νpN

´q. We say that the pair pE,Kq satisfies the generalized Heegner
hypothesis if νpN´q is even. Then there exist a collection of points ypnq on E
defined over the ring class field Krns of conductor n (cf. §3). The trace of yp1q
from Kr1s to K will be denoted by yK . The work of Gross–Zagier [17] and
S. Zhang [46] asserts that yK is non-torsion if and only if the analytic rank
of E{K is one. The method of Kolyvagin is to construct cohomology classes
from the Heegner points ypnq to bound the p8-Selmer group, in particular,
to show that the Mordell–Weil rank of E{K is one andXpE{Kq is finite, if
yK is non torsion. We fix a prime p with surjective ρE,p. We call a prime ` a
Kolyvagin prime if ` is prime to NDp, inert in K and the Kolyvagin index
Mp`q :“ mintvpp``1q, vppa`qu is strictly positive. Let Λ be the set of square-
free product of distinct Kolyvagin primes. Define Mpnq “ mintMp`q : `|nu
if n ą 1, and Mp1q “ 8. To each ypnq and M ď Mpnq, Kolyvagin associ-
ated a cohomology class cM pnq P H

1pK,ErpM sq (cf. §3 (3.21) for the precise
definition). Denote

κ8 “ tcM pnq P H
1pK,ErpM sq : n P Λ,M ďMpnqu.

In particular, the term cM p1q of κ8 is the image under the Kummer map
of the Heegner point yK P EpKq. Therefore, when the analytic rank of
E{K is equal to one, the Gross–Zagier formula implies that yK P EpKq is
non torsion and hence cM p1q ‰ 0 for all M " 0. Kolyvagin then used the
non-zero system κ8 to bound the Selmer group of E{K. In [24], Kolyvagin
conjectured that κ8 is always nonzero even if the analytic rank of E{K is
strictly larger than one. Assuming this conjecture, he proved various results
about the Selmer group of E{K (in particular, see Theorem 11.2 and Remark
18 in §10). In this paper we will prove his conjecture under some conditions
we now describe.

Let RampρE,pq be the set of primes `||N such that ρE,p is ramified at `.
We further impose the following ramification assumption on ρE,p (depending
on the decomposition N “ N`N´, hence on K), called Hypothesis ♠ for
pE, p,Kq:
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(1) RampρE,pq contains all primes ` such that `||N` and all primes `|N´

such that ` ” ˘1 mod p.
(2) If N is not square-free, then #RampρE,pq ě 1, and either RampρE,pq

contains a prime `||N´ or there are at least two primes factors `||N`.

Note that there is no requirement on the ramification of Erps at those
primes ` for which `2|N ; that is, at the primes where E has additive reduc-
tion.

Then we prove (cf. see Theorem 9.3)

Theorem 1.1. Let E{Q be an elliptic curve of conductor N , p a prime and
K an imaginary quadratic field, such that

• N´ is square-free with even number of prime factors.
• The residue representation ρE,p is surjective.
• Hypothesis ♠ holds for pE, p,Kq.
• The prime p ě 5 is ordinary, p - DKN and pDK , Nq “ 1.

Then we have c1pnq ‰ 0 for some n P Λ, and hence κ8 ‰ t0u.

Following the terminology of [26], suitably modified for the Heegner point
setting [19], we call the collection κ8 a Kolyvagin system. The vanishing or-
der ordκ8 of the Kolyvagin system κ8 is, by definition, the minimal number
of prime factors of n P Λ such that cM pnq ‰ 0 for some M ď Mpnq. Let
Sel˘p8pE{Kq denote the eigenspace with eigenvalue ˘1 of Selp8pE{Kq under

the complex conjugation. Let r˘p pE{Kq be the Zp-corank of Sel˘p8pE{Kq.
Combining Theorem 1.1 with Kolyvagin’s theorem [24, Theorem 4], we have
the following relation between the Zp-coranks r˘p pE{Kq and the vanishing
order ordκ8.

Theorem 1.2. Let pE, p,Kq be as in Theorem 1.1. Then we have

ordκ8 “ maxtr`p pE{Kq, r
´
p pE{Kqu ´ 1.(1.1)

Furthermore, we denote ν8 “ ordκ8 and

εν8 :“ ε ¨ p´1qν
8`1 P t˘1u,

where ε “ εpE{Qq is the global root number of E{Q. Then we have

rεν8p pE{Kq “ ν8 ` 1,

and

0 ď ν8 ´ r´εν8p pE{Kq ” 0 mod 2.
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Remark 1. In particular, under the assumption of Theorem 1.2, the parity
conjecture for p8-Selmer group holds:

p´1qrppE{Qq “ εpE{Qq.

The parity conjecture is known in a more general setting [32] but our proof
does not use it and in fact implies it for our pE, p,Kq.

This is proved in Theorem 11.2. We may further construct all elements
in the p-Selmer group SelppE{Kq, cf. Theorem 11.1. Our Theorem 1.1 and
Kolyvagin’s result [24] shows that the eigenspace Selεν8p8 pE{Kq of Selmer
groups under the complex conjugation is contained in the subgroup gener-
ated by the cohomology classes cpnq (Theorem 11.2). By choosing a suitable
K, this also allows us to construct all Selp8pE{Qq for certain primes p and
elliptic curves E{Q (cf. Corollary 11.3). Moreover, one obtains the structure
of the indivisible quotient of XpE{Kqrp8s in terms of the divisibility of
Heegner points ([23], see Remark 18 in §10).

We now state some applications to elliptic curves E{Q whose Selmer
groups have Zp-corank one. From Theorem 1.2, one may deduce a result for
E{K:

Theorem 1.3. Let pE, p,Kq be as in Theorem 1.1. If Selp8pE{Kq has Zp-
corank one, then the Heegner point yK P EpKq is non-torsion. In particular,
the analytic rank (i.e., ords“1LpE{K, sq) and the Mordell–Weil rank of E{K
are equal to one, and XpE{Kq is finite.

Proof. Since rppE{Kq “ 1 and rppE{Kq “ r`p pE{Kq ` r´p pE{Kq, we must
have

maxtr`p pE{Kq, r
´
p pE{Kqu “ 1.

By Theorem 1.2, we must have ν8 “ 0, i.e., cM p1q ‰ 0, for some M .
The cohomology class cM p1q is the image of the Heegner point yK P EpKq
under the injective Kummer map EpKq{pMEpKq Ñ H1pK,ErpM sq, and
so yK R pMEpKq. The hypothesis on the subjectivity of ρE,p implies that
EpKq has no p-torsion, and it follows that yK P EpKq is non-torsion. The
“in particular” part is then due to the Gross–Zagier formula ([17] in the case
of modular curves), Kolyvagin’s theory of Euler system, and their extension
to the setting of Shimura curves [42, 45].

When p “ 2, the same kind of result was earlier obtained by Y. Tian for
the congruent number elliptic curves [39, 40].

Now we state some results for E{Q.
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Theorem 1.4. Let E{Q be an elliptic curve of conductor N , and p ě 5 a
prime such that:

(1) ρE,p is surjective.
(2) If ` ” ˘1 mod p and `||N , then ρE,p is ramified at `.
(3) If N is not square-free, then #RampρE,pq ě 1 and when #RampρE,pq “

1, there are even number of prime factors `||N .
(4) The prime p is good ordinary.

Then we have:

(i) If Selp8pE{Qq has Zp-corank one, then the analytic rank and the Mordell-
Weil rank of E{Q are both equal to one, and XpE{Qq is finite.

(ii) If the analytic rank of E{Q is larger than one

ords“1LpE{Q, sq ą 1,

then the Zp-corank of Selp8pE{Qq is at least two (three, resp.) if the
root number εpE{Qq is `1 (´1, resp.).

Proof. To prove piq, by [6, 31], we may choose an imaginary quadratic field
K such that

(a) pE,Kq satisfies the generalized Heegner hypothesis (i.e., N´ has even
number of factors) and pE, p,Kq satisfies Hypothesis ♠. To see why
such a K exists, first suppose that N is square-free. If N has an even
number of prime factors, then choose K such that N` “ 1 and N´ “
N . If N has an odd number of prime factors, then choose an `|N
where ρE,p is ramified, and then choose K such that N` “ ` and
N´ “ N{`. Note that such ` exists by Ribet’s level-lowering theorem
[34]; otherwise, since p does not divide N , ρE,p is modular of level 1
by [34, Theorem 1.1], a contradiction! If N is not square-free, we have
two cases under the condition (3): when #RampρE,pq “ 1 or there are
even number of primes `||N , we may choose N´ as the product of all
`||N ; when #RampρE,pq ě 2 and there are odd number of primes `||N ,
we may choose N´ as the product of all `||N but one ` P RampρE,pq.

(b) The L-function attached to the quadratic twist, denoted by EK , of E
by K has non-zero central value:

LpEK , 1q ‰ 0.

The non-vanishing requirement can be achieved since we may first prove
that the root number of εpE{Qq is ´1 by Theorem 1.2. Indeed, we may first
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choose a K to satisfy paq only. Then by Theorem 1.2, we know that the root
number εpE{Qq is ´1 since the Zp-corank of Selp8pE{Qq is odd.

Once we have chosen suchK, we see that EKpQq andXpEK{Qq are both
finite (by Gross–Zagier and Kolyvagin, or Kato, or Bertolini–Darmon). In
particular, Selp8pE

K{Qq is finite. It follows that Selp8pE{Kq has Zp-corank
one. Since now our pE, p,Kq satisfies the assumption of Theorem 1.3, the
desired result follows.

To show part piiq, we again choose K as in the proof of part piq with only
one modification: if εpE{Qq “ 1, we require that L1pEK , 1q ‰ 0. Then by
Gross–Zagier formula [45], the Heegner point yK is a torsion point. Hence
the class cM p1q “ 0 for all M P Zą0 and the vanishing order ν8 of the
Kolyvagin system κ8 is at least 1. Then part piiq follows from Theorem
1.2.

Remark 2. A version of Theorem 1.3 is also proved by Skinner [36] under
some further assumption that p “ PP is split in K{Q, and the localization
homomorphism at P,

locP : Selp8pE{Kq Ñ H1
finpKP, Erp

8sq,

is surjective, where H1
finpKP, Erp

8sq is the image of the local Kummer map
at P. He also announced a version of Theorem 1.4 under similar surjec-
tivity assumption on locp. It is worthing noting that Skinner considers the
localization at p of the cohomology class of the Heegner point yK , while the
current paper considers the localization at many primes away from p (so
we do not need the local surjectivity assumption at p) of the cohomology
classes of Heegner points over ring class fields (so one may take advantage
of Kolyvagin system). Skinner then uses a p-adic formula due to Bertolini–
Darmon–Prasanna [5] and (one divisibility of) the main conjecture proved
by X. Wan [44], while the current paper uses the Gross formula modulo
p ([14], an explicit version of Waldspurger formula, cf. §6), the congruence
of Bertolini–Darmon [4], and the main conjecture proved by Kato [21] and
Skinner–Urban [37].

Remark 3. For an elliptic curve E{Q, the set of primes p satisfying (1)-(4) in
Theorem 1.4 has density one, and depends only on the residue representation
ρE,p. The theorem also implies that: rp is independent of p in this set if we
have rppE{Qq “ 1 for one p in this set.

Theorem 1.5. Let E{Q be an elliptic curve of conductor N . If N is not
square-free, then we assume that there are at least two prime factors `||N .
Then the following are equivalent:



Selmer groups and the indivisibility of Heegner points 9

(i) rMW pE{Qq “ 1 and #XpE{Qq ă 8.
(ii) ords“1LpE{Q, sq “ 1.

The direction piq ùñ piiq is a converse to the theorem of Gross–Zagier
and Kolyvagin. Such a converse was first proved by Skinner [36] for square-
free N with some mild restriction.

Together with the theorem of Yuan–Zhang–Zhang on Gross–Zagier for-
mula for Shimura curves [45] and Kolyvagin theorem [23], we may prove
the p-part of the refined Birch–Swinnerton-Dyer formula (shortened as “B-
SD formula” in the rest of the paper) for E{K in the rank one case under
the same assumption as in Theorem 1.1 (see Theorem 10.2). By a careful
choice of auxiliary quadratic field K, we may deduce the p-part of the B-SD
formula for E{Q in the rank one case (cf. Theorem 10.3).

Theorem 1.6. Let pE, pq be as in Theorem 1.4. If ords“1LpE{Q, sq “ 1,
then the p-part of the B-SD formula for E{Q holds:

ˇ

ˇ

ˇ

ˇ

L1pE{Q, 1q
ΩE ¨ RegpE{Qq

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#XpE{Qq ¨
ź

`|N

c`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

,

where the regulator is defined by RegpE{Qq :“ xy,yyNT
rEpQq:Zys2 for any non-torsion

y P EpQq, xy, yyNT is the Néron-Tate height pairing, and c` is the local
Tamagawa number of E{Q`.

Remark 4. Skinner–Urban and Kato [37, Theorem 2] have proved the the
p-part of the B-SD formula in the rank zero case for any good ordinary p
with certain conditions (less restrictive than ours).

Remark 5. With the Gross–Zagier formula, the previous result of Kolyvagin
[23] shows that, in the analytic rank one case, the p-part of the B-SD formula
for E{K is equivalent to a certain p-indivisibility property of κ8. Under the
condition of the Theorem 10.2 we prove such property (i.e., M8 “ 0). One
then obtains the p-part of the B-SD formula for E{Q with the help of the
theorem of Kato and Skinner–Urban on the B-SD formula in the rank zero
case.

We now give an overview of the proof of Theorem 1.1. We start with the
simpler case where the p-Selmer group of E{K has rank one. Let g be the
modular form associated with E, choose a level-raising prime ` which is inert
in K, and a modular form g` (of level N`) congruent to g modulo p. Using
a Čebotarev argument, this ` may be chosen so that the relevant p-Selmer
group for g` has lower rank, hence trivial. By the deep result of Kato and
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Skinner–Urban on the rank zero B-SD formula, the central value of the L-
function attached to g` must be a p-adic unit. A Jochnowitz-type congruence
of Bertolini–Darmon allows us to conclude that the Heegner point yK has
nontrivial Kummer image in H1pK`, Erpsq, and hence is nonzero. To treat
the general case, we use induction on the dimension of the p-Selmer group
of E{K. The induction proceeds by applying level-raising at two suitable
primes to reduce the rank of the p-Selmer group. We refer to §9 for more
details.

Notations

(i) p ě 5: a prime such that pp,Nq “ 1.

(ii) A: the adeles of Q. Af : the finite adeles of Q. Amf : the finite adeles of Q
away from the primes dividing m.

(iii) For an integer n, we denote by νpnq the number of distinct prime factors
of n.

(iv) g: a newform of weight two on Γ0pNq (hence with trivial nebentypus),
with Fourier expansion

ÿ

ně1

anpgqq
n, a1 “ 1.

The field of coefficient is denoted by F “ Fg and its ring of integer by
O “ Og.

(v) p : F ãÑ Qp a place above p, Fp the corresponding completion of F . We
also denote by p the prime ideal O X mZp of O, Op the completion of O at
p. The modular form g is assumed to be good ordinary at p, i,e,:

ap R p.

Equivalently, vppapq “ 0 where vp : Op Ñ Z is the p-adic valuation.

(vi) We denote by O0 Ă O the order generated over Z by the Fourier coef-
ficients anpgq’s of g. Let p0 “ pX O0, and

k0 :“ O0{p0 Ă k :“ O{p.

Both are finite fields of characteristic p. Let Op (O0,p0
, resp.) be the p-adic

(p0-adic, resp.) completion of O (O0, resp.).
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(vii) A “ Ag: a GL2-type abelian-variety over Q attached to g, unique up
to isogeny. We always choose an isomorphism class A with an embedding
O ãÑ EndQpAq. Then the p-adic Tate module TppAq “ proj limArpis is a
free Op-module of rank two with a Galois representation

ρA,p : GalQ Ñ GLOp
pTppAqq, GalQ :“ GalpQ{Qq.

Denote by ρA,p,M the reduction modulo pM of ρA,p:

ρA,p,M : GalQ Ñ AutOp
pArpM sq » GL2pO{p

M q.

By [7], the Galois representation ρA,p is actually defined over the smaller
subring O0,p0

Ă Op:

ρA,p0
: GalQ Ñ GL2pO0,p0

q Ă GL2pOpq,

such that

ρA,p “ ρA,p0
bO0,p0

Op.(1.2)

(viii) We consider the reduction of ρA,p and ρA,p0
. We will write the under-

lying representation space of ρA,p:

Vk “ Arps

as a k “ O{p-vector space of dimension two, endowed with the action of
GalQ. By (1.2) it can be obtained from by extending scalars from k0 to k,
i.e., there is a two-dimensional k0-vector subspace V with GalQ-action such
that

Vk “ V bk0 k.(1.3)

(ix) We will always assume that the residual Galois representation

ρA,p0
: GalQ Ñ GLpV q » GL2pk0q

is surjective 2. In particular, ρA,p0
(and hence ρA,p) is absolutely irreducible

since p is odd. Then A is unique up to prime-to-p isogeny. In this case, we
may also write ρg,p,M for ρA,p,M since it depends only on g, but not on A.

2This impose strong conditions on k0 and indeed implies that k0 “ Fp. But this
suffices for our purpose.
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(x) K “ Qr
?
´Ds: an imaginary quadratic of discriminant ´D “ DK ă 0

with pD,Nq “ 1. The field K determines a factorization N “ N`N´ where
the factors of N` (N´, resp.) are all split (inert, resp.). Let gK (AK , resp.)
be the quadratic twist of g (A, resp.). Throughout this paper, N´ is square-
free.

(xi) We will consider the base change L-function (without the archimedean
local factors) Lpg{K, sq “ Lpg{Q, sqLpgK{Q, sq. We use the classical normal-
ization so that the functional equation is centered at s “ 1. Then the root
number (i.e., the sign of the functional equation of the L-function Lpg{K, sq)
is given by

εpg{Kq “ p´1q#tνpN
´q`1 P t˘1u.(1.4)

(xii) Λ: the set of square free products n of Kolyvagin primes `’s. We also
include 1 into Λ. Recall that a prime ` is called a Kolyvagin prime if ` is
prime to NDp, inert in K and the Kolyvagin index

Mp`q :“ mintvpp`` 1q, vppa`qu

is strictly positive. Define for n P Λ:

Mpnq “ mintMp`q : `|nu,

if n ą 1 and Mp1q “ 8. Write Λr as the set of n P Λ with exactly r factors.
Define

Mr “ mintMpnq : n P Λru.

Note that the set Λ depends only on the residue Galois module ρg,p. Denote

by Λ˘ the set of n P Λ such that p´1qνpnq “ ˘1.

(xiii) For n coprime to DK , we denote by OK,n “ Z ` nOK the order of
conductor n, and by Krns the ring class field of conductor n.

(xiv) Λ1: the set of square free productsm of admissible primes (after Bertolini–
Darmon) q. Recall that a prime q is called admissible if q is prime to NDp,
inert in K, p does not divide q2 ´ 1, and the index

vpppq ` 1q2 ´ a2
qq ě 1.

Similarly define Λ1r, Λ
1˘ etc.. Note that the two sets Λ and Λ1 are disjoint.

(xv) Let Rampρg,pq denote the set of `||N such that ρg,p is ramified at `. We
will consider the following hypothesis, called Hypothesis ♥, for pg, p,Kq:
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(1)Rampρg,pq contains all prime factors `||N` and all q|N´ such that
q ” ˘1 mod p.

(2)If N is not square-free, then #Rampρg,pq ě 1, and either Rampρg,pq
contains a prime `||N´ or there are at least two primes factors `||N`.

(3)For all prime ` with `2|N`, we have H1pQ`, ρg,pq “ ρGal`
g,p “ 0. Here

Gal` Ă GalQ denotes a decomposition group at `.

2. Level-raising of modular forms

We first recall the level-raising of Ribet, following Diamond–Taylor’s gener-
alization [10, 11].

Theorem 2.1 (Ribet, Diamond–Taylor). Let g be a newform of weight two
of level N (and trivial nebentypus). Let p be a prime of Og such that ρg,p
is irreducible with residue characteristic p ě 5. Then for each admissible
prime q, there exists a newform g1 of level Nq (and trivial nebentypus), with
a prime p1 of Og1 and Og1,0{p

1
0 » Og,0{p0 “ k0 such that

ρg,p0
» ρg1,p10 .

Equivalently, for all primes ` ‰ q, we have

a`pgq mod p ” a`pg
1q mod p1,

where both sides lie in k0.

Proof. Fix a place of Q above a prime `, and let Gal` ãÑ GalQ be the corre-
sponding decomposition group. For ` ‰ q, we denote by τ` the restriction of
ρg,p to Gal`. At ` “ q, let τ` be the p-adic representation of Galq correspond-
ing to an unramified twist of the Steinberg representation under the local
Langlands correspondence, such that τ q is isomorphic to the restriction of
ρg,p0

to Galq. Such τq exists because aqpgq ” ˘pq` 1q mod p by the admis-
sibility of q. Then we apply [11, Theorem 1] (cf. [10, Theorem B]) to obtain a
weight two modular form g1 of level dividing Nq, and a prime p1 such that the
representation ρg1,p1 has the prescribed restriction to the inertial subgroups
I`: ρg1,p1 |I` » τ`|I` for all ` ‰ p. Since the level of g1 depends only on the
restriction of ρg1,p1 to the inertia I` for all `, we see that its level is divisible
by Nq and hence equal to Nq. To see that g1 has trivial nebentypus, we note
that the character detpρg1,p1q is the p-adic cyclotomic character εp twisted
by a character χ of GalQ. Since the level of g1 is prime to p, χ is unramified
at p. Since g has trivial nebentyputs, by detpρg,pq|I` » detpρg1,p1q|I` for all



14 W. Zhang

` ‰ p, the character χ is unramified at all primes ` ‰ p. It follows that χ is
unramified at all primes ` and hence χ “ 1 and g1 has trivial nebentypus.
This completes the proof.

Let m P Λ
1

be a product of distinct admissible primes. By Theorem 2.1,
we obtain a weight-two newform gm of level Nm together with a prime pm
of Ogm . Here all notations for g will have their counterparts for gm and we
will simply add an index m in a self-evident way. We have the residue field
km “ Ogm{pm and isomorphic subfields k0 “ Og,0{p0 » Ogm,0{pm,0. The
isomorphism will be fixed in the rest of the paper. The modular form gm
and g carry isomorphic GalQ-actions on the two-dimensional k0-vector space

ρgm,pm,0 » ρg,p0
.

We will fix an isomorphism and denote the underlying two-dimensional k0-
vector space by V .

3. Shimura curves and Heegner points

3.1. Shimura curves and Shimura sets.

Let N “ N`N´, pN`, N´q “ 1 and N´ square-free. In this section we
assume that the number of prime factors of N´ is even.

For m P Λ
1` (i.e., m has an even number of prime factors), let BpN´mq

be the quaternion algebra over Q ramified precisely at N´m (in particular,
indefinite at the archimedean place). We let XN`,N´m be the (compactified)
Shimura curve defined by the indefinite quaternion algebra BpN´mq with
the Γ0pN

`q-level structure.

For m P Λ
1´, let BpN´m8q be the quaternion algebra over Q ramified

precisely at N´m8 (in particular, definite at the archimedean place). We let
Xm :“ XN`,N´m be the double coset space defined by the definite quater-
nion algebra BpN´m8q with the Γ0pN

`q-level (sometimes called “Gross
curve” in the literature, [43, §2]):

XN`,N´m “ BˆzBpAf qˆ{ pRˆ,

where B “ BpN´m8q, and R is an Eichler order of level N`. We will call
it a Shimura set.

For short we will write (noting that N “ N`N´ is fixed) Bm for
BpN´mq when m P Λ

1`, or BpN´m8q when m P Λ
1´. We write the Eichler
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order in Bm by Rm. We also write

Xm “ XN`,N´m.(3.1)

For example, if N´ “ 1, we have X1 “ X0pNq.

From now on, we will fix an isomorphism betweenBbQQ` and the matrix

algebra M2,Q` (a fixed division algebra over Q`, resp.) if a quaternion algebra

B over Q is unramified (ramified, resp.) at a (possibly archimedean) prime

`. This will allow us, for example, to identify BmpA
p`q
f q with Bm`pA

p`q
f q for

`,m P Λ1 and ` - m.

3.2. Heegner points on Shimura curves

Let m P Λ
1` and Am “ Agm a quotient of the Jacobian JpXmq:

π : JpXmq Ñ Am.

Let n P Λ be a product of Kolyvagin primes. We now define a system of

points defined over the ring class field Krns:

xmpnq P XmpKrnsq, ympnq P AmpKrnsq.

Remark 6. We need to be careful when defining ympnq. We may define an

embedding Xm Ñ J by x ÞÑ pxq´ p8q if Xm is the modular curve X0pN
`q,

i.e., N´m “ 1. In general, there is no natural base point to embed Xm into

its Jacobian. We may take a certain Atkin-Lehner involution w and take

ympnq P AmpKrnsq to be the image of the degree-zero divisor pxq ´ pwpxqq

where x “ xmpnq. This works if the Atkin-Lehner involution acts on Am
by ´1. Otherwise, we may take a fixed auxiliary prime `0 and define ympnq

to be the image of the degree-zero divisor p`0 ` 1 ´ T`0qxmpnq. This does

not lose generality if p`0 ` 1´ a`0pgmqq is a pm-adic unit. Such `0 exists, for

example, if ρgm,pm,0 is surjective. Furthermore, since we wish to eliminate

the dependence on the choice of `0 (up to torsion points), we will define

ympnq to be the image of the divisor with Q-coefficients

rxmpnq :“
1

`0 ` 1´ a`0pgmq
p`0 ` 1´ T`0qxmpnq(3.2)

viewed as an element in AmpKrnsq bZ Q.
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Remark 7. The definition of ympnq also involves a parametrization π of Am
by JpXmq, as well as a choice Am in the isogeny class determined by g. We
will take either the optimal quotient (which has only Ogm,0-multiplication
in general) or one with Ogm-multiplication. But for the moment we do not
want to specify the choice yet.

We describe the points xmpnq in terms of the complex uniformization of
Xm. The complex uniformization of Xm is given by

XmpCq “ BˆmzH˘ ˆBmpAf qˆ{yRm
ˆ
, H˘ :“ CzR.

Fix an (optimal) embedding

K ãÑ Bm(3.3)

such that RXK “ OK . Such an embedding exists since all primes dividing
N` are assumed to be split in K. Then we have a unique fixed point h0 of
Kˆ on H`. Then the total set of Heegner points is given by (cf. [42]):

Cm “ CK,m “ BˆmzpBmpQqˆh0q ˆBmpAf qˆ{yRm
ˆ
» KˆzBmpAf qˆ{yRm

ˆ
.

(3.4)

In this paper, we only need to use a subset of CK . Let

BmpAf qˆ,` “ Kˆ

˜

1
ź

`

BmpQ`q
ˆ

¸

yRm
ˆ
,

where the restricted direct product for ` runs over all inert primes such that
p`,Nmq “ 1 and ` ” ´1 mod p (hence BmpAf qˆ,` implicitly depends on
the prime p). Define

C`m “ KˆzBmpAf qˆ,`{yRm
ˆ
.(3.5)

There is a Galois action of GalpKab{Kq on CK,m given by

σprhsq “ rrecpσqhs,(3.6)

where rhs P CK,m is a double coset of h P BmpAf qˆ, and we have the
reciprocity map given by class field theory

rec : GalpKab{Kq » Kˆz pKˆ.
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We now may define more explicitly the point xmpnq already mentioned
earlier: in the set C`K , the point xmpnq for n P Λ corresponds to the coset of
h “ ph`q P BmpAf qˆ,` where

h` “

$

’

&

’

%

˜

` 0

0 1

¸

, `|n,

1, p`, nq “ 1.

(3.7)

When m “ 1 or there is no confusion, we simply write

xpnq “ xmpnq, ypnq “ ympnq.(3.8)

3.3. Heegner points on Shimura sets

When m P Λ1 has odd number of prime factors, we have the Shimura set:

Xm “ BˆmzBmpAf qˆ{yRm
ˆ
.(3.9)

The Shimura set is a finite set. Again fix an optimal embedding K ãÑ Bm.
We then define the set CK,m of Heegner points on the Shimura set Xm by

Cm “ CK,m “ KˆzBmpAf qˆ{yRm
ˆ
.(3.10)

Similarly we may define the set C`K,m, and an action of the Galois group

GalpKab{Kq on the set CK,m by the formula (3.6). We again consider the
Heegner points given by the same formula as (3.7)

xmpnq P CK,m, n P Λ.

We have a natural map (usually not injective)

CK,m Ñ Xm.(3.11)

When there is no ambiguity, we will consider xmpnq as an element in the
Shimura set Xm.

3.4. Reduction of Shimura curves

We consider the reduction of the canonical integral model of Xm “ XN`,N´m

at a prime q, where m P Λ
1`.
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First let q be an admissible prime not dividing the level Nm. Then Xm

has an integral model over Zq parametrizing abelian surfaces with auxiliary
structure (cf. [1] for the detail). The integral model has good reduction at q
and the set of supersingular points XmpFq2qss are naturally parameterized
by the Shimura set Xmq:

XmpFq2qss » Xmq,(3.12)

where mq P Λ
1´. This identification needs to choose a base point, which

we will choose to be the reduction of the Heegner point corresponding to
the identity coset in (3.4) (cf. the convention before (3.18)). Via the moduli
interpretation of the integral model of Xm, this choice of base point also gives
an embedding of K (as the endomorphism algebra of the abelian surface A
preserving the auxiliary structure, corresponding to the base point) into the
quaternion algebra Bmq (as the endomorphism algebra of the special fiber
of the A):

K ãÑ Bmq.(3.13)

Now let q|m be a prime. Then the curve Xm has a semistable integral
model, denoted by Xm,Zp , over Zq by a moduli interpretation via Drinfeld’s
special action by a maximal order in a quaternion algebra [1]. We will con-
sider the base change to Zq2 , the unramified quadratic extension of Zq. Let
pE pXmq,V pXmqq be the dual reduction graph of the special fiber Xm,Fq2 of
Xm,Zq2 , where E pXmq (V pXmq, resp.) denotes the set of edges (vertices,
resp.). The graph is constructed such that each vertex corresponds to an
irreducible component and two vertices are adjacent if and only if their
corresponding components have an intersecting point. By [34, Prop. 4.4],
it follows from the Cerednik–Drinfeld uniformization [1, Theorem 5.2] that
the special fiber Xm,Fq2 is a union of projective lines crossing transversely.
Moreover, the set of irreducible components of XFq2 can be identified with
two copies of the Shimura set Xm{q:

V pXmq » Xm{q ˆ Z{2Z,(3.14)

where m{q P Λ
1´. We choose the base point to be the irreducible component

corresponding to the unique irreducible component containing the reduction
of the base point of Heegner points in (3.4). The uniqueness follows from
the fact that Heegner points in (3.4) are reduced to a non-singular point on
the special fiber (cf. [4, §8, p.55]). This also induces an embedding (loc. cit.)

K ãÑ Bm{q.(3.15)
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Under this identification, the Atkin-Lehner involution at q acts by chang-

ing the second factor of the above product. So does the Frobenius for the

quadratic extension Fq2{Fq. For our later purpose, we also give the adelic

description (cf. [34, §4], [47, Lemma 5.4.4]):

V pXmq “ Bˆ0 zGL2pQqq{Qˆq GL2pZqq ˆBpAqf q
ˆ{ pRq,ˆ,(3.16)

where B “ Bm{q and Bˆ0 Ă Bˆ is the kernel of γ ÞÑ ordqpdetpγqq (here

det denotes the reduced norm on B). The group Bˆ0 acts diagonally by left

multiplication on the product. Then the isomorphism (3.14) is defined as

follows: for a given Bˆ0 -coset rhq, h
qs, we send it to the Bˆ-coset rhq, h

qs in

the Shimura set Xm{q, to ordqpdetphqqq mod 2 in Z{2Z. This defines the

isomorphism in (3.16). We thus write

V pXmq “ V0pXmq \ V1pXmq(3.17)

as a disjoint union according to ordqpdetphqqq mod 2. Noting that Q has

class number one and detp pRˆq “ pZˆ, we have an equivalent description to

(3.9):

Xm{q “ Bˆm{qzBm{qpAf q
ˆ{Qˆq ¨ zRm{q

ˆ
.

From this description and the isomorphism (3.14), we will identify Xm{q

with the subset V0pXmq » Xm{q ˆ t0u of V pXmq.

3.5. Reduction of Heegner points

We consider Heegner points (CM points in [42, 45]) on the Shimura curves

Xm, for m P Λ
1`.

Let q P Λ1 be a prime not dividing m. Then Xm has good reduction

at q. The Heegner points in C`K,m are defined over abelian extensions of K

over which the prime pqq Ă OK splits completely. Let Kpqq be an abelian

extension of K containing all these fields and we fix a choice of a prime q

above pqq Ă OK . This allows us to reduce these points modulo q. Identifying

OKpqq{q » Fq2 , they all reduce to supersingular points on Xm,Fq2 . We write

the composition of the isomorphism (3.12) with the reduction map as:

Redq : C`K,m Ñ Xmq.(3.18)
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This is given by (3.5) and the following map:

KˆzBmpAf qˆ,`{yRm
ˆ
Ñ BˆmqzQˆq ˆBmqpA

q
f q
ˆ{pZˆq q ¨ pRmq b pZqqˆ

Ñ BˆmqzBmqpAf qˆ{yRmq
ˆ

where the first arrow at the q-th component is induced by b P GL2pQqq ÞÑ

detpbq P Qq, the second one is an isomorphism induced by the reduced norm
on the division algebra det : BmqpQqq

ˆ{OˆBmqpQqq Ñ Qˆq {Zˆq (cf. [47, Lemma

5.4.3]). We are implicitly using the embedding K ãÑ Bmq given by (3.13).
Now let q P Λ1 be a prime dividing m. Similarly as in the last paragraph,

we choose a prime q of Kpqq above q and identify OKpqq{q » Fq2 to reduce

the Heegner points to the special fiber Xm,Fq2 . Any point in the set C`K,Nm
reduces to a non-singular point of the special fiber Xm,Fq2 (cf. [4, §8, p.55]).

Hence we have a specialization map from C`K,Nm to the set of irreducible

components V . Since the q-component of an element in C`K,Nm has reduced

norm of even valuation, the specialization of C`K,Nm lies in the subset Xm{qˆ

t0u of V . We thus write the specialization map as

Spq : C`K,m Ñ Xm{q.(3.19)

The specialization is given by (3.5) and the following map:

KˆzBmpAf qˆ,`{yRm
ˆ
Ñ KˆzBmpAqf q

ˆ,`{pRm b pZqqˆ

Ñ Bˆm{qzBm{qpAf q
ˆ{zRm{q

ˆ
,

where the first arrow is given by forgetting the q-th opponent, and the second
one maps rhqs to r1, hqs for hq P BmpAqf q » Bm{qpA

q
f q (cf. [47, Lemma 5.4.6]).

We are implicitly using the embedding K ãÑ Bmq given by (3.15).

3.6. Geometric congruence between Heegner points

The main geometric observation is the following congruence between coher-
ent and incoherent Heegner points.

Theorem 3.1. Let m be in Λ
1`, Xm the Shimura curve XN`,N´m. Then

we have the following relation:

• When a prime q P Λ1 does not divide m P Λ
1`,

Redqpxmpnqq “ xmqpnq P Cmq,K .
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In particular, we have Redqpxmpnqq “ xmqpnq P Xmq, under (3.11).
• When a prime q P Λ1 divides m P Λ

1`,

Spqpxmpnqq “ xm{qpnq P Xm{q.

Proof. This follows from the description of the reduction of Heegner points
(3.18), (3.19).

3.7. Kolyvagin cohomology classes

We now prepare to formulate the Kolyvagin conjecture for GL2-type abelian
variety analogous to [24] for elliptic curves. We first define Kolyvagin coho-
mology classes.

We consider a newform g of level N with a prime p of O satisfying the
hypothesis in “Notations”. Let A “ Ag be an associated GL2-type abelian
variety over Q with real multiplication by O. Let X be X1 “ XN`,N´ .
The abelian variety Ag may not be an optimal quotient of JpXq. Possibly
changing A in its isogeny class (still with O-multiplication), we will choose
a parameterization

JpXq Ñ A(3.20)

such that the image of the induced homomorphism on the p-adic Tate mod-
ule

TppJpXqq Ñ TppAq

is not contained in pTppAq. We say that such a parameterization is pO, pq-
optimal and that the abelian variety A is pO, pq-optimal. To see that an
pO, pq-optimal parameterization exists, we note that there exists another A1

with O-multiplication and an O-isogeny A1 Ñ A such that the image of
the induced homomorphism on the p-adic Tate module TppA

1q Ñ TppAq
is pTppAq. If the image of TppJpXqq Ñ TppAq is contained in pTppAq, the
morphism JpXq Ñ A must factor through A1. We may then replace A by
A1.

We now define the Kolyvagin cohomology classes (cf. [15, 23] for elliptic
curves). Let TpAg be the p-adic Tate module of Ag and consider the p-adic
Tate module:

TpAg :“ TpAbObZp Op.

It is a free Op-module of rank two. Set

Ag,M “ TpAg bOp
Op{p

M ,
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and

Ag,8 “ TpAg bOp
Fp{Op,

where Fp is the fraction field of Op. We now define

cM pnq P H
1pK,Ag,M q, M ďMpnq,

by applying Kolyvagin’s derivative operators to the points ypnq P ApKrnsqb
Q defined in (3.2). Note that the denominator of ypnq is a p-adic unit and
hence we may interpret ypnq as an element of ApKrnsqZp bObZp Op. Denote
Gn “ GalpKrns{Kr1sq and Gn “ GalpKrns{Kq for n P Λ. Then we have a
canonical isomorphism:

Gn “
ź

`|n

G`,

where the group G` “ GalpKr`s{Kr1sq is cyclic of order ` ` 1. Choose a
generator σ` of G`, and define the Kolyvagin derivative operator

D` :“
``1
ÿ

i“1

iσi` P ZrG`s,

and

Dn :“
ź

`|n

D` P ZrGns.

Fix a set G of representatives of Gn{Gn. Then we define the derived Heegner
point

P pnq :“
ÿ

σPG
σpDnypnqq P AgpKrnsq.

We have a commutative diagram of Kummer maps:

ApKqZp bObZp Op{p
M //

��

H1pK,Ag,M q

Res
��

ApKrnsqZp bObZp Op{p
M // H1pKrns, Ag,M q

where ApKqZp denotes ApKq bZ Zp. When M ďMpnq, the Kummer image
of P pnq in H1pKrns, Ag,M q is actually GalpKrns{Kq-invariant. Since ρg,p is
essentially surjective and n P Λ, we have (cf. [15, Lemma 4.3])

A
GalKrns
g,M “ 0.
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Hence the restriction map

H1pK,Ag,M q Ñ H1pKrns, Ag,M q
GalpKrns{Kq

is an isomorphism. The derived point P pnq defines a GalpKrns{Kq-invariant
element in ApKrnsqZp bObZp Op{p

M . Hence the Kummer image of P pnq
descends to a cohomology class denoted by

cM pnq P H
1pK,Ag,M q.(3.21)

When n “ 1, we also denote

yK :“ P p1q “ trKr1s{Kyp1q P ApKq,(3.22)

and the point yK P ApKq is usually called the Heegner point. This is the
only case where the derivative operator is trivial and hence can be related
to suitable L-values via the Waldspurger or Gross–Zagier formula, as we will
see.

One could also describe the action of the complex conjugation on the
classes cM pnq. Let ε P t˘1u be the root number of Ag. Define

νpnq “ #t` : `|nu,(3.23)

and

εν “ ε ¨ p´1qν`1 P t˘1u.(3.24)

Then the class cM pnq lies in the ενpnq-eigenspace under complex conjugation
([15, Prop. 5.4], [2, Prop. 2.6]):

cM pnq P H
1pK,Ag,M q

ενpnq .

3.8. Kolyvagin’s conjecture.

Let M pnq P Zě0 Y t8u be the divisibility index of the class cpnq, i.e., the
maximal M P Zě0 Y t8u such that cM pnq P pMH1pK,Ag,M q for all M ď

Mpnq. Define Mr to be the minimal M pnq for all n P Λr. Then in [24]
Kolyvagin shows that for all r ě 0:

Mr ě Mr`1 ě 0.(3.25)
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We define

M8pgq “ lim
rÑ8

Mr(3.26)

as the minimum of Mr for varying r ě 0.
Then the conjecture of Kolyvagin [24, Conj. A] (generalized to Shimura

curves) asserts that

Conjecture 3.2. Let g be a weight two newform of level N with trivial
nebentypus. Assume that the residue representation ρg,p0

is surjective. Then
the collection of cohomology classes

κ8 :“ tcM pnq P H
1pK,Ag,M q : n P Λ,M ďMpnqu(3.27)

is nonzero. Equivalently, we have

M8pgq ă 8.

The rest of the paper is to confirm this conjecture under a certain re-
striction on g.

3.9. Kolyvagin classes cpn,mq P H1pK,V q.

We will apply Theorem 2.1 to define Kolyvagin classes cpn,mq P H1pK,V q
parameterized by both n P Λ and m P Λ

1`. Fixing m “ 1, the collection of
classes cpn, 1q as n P Λ varies is precisely the collection c1pnq P H

1pK,Ag,1q
defined in §3.7.

Let TN`,N´m be the Hecke algebra over Z generated by T` for p`,Nmq “
1 and U` for `|Nm acting on the Jacobian JpXmq, equivalently acting on
the space of weight two modular forms which are new at all factors of N´m.
Recall that Xm “ XN`,N´m is the Shimura curve defined in §3.1, and when
`|N´m, the operator U` is an involution induced by a uniformizer of the
division algebra BmpQ`q

ˆ (cf. [34, §4]). The Hecke action on the modular
form gm gives rise to a surjective homomorphism

φ : TN`,N´m Ñ Ogm,0,

whose kernel is denoted by I . Then the optimal quotient by JpXmq attached
to gm is the abelian variety

A0
gm :“ JpXmq{I JpXmq,(3.28)
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on which TN`,N´m acts via the homomorphism φ. In particular, we obtain
an O0-action on A0

gm .
Let φ mod pm,0 be the composition of mod pm,0 with φ:

φ mod pm,0 : TN`,N´m Ñ Ogm,0{pm,0 » k0.

Denote by m the kernel of φ mod pm,0.

Lemma 3.3. Assume that pg, p,Kq satisfies Hypothesis ♥. Then for all
m P Λ

1` we have an isomorphism of GalQ-modules

JpXmqrms » V » A0
gmrpm,0s,(3.29)

where all vector spaces are 2-dimensional over k0.

Proof. The case of modular curve (i.e., N´m “ 1) is well-known due to the
work of Mazur, Ribet, Wiles (cf. [4]). The case for Shimura curve under our
Hypothesis ♥ is proved by Helm [18, Corollary 8.11].

For each n P Λ, and m P Λ
1` 3 (i.e., with even number of factors), we

now define the Kolyvagin cohomology class

cpn,mq P H1pK,JpXmqrmsq » H1pK,V q,(3.30)

as the derived cohomological class from the Heegner point xmpnq P XmpKrnsq
and ympnq P A

0
gmpKrnsq (cf. §3.2). When m “ 1 we simply write

cpnq “ cpn, 1q P H1pK,V q.

Note that these classes only take values in V (unlike in §3.7, where the
classes cM pnq lie in the cohomology of some Ag,M ). We will denote for each
m P Λ

1`

κm :“ tcpn,mq P H1pK,V q : n P Λu,

and we will again call κm a Kolyvagin system.

Remark 8. The classes cpn,mq depend on the choice of the level-raising
newform gm of level Nm, and the choice of the generators σ`’s made in §3.7.
For our purpose, it will suffice to fix a choice for each m P Λ1`. They also
depend on the parameterization of the set of Heegner points (3.4) for each

3It is easy to see that the set Λ1
1 of admissible primes for gm almost depends

only on the GalQ-module V , with only exception that the set Λ1
1 for gm does not

contain prime factors of m.
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m P Λ1`. To compare the localization of the classes cpn,mq in §4, for each

m P Λ1`, we require that the following induced embeddings K ãÑ Bmq into

the definite quaternion algebra are the same

• the one given by (3.13) applied to the curve Xm and an admissible

prime q,

• the one given by (3.15) applied to the curve Xmqq1 and an admissible

prime q1,

Remark 9. We will also consider a GL2-type abelian variety Ag with multi-

plication by Og attached to g. Then we will also view cpn,mq P H1pK,V q as

a class in H1pK,V bk0 kq by identifying Arps » V bk0 k as krGalQs-module.

We will again call these global cohomology classes cpn,mq Kolyvagin

classes. They are the main objects in the rest of the papers. We will analyze

their local property in the next section and we will see that the m-aspect of

cpn,mq behaves very similar to the n-aspect.

4. Cohomological congruence of Heegner points

Let g be a newform of level N with a prime p of Og as in “Notations”. Recall

that V is the 2-dimensional GalQ-module over k0.

4.1. Local cohomology

We recall the definition of some local cohomology groups (cf. [4, §2]).

Definition 4.1. Let q be a prime not dividing N . The finite or unramified

part of H1pKq, V q is the k0-subspace :

H1
finpKq, V q “ H1

urpKq, V q

defined as the inflation of H1pKur
q {Kq, V q, where Kur

q is the maximal un-

ramified extension of Kq. The singular part is defined as

H1
singpKq, V q “ H1pIq, V q

GalpKur
q {Kqq.

We have the inflation-restriction exact sequence

0 Ñ H1
finpKq, V q Ñ H1pKq, V q Ñ H1

singpKq, V q.
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Now assume that q P Λ1 is an admissible prime. Then the GalQ-module
V is unramified at q. Then as GalKq -modules, the vector space V splits as
a direct sum of two k0-lines :

V » k0 ‘ k0p1q, k0p1q :“ µp bFp k0.

Note that in our case we have q ‰ ˘1 mod p. Hence the GalKq -action is
nontrivial on k0p1q. In particular, the direct sum decomposition is unique.
This induces a unique direct sum decomposition:

H1pKq, V q “ H1pKq, k0q ‘H
1pKq, k0p1qq.(4.1)

Lemma 4.2. Assume that q P Λ1 is an admissible prime.

(1) dimH1pKq, k0q “ dimH1pKq, k0p1qq “ 1.
(2) Inside H1pKq, V q, we have

H1
finpKq, V q “ H1pKq, k0q,

and, the restriction map induces an isomorphism

H1
singpKq, V q » H1pKq, k0p1qq.

Proof. This is proved in [4, Lemma 2.6] or [16, Lemma 8].

From this lemma, we will write a direct sum decomposition

H1pKq, V q “ H1
finpKq, V q ‘H

1
singpKq, V q,(4.2)

where H1
sing is identified with the subspace H1pKq, k0p1qq of H1pKq, V q.

4.2. Cohomological congruence between Heegner points

Recall that in §3, for a fixed newform g of level N “ N`N´ for a square-
free N´ (with νpN´q even), we have defined a family of cohomology classes
cpn,mq P H1pK,V q indexed by n P Λ,m P Λ

1`.

Now let

locv : H1pK,V q Ñ H1pKv, V q

be the localization map at a place v of K. We then have the following
cohomological congruence between Heegner points when varying m P Λ

1`,
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which can be essentially deduced from the work of Vatsal [43] and Bertolini–
Darmon [4]. This will be the key ingredient to show the non-vanishing of
the Kolyvagin system

κm :“ tcpn,mq P H1pK,V q : n P Λu, m P Λ
1`.

Theorem 4.3. Assume that pg, p,Kq is as in “Notations” and satisfies
Hypothesis ♥. Let m P Λ

1` and q1, q2 P Λ11 not dividing m. Then we have

locq1pcpn,mqq P H
1pKq1 , k0q, locq2pcpn,mq1q2qq P H

1pKq2 , k0p1qq.(4.3)

Fixing isomorphisms

H1pKq1 , k0q » k0 » H1pKq2 , k0p1qq,(4.4)

we have an equality for all n P Λ:

locq1pcpn,mqq “ locq2pcpn,mq1q2qq,(4.5)

up to a unit in k0 (dependent only on the choice of isomorphisms (4.4)).

Remark 10. The item (3) in Hypothesis ♥ is not used in the proof of this
result.

Proof. Let A0, A0
1, A

0
2 be the optimal quotients attached to gm, gmq1 , gmq1q2 .

They all carry the common GalQ-module V .
We first calculate locq1pcpn,mqq. We describe the local Kummer map of

Heegner points x P C`K,Nm:

δq1 : JpXmqpKq1q Ñ A0pKq1q Ñ H1
finpKq1 , A

0rpm,0sq(4.6)

» H1
finpKq1 , V q “ H1pKq1 , k0q.

Here we use the remark (6) to modify x into a degree-zero divisor. By [4,
§9], there exists a nontrivial k0-valued Hecke eigenform on the Shimura set:

φ : Xmq1 Ñ k0(4.7)

such that

• φ is the reduction of the Jacquet-Langlands correspondence of gmq1 ,
in the sense that the Hecke operator T` acts on φ by a`pgmq1q mod p1

for all ` (when `|Nmq, T` means U`). This determines φ uniquely up
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to a scalar. Indeed under Hypothesis ♥, by the proof of [33, Thm. 6.2]
via “Mazur’s principle”, we have a multiplicity one property:

dimk0 ZrXmq1s bT T{ kerpχq “ 1,(4.8)

where T “ TN`,N´mq1 and χ : T Ñ k0 is the algebra homomorphism
associated to φ.
• It calculates the local Kummer map of Heegner points: for a suitable

choice of isomorphism

H1pKq1 , k0q » k0,

we have

φpRedq1pxqq “ δq1pxq P k0,(4.9)

for all Heegner points x P C`K “ C`K,Nm. Recall that the reduction

map is Redq1 : C`K Ñ Xmq1 defined by (3.18). This follows from [4,
Theorem 9.2], essentially as a consequence of Ihara’s lemma in [10] for
Shimura curves over Q (also cf. [43, §6] for the use of the original Ihara
lemma for modular curves).

The two items can be written in terms of the following commutative dia-
grams where q “ q1:

Div0pC`K q

��

Redq // Div0pXss
m q

��

» // ZrXmqs
0

��

φ

))
JpKqq // JpFq2q // H1

finpKq, Jrmsq
» // H1

finpKq, V q » k0,

where Xss
m “ XmpFq2qss is the set of supersingular points, and ZrXmqs

0 is
the kernel of the degree map deg : ZrXmqs Ñ Z.

Now we move to locq2pcpn,mq1q2qq. We have a Shimura curve Xmq1q2

parameterizing A0
2 and we need to calculate the local Kummer map at q2:

δq2 : JpXmq1q2qpKq2q Ñ A0
2pKq2q Ñ H1

singpKq2 , V q “ H1pKq2 , k0p1qq.

For the last arrow, the image of A0pKq2q is the singular part since JpXmq1q2q

has purely multiplicative reduction at q2 by [4, Corollary 5.18] (cf. (5.6)
below). Together with (4.6), this shows (4.3). Let J “ JpXmq1q2q and let
V pXmq1q2q “ V0 \ V1 be the disjoint union (3.17). By [4, §5, §8], we have
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• The Kummer map JpKq2q Ñ H1pKq, Jrmsq “ H1pKq, V q factors
through the group ΦpJ{Kq2q of connected components of the Néron
model of J over Kq2 .
• When we only consider the set C`K “ C`K,Nmq1q2 , the specialization

of C`K always lies in V0 » Xmq1 . By [4, Prop. 5.14], there is a ho-
momorphism ZrV s0 Ñ ΦpJ{Kqq which calculates the specialization of
Div0pC`K q to the group ΦpJ{Kqq.
• The Hecke eigenform φ in (4.7) also calculates the local Kummer map

of Heegner point on Xmq1q2 : for a suitable choice of isomorphism

H1pKq2 , k0p1qq » k0,

we have

φpSpq2pxqq “ δq2pxq P k0,(4.10)

for all Heegner points x P C`K,Nmq1q2 . Recall that the specialization

map is Spq2 : C`K,Nmq1q2 Ñ Xmq1 defined by (3.19).

These facts can be summarized in terms of the following commutative dia-
grams:

Div0pC`K q

��

Spq // ZrV0s
0 » //

��

ZrXmq1s
0

��

φ

))
JpKqq // ΦpJ{Kqq // H1

singpKq, Jrmsq
» // H1

singpKq, V q » k0,

where q “ q2.
From the geometric congruence Theorem 3.1, and the description (4.9)

and (4.10) of the local Kummer maps in terms of φ in (4.7), we have for all
n P Λ:

locq1 ˝ δq1pympnqq “ locq2 ˝ δq2pymq1q2pnqq,(4.11)

up to a unit in k0 (independent of n,m), where we view ympnq P A
0pKq1q

and ymq1q2pnq P A
0
2pKq2q as local points (noting that q1, q2 splits completely

in Krns).
Note that the cohomology classes cpn,mq are the Kummer images of the

points Pmpnq derived from ynpmq. We have also chosen the derivative opera-
tors Dn compatibly when varying m. Then clearly (4.11) implies the desired
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congruence between the cohomological classes cpn,mq and cpn,mq1q2q:

locq1pcpn,mqq “ locq2pcpn,mq1q2qq.

Remark 11. We may simply state this as the congruence between two Koly-
vagin systems indexed by m,mq1q2 P Λ

1`:

locq1pκmq “ locq2pκmq1q2q.

There is analogous property in the n-aspect of cpn,mq: for n P Λ and a
prime ` P Λ not dividing n, we have

ψ`ploc`cpn,mqq “ loc`pcpn`,mqq,

where ψ` is a suitable finite/singular isomorphism at ` (cf. (8.1) in §8 or
[26]).

Remark 12. The part on locq1 is usually called Jochnowitz congruence (cf.
[43, 4, 9] and also §6). The part on locq2 already appeared in the proof of
the anti-cyclotomic main conjecture by Bertolini–Darmon [4]. If we check the
change of root number of Lpg{K, sq using (1.4), we see that the Jochnowitz
congruence switch from ´1 to `1, while the Bertolini–Darmon congruence
from `1 to ´1.

5. Rank-lowering of Selmer groups

In this section we study the effect on the Selmer group by level-raising of
modular forms. Suppose that we are given:

• g: a newform of level N as in “Notations”, with a prime p of O above
p.
• q P Λ1: an admissible prime.
• g1: a level-raising form from Theorem 2.1, i.e., a newform of level Nq

which is congruent to g. The congruence also requires a choice of prime
p1 of O 1 “ Og1 above p.

Let A,A1 be the GL2-type abelian variety over Q associated to g, g1 with
multiplication by O,O 1. We write k1 “ O 1{p1.

We want to compare the Selmer group of A and A1. This part is largely
from the idea of Gross–Parson in [16] with a slight improvement.
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5.1. Local conditions

Following [16], we describe the local conditions defining the Selmer group:

SelppA{Kq “ tc P H
1pK,Arpsq : loc`pcq P Impδ`q, for all `u,(5.1)

where

δ` : ApK`q Ñ H1pK`, Arpsq(5.2)

is the local Kummer map at `. As we have identified Arps with V bk0 k, we
will denote by L`,A the image Impδ`q as a subspace of H1pK`, V q bk0 k. A
key observation in [16] is that, under suitable hypothesis, one could describe
the local conditions tL`,Au purely in terms of GalQ-structure on V together
with the information on the reduction type at every prime.

Lemma 5.1. (1) For any prime `, we have

H1pQ`, V q “ 0 ðñ V Gal` “ 0.(5.3)

(2) If V “ Erps for elliptic curve over Q` with additive reduction and
p ‰ `, then

H1pQ`, V q “ 0.

Proof. We have a trivial observation:

dimkH
1pQ`, V q “ 2 dimV Gal` .(5.4)

Though this is well-known, we give a proof for the reader’s convenience. Since
` ‰ p, by Tate theorem [30, Theorem 2.8] the Euler–Poincaré characteristic
is

χpGal`, V q “ 0.

Here we recall the definition [30, Chap. I.2] of the Euler–Poincaré charac-
teristic for any finite Gal`-module M :

χpGal`,Mq :“
#H0pGal`,Mq#H

2pGal`,Mq

#H1pGal`,Mq
.

Since detpρq “ εp (the p-adic cyclotomic character), the Galois module
V is self-dual. Then the local duality asserts that H0pQ`, V q is dual to
H2pQ`, V

˚q “ H2pQ`, V q. Hence dimH0pQ`, V q “ dimH2pQ`, V q. Since
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H0pQ`, V q “ V Gal` , the desired equality (5.4) follows. Then the first part of
the lemma follows.

To show the second part, it suffices to show V Gal` “ ErpspQ`q “ 0,
which is equivalent to EpQ`q{pEpQ`q “ 0 since ` ‰ p. Since E has additive
reduction, there is a filtration E1pQ`q Ă E0pQ`q Ă EpQ`q where E1pQ`q

is a pro-` group, E0pQ`q{E1pQ`q is isomorphic to F`, and EpQ`q{E0pQ`q is
isomorphic to the component group of the Néron model of E{Q`. Note that
the component group has order at most 4 for an elliptic curve with additive
reduction. From ` ‰ p and p ą 3 it follows that EpQ`q{pEpQ`q “ 0. This
completes the proof.

Theorem 5.2. Assume that Hypothesis ♥ for pg, p,Kq holds. For all primes
` (not only those in Λ), the local conditions L`,A and L`,A1 all have k0-
rational structure, i.e.: there exist k0-subspaces of H1pK`, V q denoted by
L`,A,0 and L`,A1,0, such that

L`,A “ L`,A,0 bk0 k, L`,A1 “ L`,A1,0 bk0 k
1.

Moreover, we have when ` ‰ q

L`,A,0 “ L`,A1,0,

and when ` “ q:

L`,A,0 “ H1pKq, k0q, L`,A1,0 “ H1pKq, k0p1qq.

Remark 13. This is only place where the item (3) in Hypothesis ♥ is used.
In [16], a stronger hypothesis is imposed at a prime ` with `2|N .

Proof. If p`,Npq “ 1, then both A and A1 have good reduction and we have

L`,A “ H1
finpK`, V q bk0 k, L`,A1 “ H1

finpK`, V q bk0 k
1.

If `2|N , then ` is split in the quadratic extension K{Q. Under the item
(3) in Hypothesis ♥, we have H1pK`, V q “ 0 by Lemma 5.1 (1). In this case
we have trivially

L`,A “ 0, L`,A1 “ 0.

Let `||N be a prime where ρA,p is ramified at ` (this includes all `||N`).
Then A has purely toric reduction and the p-part of the component group is
trivial. Let H1

unrpKq, V q be the subspace of H1pK`,L`q consisting of classes
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that split over an unramified extension of K` [16, §4.2]. It depends only on
the GalQ`-action on V . By [16, Lemma 6], we have

L`,A “ H1
unrpK`, V q bk0 k, L`,A1 “ H1

unrpK`, V q bk0 k
1.

Now let `|N´q be a prime such that ρA,p is unramified. Recall that
V splits uniquely as a direct sum of two k0-lines as GalQ`-module: V »

k0 ‘ k0p1q, This induces H1pK`, V q “ H1pK`, k0q ‘ H1pK`, k0p1qq, where
each component is one-dimensional. The following is proved in [16, Lemma
8]:

• If ` ‰ q, both A and A1 have purely toric reduction and we have

L`,A “ H1pK`, k0p1qq bk0 k, L`,A1 “ H1pK`, k0p1qq bk0 k
1.(5.5)

• If ` “ q, A has good reduction at q, and A1 has purely toric reduction
at q. Hence

Lq,A “ H1pKq, k0q b k, Lq,A1 “ H1pKq, k0p1qq b k
1.(5.6)

Finally, at ` “ p, both A,A1 have good reduction and the local conditions
can be described in terms of flat cohomology [16, Lemma 7].

From the description of L`,A and L`,A1 , the desired result follows.

We define a k0-vector space

Selp0
pA{Kq :“ tc P H1pK,V q : loc`pcq P L`,A,0 for all `u.(5.7)

Then we have

SelppA{Kq “ Selp0
pA{Kq bk0 k.(5.8)

Similarly we define Selp10pA
1{Kq. It follows that the local conditions defining

Selp0
pA{Kq and Selp10pA

1{Kq differ at exactly one prime, i.e., at q.

5.2. Parity lemma.

We record the parity lemma of Gross–Parson [16, Lemma 9]. This lemma
was also known to Howard (cf. [20, Corollary 2.2.10]). We have four Selmer
groups Sel˚pK,V q, ˚ P tu, t, r, su, contained in H1pK,V q, all defined by the
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same local conditions L`,A,0 except ` ‰ q. At q, we specify the local condi-

tions

L˚,q “

$

’

’

’

’

&

’

’

’

’

%

H1pKq, k0q, ˚ “ u (unramified),

H1pKq, k0p1qq, ˚ “ t (transverse),

H1pKq, V q, ˚ “ r (relaxed),

0, ˚ “ s (strict).

Lemma 5.3. If locq : SelupK,V q Ñ Lu,q, then we have

(1) dimk0 SelrpK,V q “ dimk0 SelspK,V q ` 1.

(2) SelupK,V q “ SelrpK,V q and SeltpK,V q “ SelspK,V q.

If locq : SeltpK,V q Ñ Lt,q, then we have

(1) dimk0 SelrpK,V q “ dimk0 SelspK,V q ` 1, and

(2) SeltpK,V q “ SelrpK,V q and SelupK,V q “ SelspK,V q.

5.3. Rank-lowering of Selmer group

We have the following description of the Selmer group when we move from

modular form g to a level-raising one g1 (cf. [16, Theorem 2]).

Proposition 5.4. Let A,A1 be as in the beginning of this section. As-

sume that the localization locq : Selp0
pA{Kq Ă H1pK,V q Ñ H1

finpKq, V q “

H1pKq, k0q is surjective (equivalently, nontrivial). Then we have

dimO 1{p1 Selp1pA
1{Kq “ dimO{p SelppA{Kq ´ 1.

Moreover, we have

Selp10pA
1{Kq “ Kerplocq : Selp0

pA{Kq Ñ H1
finpKq, V qq.

Proof. This first follows immediately from the parity lemma 5.3. The sec-

ond part follows since Selp10pA
1{Kq “ SelspK,V q is the strict Selmer and

Selp0
pA{Kq “ SelrpK,V q is the relaxed Selmer.

6. A special value formula mod p

We need a criterion for the non-vanishing of Heegner points in terms of cen-

tral L-values (instead of the first derivative, as in the Gross–Zagier formula).
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To do so we calculate the image of the Heegner point under the localization
at an unramified prime q:

locq : ApKq Ñ H1
finpKq, Arpsq.

A priori, we may choose an arbitrary q not dividing the level N . But it is eas-
ier to do so at an admissible prime q since the local unramified cohomology
is of rank one by Lemma 4.2.

6.1. A special value formula

We use a formula of Gross [14]. It can be viewed as an explicit Waldspurger
formula for the new vector in the relevant automorphic representation. Such
explicit formulae were also obtained by other authors, cf. [47, 48, 41].

Let g be a newform of level N “ N`N´, where N´ has an odd number of
prime factors. Assume that pg, p,Kq satisfies the hypothesis in “Notations”
(including Hypothesis ♥).

Recall that X “ XN`,N´ is the Shimura set attached to the definite
quaternion ramified at N´8. Let TN`,N´ be the Hecke algebra generated
over Z by Hecke operators T`, p`,Nq “ 1 and U` for `|N acting on ZrXs,
or equivalently the N´-new quotient of the Hecke algebra generated by
Hecke operators acting on the space of weight two modular forms of level N .
Following [43, §2.1], we consider a normalized eigenform φ “ φg, an O-value
function on X, via the Jacquet-Langlands correspondence. It is normalized
such that the image of

φ : X Ñ O ãÑ Op,(6.1)

contains a unit of Op. It is then unique up to a p-adic unit, and we view
it as an element in OprXs. We have a bilinear pairing x¨, ¨y on ZrXs given
by the Petersson inner product with counting measure on X. We extend it
linearly to OrXs and define (cf. also [33, §2.1, 2.2])

ξgpN
`, N´q “ xφ, φy P O.(6.2)

We now state the Gross formula (after Vatsal [43, §2.3], also cf. [33, §2.1,
2.2]). Note that we only consider real valued function, hence we do not have
the complex conjugation.

Theorem 6.1. Let

xK “
ÿ

σPGalpKr1s{Kq

σpxp1qq P ZrXs
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be the Heegner divisor on the Shimura set Xm (cf. (3.6)). Then we have,

pφpxKqq
2

xφ, φy
“ u2

K |D|
1{2Lpg{K, 1q

xg, gy
,

where uK “
1
2#OˆK P t1, 2, 3u, and xg, gyPet is the Petersson inner product

on the modular curve X0pNmq:

xg, gyPet “ 8π2

ż

Γ0pNmqzH
gpzqgpzqdxdy, z “ x` y

?
´1.

6.2. Congruence numbers and canonical periods

For a newform g of level N “ N`N´, we denote by ηgpN
`, N´q P Op

a generator of the congruence ideal of the associated homomorphism πg :
TN`,N´ Ñ O ãÑ Op. Namely as Op-ideals, we have

pηgpN
`, N´qq “ πgpAnnTN`,N´ kerpπgqq ¨ Op.

It is only well-defined up to a p-adic unit. We write ηgpNq “ ηgpN, 1q. We
define the canonical period (after Hida, Vatsal [43, §2.4]):

Ωcan
g “

xg, gyPet

ηgpNq
,(6.3)

where ηgpNq, only well-defined up to units, can be taken as an element in
O. Define

ηg,N`,N´ “
ηgpNq

ξgpN`, N´q
P Op.(6.4)

We also define the algebraic part of the special value of Lpg{K, 1q:

Lalgpg{K, 1q :“
Lpg{K, 1q

Ωcan
g

1

ηg,N`,N´
P Op.(6.5)

The integrality follows from the following reformulation of the formula in
Theorem 6.1:

Corollary 6.2. Up to a p-adic unit, we have

pφpxKqq
2 “ Lalgpg{K, 1q.(6.6)
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6.3. Local Tamagawa numbers

Let g be a new form of level N as above, and A “ Ag the attached GL2-
type abelian variety over Q with O-multiplication. We now define the p-
component of the local Tamagawa number of A at a prime `|N . Let OK` be
the integer ring of K` and k` the residue field (F` ˆ F` if ` is split in K).
For a prime `, let A`{OK` be the Néron model of A{K` and Ak` its special
fiber. Let A0

k`
be the connected component containing the identity of Ak` .

We consider the component group scheme

ΦpA{K`q :“ Ak`{A0
k` .

It is a finite étale group scheme over k` with an action by Og. Let ΦpA{K`qp

be the p-adic completion, which then carries an action of Op “ Og,p. The
the p-part of the local Tamagawa number at ` is defined as the length of the
k`-points of the group scheme ΦpA{K`qp:

tgp`q “ lgOp
ΦpA{K`qppk`q.(6.7)

This depends on p implicitly. One may deduce the vanishing of tgp`q under
a simple condition:

Lemma 6.3. If V Gal` “ 0, then ΦpA{K`qppk`q is trivial, and hence tgp`q “
0.

Proof. By [16, Lemma 4], the space of inertia invariants ArpsI` is, as a Galk`-
module, an extension of ΦpA{K`qrps by A0

k`
rps. Note that ArpsI` “ V I`

k .

Under the hypothesis V Gal` “ 0, we deduce that ArpsI` “ 0, and hence
the Galk`-invariants of A0

k`
rps and ΦpA{K`qrps are trivial. In particular,

ΦpA{K`qrpspk`q “ ΦpA{K`qrps
Galk` “ 0. It follows that ΦpA{K`qppk`q “ 0.

This completes the proof.

Now we consider the case `||N . If ρg,p is ramified at `||N , then ΦpA{K`qp

is trivial and in particular tgp`q “ 0. If a prime ` is inert in K, ΦpA{K`q is
a constant group scheme since k` is a genuine quadratic extension of F`:

ΦpA{K`qpk`q “ ΦpA{K`qpk`q.

Therefore when `||N is inert in K (i.e., `|N´), the length lgOp
ΦpA{K`qp

of the Op-module ΦpA{K`qppk`q is the same as tgp`q. One can describe the
length in terms of the p-adic Galois representation restricted to the inertia
I`

ρg,p : GalQ Ñ GLOp
pTppAqq » GL2pOpq.
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The restriction to the inertia ρg,p|I` at ` is of the form

ˆ

1 ˚

0 1

˙

.

Then the length lgOp
ΦpA{K`qp for inert ` is the same as either

• The maximal integer t such that GalQ-module Arpts is unramified at
`, or
• The maximal integer t such that the p˚q-part of the above matrices

lies in the ideal pt of Op.

For a proof of this well-known description, see [22, p.210].

Theorem 6.4 (Ribet–Takahashi [35], Khare [22], Pollack–Weston,[33]). Let
g be as above (particularly N´ has odd number of factors). Assume that
Hypothesis ♥ holds for pg, p,Kq. Then we have

vppηg,N`,N´q “
ÿ

`|N´

lgOp
ΦpA{K`qp.

Proof. This equality is proved in [33, Theorem 6.8] for square-free N under
Hypothesis ♥ (note that our ηg,N`,N´ defined by (6.4) is the ratio in [33,
Theorem 6.8]). The proof of [33, Theorem 6.8] relies on

• the result of Helm [18] on the multiplicity one of Jrms to show [33,
Theorem 6.2], and
• the last equality in the proof of [33, Theorem 6.8]. This equality is

deduced from the result on modular degrees established for elliptic
curves by Ribet–Takahashi [35] and Takahashi [38], and for GL2-type
abelian varieties over Q attached to g by Khare in [22].

The result of Helm [18] does not need to assume the square-freeness of N
and indeed holds if we only assume that Rampρg,pq contains all q|N´ with
q ” ˘1 mod p. If N is not square-free, one checks the proof of Ribet–
Takahashi (the second assertion of [35, Theorem 1]) and Khare [22] to see
that the last equality in the proof of [33, Theorem 6.8] holds if we only
assume that

• #Rampρg,pq ě 1, namely there is at least one `||N such that ρg,p is
ramified at `, and
• either Rampρg,pq contains a prime `||N´ or there are at least two

primes factors `||N`.
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Therefore [33, Theorem 6.8] holds under our Hypothesis ♥ for pg, p,Kq. This
completes the proof.

6.4. Jochnowitz congruence

We now switch to the setting at the beginning of §5: g is a newform of
level N “ N`N´ and g1 a level-raising newform of level Nq where q is an
admissible prime. We have a prime p1 of Og1 above p and the residue filed
Og1{p

1 “ k1 (cf. §2).

Assume that N´ has even number of factor. Then the root number
of LpA{K, sq (LpA1{K, sq, resp.) is ´1 (1, resp.). We may now state the
Jochnowitz congruence. It provides a local invariant to test the non-vanishing
of Heegner point yK P ApKq (cf. (3.22)). Recall that cp1q P H1pK,V bk0 kq
is the Kummer image of yK . The following result has been essentially known
to other authors [43] and [4].

Theorem 6.5. Assume that g is as in “Notations” and pg, p,Kq satisfies
Hypothesis ♥. Assume that νpN´q is even. Then the class cp1q P H1pK,Vbk0
kq is locally non-trivial at q if and only if the algebraic part Lalgpg1{K, 1q
(defined by (6.5)) is a p1-adic unit.

Proof. By Theorem 3.1, the reduction at q of the Heegner point x1pnq P C1,K

on the Shimura curve X is given under the chosen identification Xm » Xss
Fq2

in (3.12)

Redqpx1pnqq “ xqpnq.

Then the Heegner divisor on X

x1,K “
ÿ

σPGalpKr1s{Kq

σpx1p1qq

has reduction given by

xq,K “
ÿ

σPGalpKr1s{Kq

σpxqp1qq P ZrXqs.

Let φ1 be the normalized function on the Shimura set Xq, obtained from
the Jacquet-Langlands correspondence of g1 as in (6.1) applied to g1. The
reduction

φ1 mod p1 : Xq Ñ Og1{p
1 “ k1
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is a Hecke eigenform, hence equal to a multiple of the function φ in (4.7) (ap-
plied to the Shimura set Xq) by the multiplicity-one (4.8). Possibly replacing
it by a multiple in k

1ˆ we may assume that φ1mod p1 “ φ. In particular, we
have

φ1pxq,Kq mod p1 “ φ pxq,Kq .(6.8)

As in §4, we fix an isomorphism:

H1
finpKq, V q “ H1pKq, k0q » k0.

By (4.9) we have

locqpcp1qq “ φpxq,Kq P k0.

By the Gross formula (Corollary 6.2) for φ1 and (6.8), we have

plocqpcp1qqq
2 “ Lalgpg1{K, 1q mod p1,

where both sides take values in k0. The desired result follows.

7. The rank one case

7.1. The B-SD formula in the rank zero case

We need the results of Kato and Skinner–Urban on the B-SD formula in the
rank zero case. This is the only place we need to impose the ordinariness
assumption.

Theorem 7.1 (Kato, Skinner–Urban). Let g be a modular form of level N
where p a prime of Og above p ě 3. Assume that:

• p is a good ordinary prime.
• The image of ρAg,p contains SL2pFpq.
• There is a place `||N such that the residue Galois representation ρAg,p

is ramified at `.

Then Lpg{K, 1q ‰ 0 if and only if Selp8pAg{Kq is finite, in which case we
have

vp

ˆ

Lpg{K, 1q

Ωcan
g

˙

“ lgOp
Selp8pAg{Kq `

ÿ

`|N

tgp`q,(7.1)

where tgp`q “ lgOp
ΦpA{K`qpk`q is the local Tamagawa number at ` defined

in (6.7).
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Proof. This follows from the p-adic part of the B-SD formula for A and its
quadratic twist AK separately (cf. [29, p.182, Theorem 1]). Or rather, we
use the corresponding statement for the modular form g and its quadratic
twist gK .

For A and its quadratic twist AK , one applies the variant of [37, Theorem
2] for GL2-type abelian varieties to show the p-adic part of the B-SD formula
for A and its quadratic twist AK . We note:

• In [37, Theorem 2], the authors only stated the result for elliptic curves.
But clearly the results extend to the setting of a modular form g with a
prime p of Og above p. To deduce the formula from the Iwasawa Main
conjecture [37, Theorem 1], they invoke a result of Greenberg which
was stated only for elliptic curves, but clearly holds for the GL2-type
abelian variety Ag (cf. the proof of [37, Theorem 3.35]).
• Note that in the proof of [37, Theorem 2], one needs to choose an

auxiliary imaginary quadratic field, which needs not to be the K in
our paper.
• The image of ρAg,p Ą SL2pFpq implies that the image of ρAg,p Ą

SL2pZpq, a condition required to apply Kato’s result in [37].

Finally we also note that the canonical period Ωcan
g is the product Ω`g Ω´g

in [37] up to a p-adic unit.

Remark 14. Note that the theorem does not assume that N´ has odd num-
ber of factors. If N´ has even number of factors, then the root number of
Lpg{K, sq is ´1 and the theorem says that the Selmer group Selp8pAg{Kq
can not be finite.

Remark 15. We will only use that the left hand side is at most as large as
the right hand side in (7.1).

7.2. The rank one case

Theorem 7.2. Let pg, p,Kq be a newform of level N as in “Notations”, sat-
isfying Hypothesis ♥. If dimk SelppA{Kq “ 1, then the class cp1q P H1pK,V q
is nonzero.

Proof. We need to choose a suitable admissible prime q. We record the
following well-known lemma.

Lemma 7.3. Assume p ě 5. Let c P H1pK,V q be a non-zero class. Then
there exists a positive density of admissible primes q such that the localization
locqpcq is nonzero.
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Proof. This is a routine application of Čebotarev density theorem, cf. [4,
Theorem 3.2].

We return to prove Theorem 7.2. Let c be a generator of Selp0
pA{Kq Ă

H1pK,V q. We apply the lemma to c to choose an admissible prime q such
that locqpcq ‰ 0. By Theorem 2.1, there exists a level-raising modular form
g1 of level Nq. Note that Hypothesis ♥ is stable under level-raising. Let A1 “
Ag1 be an associated GL2-type abelian variety with O 1 “ Og1-multiplication.
Then clearly the localization

locq : Selp0
pA{Kq Ñ H1

finpKq, V q

is surjective. By Proposition 5.4, we have dimk1 Selp1pA
1{Kq “ 0. In partic-

ular,

Selp18pA
1{Kq “ 0.

Therefore by the B-SD formula in Theorem 7.1, we have

vp

˜

Lpg1{K, 1q

Ωcan
g1

¸

“ 0`
ÿ

`|Nq

tg1p`q.(7.2)

If `||N`, under our assumption, ρg,p » ρg1,p1 is ramified at `, and hence

tg1p`q “ 0. If `2|N`, then V Gal` “ 0 by the item (3) of Hypothesis ♥. We
then have that for `2|N`, by Lemma 6.3

tg1p`q “ lgO 1
p1

ΦpA1{K`qpk`q “ 0.

The formula (7.2) is then reduced to

vp

˜

Lpg1{K, 1q

Ωcan
g1

¸

“
ÿ

`|N´q

tg1p`q.(7.3)

We now compare the formula (7.2) with

• Gross formula (Corollary 6.2 applied to g1), and
• Theorem 6.4 (note that since our admissible q ‰ ˘1 mod p, the form
g1 remains to satisfy the assumption).

We see that the local Tamagawa factors at N´q exactly cancels the factor
ηg,N`,N´q in (6.5). We conclude that

Lalgpg1{K, 1q ‰ 0 mod p1.
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By Theorem 6.5, this is equivalent to the non vanishing of the localization
of cp1q P H1pK,V bk0 kq at q. In particular, the cohomology class cp1q P
H1pK,V q is nonzero.

8. Triangulization of Selmer group

We recall some basic property of Kolyvagin system

κm “ tcpn,mq P H
1pK,V q : n P Λu

defined in §3. For their proofs, we refer to [15, 23, 24, 28]. Since we will
be working with a fixed m P Λ

1`, we simply write cpn,mq as cpnq. We will
construct a triangular basis of Selmer group in Lemma 8.4. Such triangular
basis for elliptic curves was constructed before by Kolyvagin in [24, Theorem
3] (under the condition that κ8 ‰ 0).

8.1. Basic properties of κ.

There is an alternating GalQ-equivariant pairing

V ˆ V Ñ k0p1q.

This induces the local Tate pairing for every prime `:

H1pK`, V q ˆH
1pK`, V q Ñ k0.

For every prime ` P Λ, the local cohomology group H1pK`, V q is always
4-dimensional (cf. [15]). Define the transverse part H1

trpK,V q as the sub-
space of H1pK`, V q from the inflation of H1pKr`s`{K`, V q (note that GalK`
acts trivially on V ). Then we have a splitting of the finite/singular exact
sequence:

H1pK`, V q “ H1
finpK`, V q ‘H

1
trpK,V q,

where each component is two-dimensional and totally maximal isotropic un-
der local Tate pairing. The complex conjugation τ P GalpK{Qq acts on both
components and each of the eigenspace H1

finpK`, V q
˘, H1

trpK,V q
˘ is one-

dimensional. The local Tate pairing then induces perfect pairings between
one-dimensional spaces:

H1
finpK`, V q

˘ ˆH1
trpK,V q

˘ Ñ k0.
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In general, for every prime ` (not necessarily in Λ), the finite part
H1
finpK`, V q is, by definition, the local condition L`,A,0 Ă H1pK`, V q (cf.

Theorem 5.2).
The collection κ “ tcpnq P H1pK,V q : n P Λu has the following proper-

ties:

(1) For every prime ` (not only those in Λ) and n P Λ, we have (cf. [15])

loc`pcpnqq P

#

H1
finpK`, V q p`, nq “ 1;

H1
trpK`, V q `|n.

(2) For each prime ` P Λ, there is a finite/singular homomorphism:

ψ` : H1
finpK`, V q Ñ H1

trpK`, V q,

which is an isomorphism (cf. [28, Prop. 4.4]) such that for all n P Λ
with pn, `q “ 1

loc`pcpn`qq “ ψ`ploc`pcpnqqq.(8.1)

Recall that we assume that the residue Galois representation ρg,p0
:

GalQ Ñ GLpV q » GL2pk0q is surjective. Under this assumption we have a
Čebotarev-type density theorem.

Lemma 8.1. Let c1, c2 be two k0-linear independent elements in H1pK,V q.
Then there exists a positive density of primes ` P Λ such that

loc`pciq ‰ 0, i “ 1, 2.

Proof. This is a special case of [28, Prop. 3.1], noting that ρg,p0
: GalQ Ñ

GLpV q » GL2pk0q is assumed to be surjective.

The following lemma allows us to pick up an element with a prescribed
set of “singular” places.

Lemma 8.2. Let ` P Λ and S a finite subset of Λ not containing `. Then
there exists c P H1pK,V q˘ such that

• c ‰ 0,
• locvc P H

1
finpKv, V q for all v outside S Y t`u.

• locvc P H
1
trpKv, V q for all v P S.

Proof. The same proof as [28, Lemma 5.3] still works.



46 W. Zhang

8.2. Triangulization of Selmer group

Let pg, p,Kq be as in “Notations” satisfying Hypothesis ♥. Assume that N´

has even number of factors. Let κ “ κg be the associated Kolyvagin system.

Definition 8.3. • The vanishing order ν of κ is defined to be the min-

imal νpnq such that cpnq ‰ 0 for some n P Λ. If κ “ t0u, we take

ν “ 8.

• A prime ` is called a base point of κ if ` does not divide DKNp and

we have loc`pcpnqq “ 0 for all n P Λ (or, simply, loc`pκq “ 0). The set

of all base points is called the base locus of κ, denote by Bpκq.

The following lemma provides one of the eigenspace of Selmer group with

a “triangular basis” entirely consisting of Kolyvagin classes. The existence

of such “explicit” triangular basis seems to be the key to our argument later

on. The following result, can be proved with the techniques, though not

stated explicitly, in [23, 28].

Lemma 8.4. Assume that κ ‰ t0u, i.e., the vanishing order ν of κ is finite.

Then we have

(1) The εν-eigenspace Selενp pA{Kq is of dimension pν ` 1q:

dim Selενp pA{Kq “ ν ` 1,

and

dim Sel´ενp pA{Kq ď ν.

(2) There exist 2ν`1 distinct primes `1, ..., `2ν`1 P Λ1 such that the classes

cpniq P H
1pK,V q, ni :“ `i`i`1...`i`ν´1, 1 ď i ď ν ` 1

form a basis of Selενp pA{Kq with the property that, for all 1 ď j ď ν`1:

loc`ν`j pcpniqq

#

“ 0, i ą j.

‰ 0, i “ j.
(8.2)

In other words, the pν`1qˆpν`1q-matrix ploc`ν`j pcpniqqqi,j is invertible

and upper triangular.

(3) Let Sel˘
p,BpκqpA{Kq be the relaxed Selmer group at the base locus Bpκq,

i.e., the set of c P H1pK,V b kq˘ such that locvpcq P Lv,A for all v
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outside Bpκq and no restriction on locvpcq P H
1pKv, V b kq if v P

Bpκq. Then we have Selεν
p,BpκqpA{Kq “ Selενp pA{Kq and

dim Sel´εν
p,BpκqpA{Kq ď ν.

Proof. We first prove by induction that, if 0 ď j ď ν, there exist a sequence
of primes `1, ..., `ν`j P Λ such that

• For all 1 ď i ď j ` 1, we have cpniq ‰ 0, where ni “ `i...`ν`i´1.
• For all 1 ď i ď j, we have loc`ν`icpniq ‰ 0.

When j “ 0, it follows from the definition of ν that there exists n1 “ `1...`ν P
Λν such that

cpn1q ‰ 0.

This proves the case j “ 0 since the second requirement is void in this case.
Now suppose that we have found `1, ..., `ν`j with the desired property

and 0 ď j ď ν´1. We apply Lemma 8.2 to S “ t`j`2, ..., `ν`ju and ` “ `j`1

to obtain c P H1pK,V q´εν such that

• c ‰ 0,
• locvc P H

1
finpKv, V q for all v outside t`j`1, ..., `ν`ju.

• locvc P H
1
trpKv, V q for all v P t`j`2, ..., `ν`ju.

In particular, c lies in the opposite eigenspace to cpnj`1q under the com-
plex conjugation. Apply Lemma 8.1 to obtain a prime denoted by `ν`j`1,
distinct from `1, ..., `ν`j , such that

loc`ν`j`1
pcq ‰ 0, loc`ν`j`1

pcpnj`1qq ‰ 0.(8.3)

We now calculate the Tate paring, as a sum of the local Tate pairing over
all places:

0 “ xc, cpnj`1`ν`j`1qy “
ÿ

v

xc, cpnj`1`ν`j`1qyv.(8.4)

We first note that both c and cpnj`1`ν`j`1q lie in the same eigenspace. The
(possibly) nonzero contribution only comes from v P t`j`1, ..., `ν`j`1u. When
v P t`j`2, ..., `ν`ju, both locvc and locvcpnj`1`ν`j`1q lie in the transverse
part H1

trpKv, V q. Hence the local pairing yields zero. When v “ `ν`j`1, by
(8.3) we have loc`ν`j`1

c ‰ 0 in H1
finpK`ν`j`1

, V qεν`1 and

loc`ν`j`1
cpnj`1`ν`j`1q “ ψ`ν`j`1

ploc`ν`j`1
cpnj`1qq ‰ 0,
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in H1
trpK`ν`j`1

, V qεν`1 . It follows that the local contribution at v “ `ν`j`1 is
nonzero. Hence by (8.4), both loc`j`1

c and loc`j`1
cpnj`1`ν`j`1q are nonzero.

Hence we have

loc`j`1
cpnj`ν`j`1{`j`1q ‰ 0,

or equivalently,

loc`j`1
cpnj`2q ‰ 0, nj`2 “ `j`2...`ν`j`1.

In particular, we have

cpnj`2q ‰ 0.(8.5)

By (8.3) and (8.5) we complete the induction.
We finally add a prime `2ν`1 P Λ such that

loc`2ν`1
cpnν`1q ‰ 0.

Such a prime exists since cpnν`1q ‰ 0. Now we have found t`1, ..., `2ν`1u

satisfying the property (8.2).
It is clearly cpniq, 1 ď i ď ν ` 1, are linearly independent and in the

Selmer group Selενp pA{Kq. To show that they actually generate the entire
space Sel

εf
p pK,V q, it suffices to show the stronger statement that they gen-

erate the relaxed Selmer Selεν
p,BpκqpA{Kq.

Let c P Selεν
p,BpκqpA{Kq. We may further assume that, perhaps subtract-

ing c by a suitable linear combination of cpniq’s:

loc`ν`j pcq “ 0, 1 ď j ď ν ` 1.

Set

n1 “ `ν`1...`2ν`2ν`1 P Λν`1.

Then cpn1q is non-zero since it’s locally nonzero at `2ν`1. In particular, the
classes c and cpn1q are in difference eigenspaces.

Assume that c ‰ 0. By Lemma 8.1, there exists a prime `2ν`2 R t`i : 1 ď
i ď 2ν ` 1u such that

loc`2ν`2
pcq ‰ 0, loc`2ν`2

cpn1q ‰ 0.(8.6)

Set

n2 “ n1`2ν`2 P Λν`2.
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Then cpn2q is nonzero since (8.6) implies that

loc`2ν`2
pcq ‰ 0, loc`2ν`2

cpn2q ‰ 0.(8.7)

Moreover, the class cpn2q lies in the same eigenspace as c.
We calculate the Tate pairing as a sum of local terms:

0 “ xc, cpn2qy “
ÿ

vPBpκq

xc, cpn2qyv `
ÿ

`|n2

xc, cpn2qy`.

By definition of base locus Bpκq, we have locvκ “ 0. Hence the first sum is
zero since cpn2q P κ.

Since loc`ipcq “ 0 for all ν ` 1 ď i ď 2ν ` 1, by (8.6) and (8.7) we have

ÿ

`|n2

xc, cpn2qy` “ xc, cpn
2qy`2ν`2

‰ 0.

Contradiction! Hence c “ 0 and it follows that Selεν
p,BpκqpA{Kq “ Selενp pA{Kq

is generated by cpniq, 1 ď i ď ν ` 1.
To complete the proof of Lemma 8.4, it remains to show that

dim Sel´εν
p,BpκqpA{Kq ď ν.

Suppose that dim Sel´εν
p,BpκqpA{Kq ě ν ` 1. Then by a dimension counting,

there exists a class 0 ‰ d P Sel´ενp pA{Kq such that

loc`ν`id “ 0, 1 ď i ď ν.

Since d and cpnν`1q lie in different eigenspaces, by Lemma 8.1, we may (re-)
choose `2ν`1 such that

loc`ν`1
d ‰ 0, loc`ν`1

cpnν`1q ‰ 0.

Then, as before, we calculate the Tate paring xd, cpnν`1`2ν`1qy, to get a
contradiction.

9. Kolyvagin’s conjecture

9.1. Nonvanishing of κ.

We resume the notation in §3 and consider the non-vanishing of κ.
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Theorem 9.1. Let g be a newform of weight two of level N with trivial
nebentypus, p a prime ideal of Og above p, and K an imaginary quadratic
field of discriminant DK such that pDK , Nq “ 1. Assume

• N´ is square-free with even number of prime factors.
• ρg,p0

: GalQ Ñ GLpV q » GL2pk0q is surjective.
• Hypothesis ♥ holds for pg, p,Kq.
• p - DKN and p ě 5 is an ordinary prime.

Then we have

κ “ tcpnq P H1pK,V q : n P Λu ‰ t0u.

Proof. We prove this by induction on the rank

r “ dimO{p SelppAg{Kq.

We first assume that the parity conjecture (for Selmer group) holds for E{K
(cf. [32]), i.e., that r is always odd. We will remove this assumption later, as
to be shown by our method.

The case r “ 1 has been treated by Theorem 7.2. Suppose now that
the rank r ě 3. Suppose that µ P t˘1u is chosen such that SelµppAg{Kq has

higher rank than Sel´µp pAg{Kq. In particular, we have dim SelµppAg{Kq ě 2.

We proceed as follows.

• Choose a non-zero c1 P SelµppAg{Kq. We may and will require that
c1 P H

1pK,V bk0 kq is k0-rational, i.e., in H1pK,V q. And choose an
admissible prime q1 such that the image of c1 under homomorphism

locq1 : SelppAg{Kq Ñ H1
finpKq1 , V q

is nonzero. In particular, the homomorphism is surjective. Then we
apply level-raising theorem 2.1 to obtain a newform g1 of level Nq1

together with a prime p1. Then by Proposition 5.4, we have

dimO1{p1
Selp1

pA1{Kq “ dimO{p SelppA{Kq ´ 1,

and the k0-rational Selmer group is equal to the kernel of locq1 :

Selp1,0
pA1{Kq “ Kerplocq1 : Selp0

pA{Kq Ñ H1
finpKq1 , V qq.

• Choose a non-zero c2 P Selµp1
pA1{Kq. Since Selµp1

pA1{Kq ě 2, such c2

exists. We may and will require that c2 P H
1pK,V q. We use again the
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level-raising theorem 2.1 to obtain a newform g2 of level Nq1q2. Then
by Proposition 5.4, we have

dimO2{p2
Selp2

pA2{Kq “ dimO1{p1
Selp1

pA1{Kq ´ 1

“ dimO{p SelppA{Kq ´ 2,

and the k0-rational Selmer group is equal to the kernel of locq2 :

Selp2,0
pA2{Kq “ Kerplocq2 : Selp1,0

pA1{Kq Ñ H1
finpKq2 , V qq.

Moreover, the process is compatible with the action of complex conjugation.
We hence have for i “ 1, 2

dimOi{pi SelµpipAi{Kq “ dimO{p SelµppA{Kq ´ i,(9.1)

and

dimOi{pi Sel´µpi pAi{Kq “ dimO{p Sel´µp pA{Kq.(9.2)

By induction hypothesis, noting that g2 still satisfies the hypothesis of
Theorem 9.1, we may assume that the collection

κq1q2 “ tcpn, q1q2q P H
1pK,V q : n P Λu ‰ t0u.

By the cohomological congruence of Heegner points (Theorem 4.3), we
have for all n P Λ

locq1cpn, 1q “ locq2cpn, q1q2q.

To finish the proof of κ “ tcpn, 1q : n P Λu ‰ t0u, it suffices to show that q2

is not a base point of the Kolyvagin system κq1q2 .
We show this by contradiction. Suppose that q2 is a base point of κq1q2 .

We note that the local condition from A2 differs from that from A1 only at
the place q2. We then have a trivial inclusion into the relaxed Selmer group:

Sel˘p1,0
pA1{Kq Ă Sel˘

p2,0,Bpκq1q2 q
pA2{Kq.(9.3)

We have two cases

(1) dim Selµp2
pA2{Kq remains larger than dim Sel´µp2

pA2{Kq.

(2) dim Selµp2
pA2{Kq is smaller than dim Sel´µp2

pA2{Kq. This happens ex-
actly when

dim SelµppA{Kq “ dim Sel´µp pA{Kq ` 1.(9.4)
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In the first case, by Lemma 8.4 we have an equality

Selµp2
pA2{Kq “ Selµ

p2,Bpκq1q2 q
pA2{Kq.

Hence Selµp1,0
pA1{Kq Ă Selµp2

pA2{Kq by (9.3). But, by our choice, the class
c2 lies in the first space but not in the second. A contradiction!

In the second case, let ν “ νg2 be the vanishing order of κq1q2 . Then we
know by Lemma 8.4 that

dim Sel´µp2,0
pA2{Kq “ ν ` 1, dim Selµ

p2,0,Bpκq1q2 q
pA2{Kq ď ν.

However, by (9.3), the dimension of Selµ
p2,0,Bpκq1q2 q

pA2{Kq is at least that of

Selµp1,0
pA1{Kq which is ν ` 1 by (9.1), (9.2), (9.3) and (9.4).

Remark 16. Heuristically, the two cases are treated similar to the proof that
Sel˘p pE{Kq is rank 0 or 1 under the assumption that p does not divide the
Heegner point yK P EpKq (cf. the proof of [15, Claim 10.1, 10.3]).

9.2. The parity conjecture for Selmer groups.

We finally remark how to avoid the use of parity conjecture (for p-Selmer
group) and actually deduce the parity conjecture from our argument.

Theorem 9.2. Let pg, p,Kq be as in Theorem 9.1. Then dimk SelppA{Kq is
odd and hence Selp8pA{Kq has odd Og,p-corank.

Proof. First of all we note that under the hypothesis that N´ is square-free
with even number of prime factors, the root number of Ag{K is ´1, hence
Lpg{K, 1q “ 0. Therefore r “ 0 does not occur since by Theorem 7.1, we
know that Lpg{K, 1q ‰ 0 if r “ 0.

Suppose that dim SelppAq “ r ě 2 is even. If one eigenspace dim SelνppAq
is strictly larger that the other, the same argument above will produce A2

with dim Selp2
pA2q “ r ´ 2. Otherwise, the two eigenspaces have the same

dimension dim SelνppAq “ dim Sel´νp pAq ě 1. We may then modify the choice
of c2 in the proof above and insist c2 P dim Sel´νp pA1q. Then we again pro-
duce A2 with dim Selp2

pA2q “ r ´ 2. Therefore, by induction, we have a
contradiction! We thus deduce the parity under the hypothesis that N´ has
even number of factors:

dimk SelppAg{Kq ” 1 mod 2.
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Note that under our hypothesis, the k-vector space SelppA{Kq can be
identified with the p-torsion of Selp8pA{Kq. By the non-degeneracy of the
Cassels–Tate pairing on the indivisible quotient of the Op-moduleXpA{Kq,
the Og,p-corank of Selp8pA{Kq has the same parity as SelppA{Kq. This shows
that Selp8pA{Kq has odd Og,p-corank.

9.3. Nonvanishing of κ8

Now we return to the setting of §2 and confirm Kolyvagin’s conjecture 3.2
on non-vanishing of κ8.

Theorem 9.3. Let g be a newform of weight two of level N with trivial
nebentypus, p a prime ideal of Og above p, and K an imaginary quadratic
field of discriminant DK with pDK , Nq “ 1. Assume that

• N´ is square-free with even number of prime factors.
• The residue representation ρg,p0

is surjective.
• Hypothesis ♥ holds for the triple pg, p,Kq.
• The prime p ě 5 is ordinary and p - DKN .

Then we have

κ8 “ tcM pnq P H
1pK,Ag,Mpnqq : n P Λ,M ďMpnqu ‰ t0u.

Indeed we have

M8 “ 0.

Proof. This follows trivially from Theorem 9.1.

Theorem 9.3 implies Theorem 1.1 since, by Lemma 5.1 (2), the item (3)
in Hypothesis ♥ for pg, p,Kq holds automatically for the weight two newform
g associated to E{Q and p “ ppq.

10. B-SD formula in the rank one case

In this section we prove the p-part of the B-SD formula in the rank one case
for nice p (in a precise way depending on the residue representation). For
simplicity, we will restrict ourselves to the case of elliptic curves.

We recast the situation. Let E be an elliptic curve over Q of conductorN .
We will assume that ρE,p is irreducible. Then there is only one isomorphism
class of E up to prime-to-p isogeny. We fix E as the strong Weil curve.

Let K an imaginary quadratic field. Suppose that in the decomposition
N “ N`N´, N´ is square-free and has even number of prime factors. Let
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δpN`, N´q be the modular degree of (the isogeny class of) E parameterized
by XN`,N´ . More precisely, in the isogeny class of E, consider an optimal
quotient E1 of the Jacobian JN`,N´ of XN`,N´ :

π : JN`,N´ Ñ E1.

Then the modular degree ηN`,N´ is defined as the integer π˝π_ P EndQpE
1q»

Z. Similarly, we simply denote δpN, 1q “ δpNq which is the modular degree
using the modular curve X0pNq. Set

δN`,N´ “
δpN, 1q

δpN`, N´q
.

Let c be the Manin constant associated to (the strong Weil curve in the
isogeny class of) E{Q. It is conjectured to be equal to one. Let c` be the
local Tamagawa numbers of E{Q` (E{K`, resp.) if ` is split (if ` is nonspit,
resp.) in K{Q. Under a prime-to-p isogeny E1 Ñ E, the Heegner point
yK P E

1pKq is mapped to EpKq (still denoted by yK).

Lemma 10.1. Assume that ρE,p is irreducible.

1. If ords“1LpE{K, sq “ 1, then the p-part of the B-SD formula for E{K
is equivalent to the following identity

rEpKq : ZyKs2 ¨ δN`,N´ “ c2#XpE{Kq
ź

`|N`

c2
`

ź

`|N´

c`,

up to a p-adic unit.
2. If ords“1LpE{K, sq “ 1 and pE, p,Kq satisfies Hypothesis ♠, then the

p-part of the B-SD formula for E{K is equivalent to

rEpKq : ZyKs2 “ #XpE{Kq
ź

`|N`

c2
` ,(10.1)

up to a p-adic unit.

Remark 17. When N´ ‰ 1, we have defined the point yK “ yp1q by (3.2).
This can be viewed as an element in EpKqbZp. In this case we understand
the index rEpKq : ZyKs as rEpKq b Zp : ZpyKs, well-defined up to a p-adic
unit.

Proof. Under the square-freeness ofN´, the Gross–Zagier formula for pE,Kq
on Shimura curve XN`,N´ ([45], as specialized to the current case by [41])
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simplifies

u2
K

L1pE{K, 1q

Ωcan|DK |
´1{2

1

δpN, 1q
“

1

δpN`, N´q

xyK , yKyE{K

c2
.

This formula can be deduced from [45, Theorem 1.2] in a way analogous to
[17, Theorem (2.1), p.311].

The B-SD formula for E{K states (cf. [17, p.311])

L1pE{K, 1q

Ωcan|DK |
´1{2

“
xyK , yKy

rEpKq : ZyKs2
#XpE{Kq

ź

`|N`

c2
`

ź

`|N´

c`.(10.2)

The first result follows by comparison:

rEpKq : ZyKs2δN`,N´ “ u2
Kc

2#XpE{Kq
ź

`|N`

c2
`

ź

`|N´

c`.

Note that uK “ 1
2#OˆK ď 3. By a result of Mazur [25, Cor. 3.1], if p

divides the Manin constant c, then p2|4N . When ρE,p is irreducible and
Hypothesis ♠ holds, by the theorem of Ribet–Takahashi (the second part of
[35, Theorem 1], cf. the proof of Theorem 6.4), we have, up to a p-adic unit:

δN`,N´ “
ź

`|N´

c`.

The second result then follows.

Theorem 10.2. Let E{Q be an elliptic curve of conductor N , K an imag-
inary quadratic field. Let p ě 5 be a prime such that:

(1) N´ is square-free with even number of prime factors.
(2) ρE,p is surjective.
(3) Hypothesis ♠ holds for pE, p,Kq.
(4) p - DKN is an ordinary prime.

If ords“1LpE{K, sq “ 1, then the p-part of the B-SD formula for E{K holds,
i.e.:

ˇ

ˇ

ˇ

ˇ

L1pE{K, 1q

Ωcan|DK |
´1{2RegpE{Kq

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#XpE{Kq
ź

`|N`

c2
`

ź

`|N´

c`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

.(10.3)

where the regulator is defined as RegpE{Kq :“ xy,yyNT
rEpKq:Zys2 for any non-torsion

y P EpKq, xy, yyNT is the Néron-Tate height pairing.
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Proof. Under Hypothesis ♠, all local Tamagawa numbers c` are p-adic units
when `|N`. By (10.1), it suffices to show, up to a p-adic unit,

rEpKq : ZyKs2 “ #XpE{Kq.

When ords“1LpE{K, sq “ 1, by Kolyvagin’s theorem ([23, 28] for modular
curves) on the structure ofXpE{Kq, we have

#XpE{Kqrp8s “ p2pM0´M8q.

By Theorem 9.3, we have

M8 “ 0.

The result follows from that M0 is the p-part of the index rEpKq : ZyKs by
definition.

Remark 18. Let ĂXpE{Kqrp8s denote the quotient of XpE{Kqrp8s by its
maximal divisible subgroup. IfXpE{Kqrp8s is finite, thenXpE{Kqrp8s is

the same as ĂXpE{Kqrp8s. Kolyvagin in [24, Theorem 1] proved that, under

the condition κ8 ‰ 0, the structure of ĂXpE{Kqrp8s is determined in terms
of the sequence Mi:

ĂXpE{Kq˘rp8s »
à

iě1

pZ{pa
˘
i Zq2, a˘1 ě a˘2 ě ...,

where, setting ν “ ν8,

#

aενi “ Mν`2i´1 ´Mν`2i, i ě 1,

a´εν
i`pν´r´ενp q

“ Mν`2i´2 ´Mν`2i´1, i ě 1.

In particular, we have a bound

#ĂXpE{Kqrp8s ě p2pMν´M8q,

where the equality holds if ν “ r´ενp (for example, if ν “ 0).

Now recall that RampρE,pq is the set of primes `||N such that ρE,p is
ramified at `.

Theorem 10.3. Let E{Q be an elliptic curve of conductor N . Let p ě 5 be
a prime such that:

(1) ρE,p is surjective.
(2) If ` ” ˘1 mod p and `||N , then ρE,p is ramified at `.
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(3) If N is not square-free, then #RampρE,pq ě 1 and when #RampρE,pq “
1, there are even number of prime factors `||N .

(4) The prime p is good ordinary.

If ords“1LpE{Q, sq “ 1, then the p-part of the B-SD formula for E{Q holds,
i.e.:

ˇ

ˇ

ˇ

ˇ

L1pE, 1q

ΩE ¨ RegpE{Qq

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#XpE{Qq ¨
ź

`|N

c`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

.

Proof. By the same argument in the proof of Theorem 1.4, we may choose
an auxiliary imaginary quadratic field K using [6, 31] such that pE, p,Kq
satisfies the conditions of Theorem 10.2. It follows that the p-part of the
B-SD formula for E{K holds. Since LpEK , 1q ‰ 0, the p-part of the B-SD
formula for EK{Q holds by [37, Theorem 2] (cf. Theorem 7.1). Then the
p-part of the B-SD formula for E{Q also follows.

11. Construction of Selmer groups

We first construct the p-Selmer group SelppA{Kq, and then all of Selp8pE{Qq
for an elliptic curve E{Q.

Theorem 11.1. Let pg, p,Kq be as in Theorem 9.1 and ν the vanishing
order of κ.

1. The k-vector space Selενp pA{Kq is contained in the subspace of H1pK,Vkq
spanned by all cpn, 1q where n P Λ.

2. The k-vector space SelppA{Kq is contained in the subspace of H1pK,Vkq
spanned by all cpn,mq where n P Λ and m P Λ

1`.

Proof. The first part is a consequence of Lemma 8.4 and the non-vanishing
of κ by Theorem 9.1. For the second part, it suffices to show that the other
eigenspace Sel´ενp pA{Kq is generated by cpn,mq’s. We may prove it by induc-
tion on the dimension of SelppA{Kq as in the proof of Theorem 9.1. We see
that dim Selp2

pA2{Kq “ dim SelppA{Kq ´ 2 and by induction hypothesis we
may assume that Selp2

pA2{Kq is generated by cpn, q1q2mq, n P Λ,m P Λ
1`.

In particular, the subspace Sel´ενp2
pA2{Kq is generated by cpn, q1q2mq, n P

Λ,m P Λ
1`. The result follows from the fact that the spaces Sel´ενp pA{Kq

and Sel´ενp2
pA2{Kq have the same underlying k0-vector subspace.

Now we consider the p8-Selmer group. We will now consider only elliptic
curves E{Q since the result we will use is only written down in the literature
for elliptic curves. We would like to construct all elements in the group
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Sel˘p8pE{Kq by the cohomology classes from Heegner points defined over
ring class fields.

We recall a result of Kolyvagin [24, Theorem 2 and 3], which does not
assume our Hypothesis ♠. Under the irreducibility of ρE,p, we have an in-
jection

H1pK,ErpM sq ãÑ H1pK,ErpM`M
1

sq, M,M 1 ě 1.

The group H1pK,ErpM sq can be viewed as the kernel of the multiplication
by pM on H1pK,ErpM`M

1

sq. If an element c P H1pK,ErpM`M
1

sq is killed
by pM , we will view c as an element in H1pK,ErpM sq. More generally, we
have a short exact sequence:

0 // H1pK,ErpM sq // H1pK,Erp8sq
pM // H1pK,Erp8sq.

In this way we will view cM pnq P H
1pK,ErpM sq as an element ofH1pK,Erp8sq.

Theorem 11.2 (Kolyvagin). Let E{Q be an elliptic curve of conductor N ,
K an imaginary quadratic field, p a prime, such that

• pp,DNq “ 1 and N´ is square-free with even number of factors.
• The residue Galois representation ρE,p is surjective.

Assume that M8 is finite and denote by ν8 the vanishing order of κ8. Then
we have

(i) The Zp-coranks of Sel˘p8pE{Kq satisfy

rεν8p pE{Kq “ ν8 ` 1,

and

0 ď ν8 ´ r´εν8p pE{Kq ” 0 mod 2.

(ii) The Selmer group Selεν8p8 pE{Kq Ă H1pK,Erp8sq is contained in the
subgroup of H1pK,Erp8sq generated by all cM pnq, n P Λ,M ďMpnq.

Proof. Kolyvagin only considered the case of parameterization of E by mod-
ular curves. But his argument obviously works in the case where the elliptic
curve is parameterized by Shimura curve (cf. [42]).

Corollary 11.3. Let E{Q be an elliptic curve of conductor N . Let p ě 5
be a prime such that:

(1) ρE,p is surjective.
(2) If ` ” ˘1 mod p and `||N , then ρE,p is ramified at `.
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(3) If N is not square-free, then #RampρE,pq ě 1 and when #RampρE,pq “
1, there are even number of prime factors `||N .

(4) The prime p is good ordinary.

Then there exists an imaginary quadratic field K such that the Selmer group
Selp8pE{Qq is contained in the subgroup of H1pK,Erp8sq generated by all
cM pnq P H

1pK,Erp8sq, n P Λ,M ďMpnq.

Proof. As in the proof of Theorem 10.3, we may choose K such that E{K
satisfies the assumption of Theorem 11.2 and such that the quadratic twist
EK has non vanishing LpEK , 1q (if εpE{Qq “ ´1) or L1pEK , 1q (if εpE{Qq “
1). Then by Theorem 11.2, if Selp8pE{Qq has positive Zp-corank, it will be
the eigenspace Selεν8p8 pE{Kq with larger corank, and hence generated by the
classes cM pnq P H

1pK,Erp8sq, n P Λ,M ď Mpnq. It remains to treat the
case when Selp8pE{Qq is finite, which is then isomorphic to XpE{Qqrp8s.
But in that case, we must have ords“1LpE{K, sq “ 1 and Kolyvagin has
shown that the group XpE{Kqrp8s are generated by the classes cM pnq P
H1pK,Erp8sq, n P Λ,M ďMpnq. This completes the proof.

Remark 19. In [8], the authors prove that every element in XpE{Qqrp8s
splits in a solvable extension of Q, for every semistable E{Q and every
prime p. Our result gives a new proof when pE, pq is as in Corollary 11.3.
Indeed, our result shows that one may choose the solvable extension to be
unramified at p. It is then easy to see that, for an element in XpE{Qqrp8s
where pE, pq is as in Corollary 11.3, one may choose the solvable extension
to be unramified at any given finite set of primes. This was achieved in [8]
only when the analytic rank is at most one.
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