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Selmer groups and the indivisibility of Heegner
points

WEI ZHANG

For elliptic curves over QQ, we prove the p-indivisibility of derived
Heegner points for certain prime numbers p, as conjectured by
Kolyvagin in 1991. Applications include the refined Birch—Swinerton-
Dyer conjecture in the analytic rank one case, and a converse to
the theorem of Gross—Zagier and Kolyvagin. A slightly different
version of the converse is also proved earlier by Skinner.
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In this article we confirm a refined conjecture of Kolyvagin [24] on the p-
indivisibility of some derived Heegner points on an elliptic curve E over Q

1


http://www.intlpress.com/CJM/

2 W. Zhang

for a good ordinary prime p > 5 that satisfies suitable local ramification hy-
pothesis. When the analytic rank of E/Q is one, combining with the general
Gross—Zagier formula on Shimura curves [17, 45, 46] and Kolyvagin’s theo-
rem [23], we are able to prove the p-part of the refined Birch-Swinnerton-
Dyer conjecture. We also obtain a converse to the theorem of Gross—Zagier
and Kolyvagin, first proved by Skinner for semistable elliptic curves [36].
When the analytic rank is higher than one, together with Kolyvagin’s theo-
rem [24], one may naturally construct all elements in the p®-Selmer group
Sel,» (E/Q) from Heegner points defined over ring class fields. In a subse-
quent paper [49], we will apply the main result of this paper to prove a
version of the Birch-Swinnerton-Dyer conjecture (for Selmer groups) a la
Mazur-Tate [27] and Darmon [12] in the anti-cyclotomic setting.

Let E be an elliptic curve over Q with conductor N. For any number
field F < Q, we denote by Galp := Gal(Q/F) the absolute Galois group of
F. One important arithmetic invariant of E/F is the Mordell-Weil group
E(F), a finitely-generated abelian group:

E(F) ~Z"™wY @ finite group,

where the integer rymw = rayw (E/F) is called the Mordell-Weil rank. An-
other important arithmetic invariant of E/F is the Tate—Shafarevich group
of E/F, denoted by III(E/F):

MI(E/F) := Ker(H'(F, E) — [ [ H'(F., B)),

where the map is the product of the localization at all places v of F, and,
as usual, H'(k,E) := HGal(k/k),E) for k = F,F, and i € Zso. The
group III(E/F) is torsion abelian, and conjectured to be finite by Tate and
Shafarevich. As a set, it is closely related to the set of isomorphism classes
of smooth projective curves C/F such that

Jac(C) ~ E, C(Fy,) # J, for all v.

Let p be a prime and III(E/F)[p®] the p-primary part of III(E/F’). Incorpo-
rating the information of both E(F') and III(E/F'), there is the p®-Selmer
group denoted by Sel,«(E/F) defined as follows (cf. [13, §2]). Let E[p™] be

the group of p-primary torsion points of E(Q). The Galois group Galg acts
on E[p®]. Consider the local Kummer map

8u : B(F,) ® Qp/Zy — H' (Fy, E[p™]).
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Then Selp» (E/F) is defined as

Sely« (E/F) := Ker(H'(F, E[p”]) — | [ H'(F,, E[p™])/Im(5y)),

where the map is the product of the localization at all places v of F. The
Zyp-corank of Sely»(E/F) is denoted by r,(E/F).

The Mordell-Weil group E(F'), the p®-Selmer group Sel,~(E/F) and
the p-primary part of Tate-Shafarevich group II(E/F)[p®] are related by
the following exact sequence:

0 — E(F) @ Qp/Zp — Selp= (E/F) — TI(E/F)[p*] — 0.

This sequence may be called the p®-descent of E/F. Then we have an in-
equality
0< T’Mw(E/F) < Tp(E/F),

where the equality ryw (E/F) = rp(E/F) holds if and only if III(E/F')[p*]
is finite. Therefore, assuming #III(E/F) < o, the Selmer rank r,(E/F) is
independent of p.

We may also consider the p-Selmer group Sel,(E/F) and the p-torsion
HI(E/F)[p] of III(E/F). We have the exact sequence of vector spaces over
[F,, (the finite field of p elements):

0 — E(F)®Z/pZ — Sel,(E/F) — II(E/F)[p] — 0.

This sequence may be called the p-descent (or the first descent) of E/F.
Then we have a natural surjective homomorphism

Sel,(E/F) — Sel,=(E/F)[p],

where [p] denotes the subgroup of p-torsion elements.
We will denote the action of Galg := Gal(Q/Q) on the p-torsion points
E[p] by
PEp: Galp — Aut(E[p]) ~ GL2(Fy).

Throughout this paper we assume that pg, is surjective, p{ N, and p = 5.
Let L(E/Q, s) be the L-function associated to E/Q'. We take the nor-

malization such that the center of the functional equation is at s = 1. The

vanishing order of L(E/Q,s) at s = 1 is called the analytic rank of E/Q.

INote that this L-function does not include the archimedean local L-factor.
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The theorem of Gross—Zagier and Kolyvagin asserts that if the analytic rank
of E/Q is at most one, then the Mordell-Weil rank is equal to the analytic
rank and ITI(E/Q) is finite. The proof of their theorem is through the study
of the Heegner points. To define these points, we let K = Q[v/—D] be an
imaginary quadratic field of discriminant Dg = —D < 0 with (D, N) = 1.
Write N = NN~ where the prime factors of N* (N~ resp.) are all split
(inert, resp.) in K. Assume that N~ is square-free and denote by v(N ™)
by the number of prime factors of N~. Then the root number for F/K is
(=1)'*¥(N7) We say that the pair (E, K) satisfies the generalized Heegner
hypothesis if v(N ) is even. Then there exist a collection of points y(n) on E
defined over the ring class field K [n] of conductor n (cf. §3). The trace of y(1)
from K[1] to K will be denoted by yx. The work of Gross—Zagier [17] and
S. Zhang [46] asserts that yx is non-torsion if and only if the analytic rank
of E/K is one. The method of Kolyvagin is to construct cohomology classes
from the Heegner points y(n) to bound the p®-Selmer group, in particular,
to show that the Mordell-Weil rank of E/K is one and ILI(E/K) is finite, if
Yk is non torsion. We fix a prime p with surjective pg . We call a prime £ a
Kolyvagin prime if £ is prime to N Dp, inert in K and the Kolyvagin index
M (¢) := min{v,(¢+1),v,(ar)} is strictly positive. Let A be the set of square-
free product of distinct Kolyvagin primes. Define M (n) = min{M (¢) : ¢|n}
if n > 1, and M(1) = oo. To each y(n) and M < M (n), Kolyvagin associ-
ated a cohomology class cyr(n) € HY (K, E[pM]) (cf. §3 (3.21) for the precise
definition). Denote

k* = {cy(n) e HY(K,E[pM]) :ne A, M < M(n)}.

In particular, the term cps(1) of k% is the image under the Kummer map
of the Heegner point yx € E(K). Therefore, when the analytic rank of
E/K is equal to one, the Gross—Zagier formula implies that yx € E(K) is
non torsion and hence cps(1) # 0 for all M » 0. Kolyvagin then used the
non-zero system x* to bound the Selmer group of E/K. In [24], Kolyvagin
conjectured that k® is always nonzero even if the analytic rank of E/K is
strictly larger than one. Assuming this conjecture, he proved various results
about the Selmer group of E//K (in particular, see Theorem 11.2 and Remark
18 in §10). In this paper we will prove his conjecture under some conditions
we now describe.

Let Ram(pg ,,) be the set of primes £||N such that pg , is ramified at /.
We further impose the following ramification assumption on pg ,, (depending
on the decomposition N = NTN~ hence on K), called Hypothesis # for
(E,p,K):
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(1) Ram(pp,) contains all primes ¢ such that ¢||[N" and all primes £| N~
such that £ = +1 mod p.

(2) If N is not square-free, then #Ram(pg ) > 1, and either Ram(pg )
contains a prime £|| N~ or there are at least two primes factors £||[N".

Note that there is no requirement on the ramification of E[p| at those
primes ¢ for which ¢?|N; that is, at the primes where E has additive reduc-
tion.

Then we prove (cf. see Theorem 9.3)

Theorem 1.1. Let E/Q be an elliptic curve of conductor N, p a prime and
K an imaginary quadratic field, such that

N~ is square-free with even number of prime factors.
The residue representation pg,, is surjective.

Hypothesis & holds for (E,p, K).

The prime p = 5 is ordinary, p{ DxkN and (Dg,N) = 1.

Then we have c1(n) # 0 for some n € A, and hence k™ # {0}.

Following the terminology of [26], suitably modified for the Heegner point
setting [19], we call the collection k* a Kolyvagin system. The vanishing or-
der ord k® of the Kolyvagin system «™ is, by definition, the minimal number
of prime factors of n € A such that cyr(n) # 0 for some M < M(n). Let
Sel;fw (E/K) denote the eigenspace with eigenvalue +1 of Sel,»(E/K) under
the complex conjugation. Let ry (E/K) be the Zy-corank of Selz")—'lo(E/K).
Combining Theorem 1.1 with Kolyvagin’s theorem [24, Theorem 4], we have
the following relation between the Z,-coranks r; (E/K) and the vanishing
order ord k.

Theorem 1.2. Let (E,p, K) be as in Theorem 1.1. Then we have
(1.1) ord k% = max{r, (E/K),r, (E/K)} — 1.
Furthermore, we denote v™® = ord k* and
€ =€ (—1)" Tl e {+1},
where € = €(E/Q) is the global root number of E/Q. Then we have
ry  (B/K) = v™ +1,

and
0<v®—r,**(E/K)=0 mod 2.
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Remark 1. In particular, under the assumption of Theorem 1.2, the parity
conjecture for p®-Selmer group holds:

(1) E/Y = ¢(E/Q).

The parity conjecture is known in a more general setting [32] but our proof
does not use it and in fact implies it for our (E,p, K).

This is proved in Theorem 11.2. We may further construct all elements
in the p-Selmer group Sel,(E/K), cf. Theorem 11.1. Our Theorem 1.1 and
Kolyvagin’s result [24] shows that the eigenspace Sel " (E/K) of Selmer
groups under the complex conjugation is contained in the subgroup gener-
ated by the cohomology classes ¢(n) (Theorem 11.2). By choosing a suitable
K, this also allows us to construct all Sel,» (E/Q) for certain primes p and
elliptic curves E/Q (cf. Corollary 11.3). Moreover, one obtains the structure
of the indivisible quotient of III(E/K)[p™] in terms of the divisibility of
Heegner points ([23], see Remark 18 in §10).

We now state some applications to elliptic curves F/Q whose Selmer
groups have Zp-corank one. From Theorem 1.2, one may deduce a result for
E/K:

Theorem 1.3. Let (E,p, K) be as in Theorem 1.1. If Sel,»(E/K) has Z,-
corank one, then the Heegner point yi € E(K) is non-torsion. In particular,
the analytic rank (i.e., ords—1 L(E/K, s)) and the Mordell-Weil rank of E/K
are equal to one, and ILI(E/K) is finite.

Proof. Since rp(E/K) = 1 and r,(E/K) = rj (E/K) + r, (E/K), we must
have

max{r, (E/K),r, (E/K)} = 1.

By Theorem 1.2, we must have v* = 0, i.e., cp(1) # 0, for some M.
The cohomology class cps(1) is the image of the Heegner point yx € F(K)
under the injective Kummer map E(K)/pM E(K) — HY(K, E[pM]), and
so yx ¢ pME(K). The hypothesis on the subjectivity of PE,p implies that
E(K) has no p-torsion, and it follows that yx € F(K) is non-torsion. The
“In particular” part is then due to the Gross—Zagier formula ([17] in the case
of modular curves), Kolyvagin’s theory of Euler system, and their extension
to the setting of Shimura curves [42, 45]. O

When p = 2, the same kind of result was earlier obtained by Y. Tian for
the congruent number elliptic curves [39, 40].
Now we state some results for E/Q.
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Theorem 1.4. Let E/Q be an elliptic curve of conductor N, andp =5 a
prime such that:

(1) pg, is surjective.

(2) If t=%1 mod p and {||N, then pg, is ramified at (.

(8) If N is not square-free, then #Ram(pg ) = 1 and when #Ram(pg ,) =
1, there are even number of prime factors ¢||N.

(4) The prime p is good ordinary.

Then we have:

(1) If Sel,» (E/Q) has Zy-corank one, then the analytic rank and the Mordell-
Weil rank of E/Q are both equal to one, and II(E/Q) is finite.
(i) If the analytic rank of E/Q is larger than one

ords—1 L(E/Q, s) > 1,

then the Zy-corank of Sel,-(E/Q) is at least two (three, resp.) if the
root number e(E/Q) is +1 (—1, resp.).

Proof. To prove (i), by [6, 31], we may choose an imaginary quadratic field
K such that

(a) (FE, K) satisfies the generalized Heegner hypothesis (i.e., N~ has even
number of factors) and (F,p, K) satisfies Hypothesis #. To see why
such a K exists, first suppose that N is square-free. If N has an even
number of prime factors, then choose K such that N* =1 and N~ =
N. If N has an odd number of prime factors, then choose an ¢|N
where pp,, is ramified, and then choose K such that N* = / and
N~ = N/{. Note that such ¢ exists by Ribet’s level-lowering theorem
[34]; otherwise, since p does not divide N, pg, is modular of level 1
by [34, Theorem 1.1], a contradiction! If N is not square-free, we have
two cases under the condition (3): when #Ram(pg ,) = 1 or there are
even number of primes /|| N, we may choose N~ as the product of all
(||N; when #Ram(pg ) > 2 and there are odd number of primes /|| N,
we may choose N~ as the product of all £||N but one ¢ € Ram(pg ).

(b) The L-function attached to the quadratic twist, denoted by EX, of F
by K has non-zero central value:

L(EX 1) # 0.

The non-vanishing requirement can be achieved since we may first prove
that the root number of €(F/Q) is —1 by Theorem 1.2. Indeed, we may first
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choose a K to satisfy (a) only. Then by Theorem 1.2, we know that the root
number €(E/Q) is —1 since the Z,-corank of Sel,» (E/Q) is odd.

Once we have chosen such K, we see that £ (Q) and ITI(EX /Q) are both
finite (by Gross—Zagier and Kolyvagin, or Kato, or Bertolini-Darmon). In
particular, Sel,=(EX /Q) is finite. It follows that Sel,«(E/K) has Z,-corank
one. Since now our (F,p, K) satisfies the assumption of Theorem 1.3, the
desired result follows.

To show part (ii), we again choose K as in the proof of part (i) with only
one modification: if ¢(E/Q) = 1, we require that L'(E¥,1) # 0. Then by
Gross—Zagier formula [45], the Heegner point yx is a torsion point. Hence
the class ¢p(1) = 0 for all M € Z~y and the vanishing order v of the
Kolyvagin system % is at least 1. Then part (i7) follows from Theorem
1.2. O

Remark 2. A version of Theorem 1.3 is also proved by Skinner [36] under
some further assumption that p = PP is split in K/Q, and the localization
homomorphism at 3,

locy : Sely= (E/K) — Hyp,,, (Ko, E[p™]),

is surjective, where H}m(K‘ﬁa E[p™]) is the image of the local Kummer map
at B. He also announced a version of Theorem 1.4 under similar surjec-
tivity assumption on loc,. It is worthing noting that Skinner considers the
localization at p of the cohomology class of the Heegner point yg, while the
current paper considers the localization at many primes away from p (so
we do not need the local surjectivity assumption at p) of the cohomology
classes of Heegner points over ring class fields (so one may take advantage
of Kolyvagin system). Skinner then uses a p-adic formula due to Bertolini—
Darmon—Prasanna [5] and (one divisibility of) the main conjecture proved
by X. Wan [44], while the current paper uses the Gross formula modulo
p ([14], an explicit version of Waldspurger formula, cf. §6), the congruence
of Bertolini-Darmon [4], and the main conjecture proved by Kato [21] and
Skinner—Urban [37].

Remark 3. For an elliptic curve E/Q, the set of primes p satisfying (1)-(4) in
Theorem 1.4 has density one, and depends only on the residue representation
PEp- The theorem also implies that: r,, is independent of p in this set if we
have 7,(£/Q) = 1 for one p in this set.

Theorem 1.5. Let E/Q be an elliptic curve of conductor N. If N is not
square-free, then we assume that there are at least two prime factors £||N.
Then the following are equivalent:
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(i) raw (E/Q) =1 and #II(E/Q) < .
(ii) ords—1 L(E/Q,s) = 1.

The direction (i) = (i) is a converse to the theorem of Gross—Zagier
and Kolyvagin. Such a converse was first proved by Skinner [36] for square-
free N with some mild restriction.

Together with the theorem of Yuan-Zhang—Zhang on Gross—Zagier for-
mula for Shimura curves [45] and Kolyvagin theorem [23], we may prove
the p-part of the refined Birch-Swinnerton-Dyer formula (shortened as “B-
SD formula” in the rest of the paper) for E/K in the rank one case under
the same assumption as in Theorem 1.1 (see Theorem 10.2). By a careful
choice of auxiliary quadratic field K, we may deduce the p-part of the B-SD
formula for £/Q in the rank one case (cf. Theorem 10.3).

Theorem 1.6. Let (E,p) be as in Theorem 1.4. If ords—1L(E/Q,s) = 1,
then the p-part of the B-SD formula for E/Q holds:

L'(E/Q,1)
Qp - Reg(E£/Q)

— l#IE/Q) - [ .

P ON

where the regulator is defined by Reg(E/Q) := % for any non-torsion
y € E(Q), {y,y)nT 1is the Néron-Tate height pairing, and cy is the local

Tamagawa number of E/Qy.

Remark 4. Skinner—Urban and Kato [37, Theorem 2] have proved the the
p-part of the B-SD formula in the rank zero case for any good ordinary p
with certain conditions (less restrictive than ours).

Remark 5. With the Gross—Zagier formula, the previous result of Kolyvagin
[23] shows that, in the analytic rank one case, the p-part of the B-SD formula
for E/K is equivalent to a certain p-indivisibility property of k*. Under the
condition of the Theorem 10.2 we prove such property (i.e., #y = 0). One
then obtains the p-part of the B-SD formula for E/Q with the help of the
theorem of Kato and Skinner—Urban on the B-SD formula in the rank zero
case.

We now give an overview of the proof of Theorem 1.1. We start with the
simpler case where the p-Selmer group of E/K has rank one. Let g be the
modular form associated with E, choose a level-raising prime ¢ which is inert
in K, and a modular form gy (of level N¢) congruent to g modulo p. Using
a Cebotarev argument, this ¢ may be chosen so that the relevant p-Selmer
group for g; has lower rank, hence trivial. By the deep result of Kato and
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Skinner—Urban on the rank zero B-SD formula, the central value of the L-
function attached to gy must be a p-adic unit. A Jochnowitz-type congruence
of Bertolini-Darmon allows us to conclude that the Heegner point yx has
nontrivial Kummer image in H'(Kj, E[p]), and hence is nonzero. To treat
the general case, we use induction on the dimension of the p-Selmer group
of E/K. The induction proceeds by applying level-raising at two suitable
primes to reduce the rank of the p-Selmer group. We refer to §9 for more
details.

Notations

(i) p = 5: a prime such that (p, N) = 1.

(ii) A: the adeles of Q. A¢: the finite adeles of Q. A’J}”: the finite adeles of
away from the primes dividing m.

(iii) For an integer n, we denote by v(n) the number of distinct prime factors
of n.

(iv) g: a newform of weight two on I'g(N) (hence with trivial nebentypus),
with Fourier expansion

Z an(9)q", a1 =1.

n=1

The field of coefficient is denoted by F' = Fj; and its ring of integer by
0= 0,.

(V)p: F— @p a place above p, I}, the corresponding completion of F'. We
also denote by p the prime ideal & n my of 0, 0y, the completion of & at
p. The modular form ¢ is assumed to be good ordinary at p, i,e,:

ap ¢ .

Equivalently, vy (ap) = 0 where v, : 0, — Z is the p-adic valuation.

(vi) We denote by 0y < & the order generated over Z by the Fourier coef-
ficients a,(g)’s of g. Let pg = p n Op, and

ko := Op/po c k := O/p.

Both are finite fields of characteristic p. Let &) (0, , resp.) be the p-adic
(po-adic, resp.) completion of & (&0, resp.).
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(vii) A = Ay: a GLa-type abelian-variety over Q attached to g, unique up
to isogeny. We always choose an isomorphism class A with an embedding
0 — Endg(A). Then the p-adic Tate module T},(A) = projlim A[p] is a
free 0p-module of rank two with a Galois representation

pap : Galg — GLg, (T(A)), Galg := Gal(Q/Q).
Denote by py ,, as the reduction modulo pM of PA,p:
Pap : Galg — Autg, (A[p™]) ~ GLa(6/p).

By [7], the Galois representation p4, is actually defined over the smaller
subring 0, < Op:

pA7p0 : Gal(@ — GLQ(ﬁ(),pO) c GLQ(ﬁp),
such that
(12) PAp = PAp, ®ﬁo,po ﬁp'

(viii) We consider the reduction of p4 , and pa p,. We will write the under-
lying representation space of py ,:

Vi = Alp]

as a k = O /p-vector space of dimension two, endowed with the action of
Galg. By (1.2) it can be obtained from by extending scalars from ky to k,
i.e., there is a two-dimensional ko-vector subspace V' with Galg-action such
that

(1.3) Vie=V ®u, k.
(ix) We will always assume that the residual Galois representation
ﬁA,Po : GalQ - GL(V) >~ GLQ(]{?())

is surjective 2. In particular, p Apo (and hence p Am) is absolutely irreducible
since p is odd. Then A is unique up to prime-to-p isogeny. In this case, we
may also write py , ps for py , ps since it depends only on g, but not on A.

2This impose strong conditions on k¢ and indeed implies that kg = F,,. But this
suffices for our purpose.
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(x) K = Q[v/—D]: an imaginary quadratic of discriminant —D = Dy < 0
with (D, N) = 1. The field K determines a factorization N = Nt N~ where
the factors of N* (N~, resp.) are all split (inert, resp.). Let g® (A%, resp.)
be the quadratic twist of g (A, resp.). Throughout this paper, N~ is square-
free.

(xi) We will consider the base change L-function (without the archimedean
local factors) L(g/K, s) = L(g/Q, s)L(g% /Q, s). We use the classical normal-
ization so that the functional equation is centered at s = 1. Then the root
number (i.e., the sign of the functional equation of the L-function L(g/K, s))
is given by

(1.4) e(g/K) = (—1)#IN)FL e (41},

(xii) A: the set of square free products n of Kolyvagin primes ¢’s. We also
include 1 into A. Recall that a prime ¢ is called a Kolyvagin prime if ¢ is
prime to N Dp, inert in K and the Kolyvagin index

M (£) := min{v, (£ + 1), vp(ar)}
is strictly positive. Define for n € A:
M(n) = min{M (£) : {|n},

if n > 1 and M(1) = co. Write A, as the set of n € A with exactly r factors.
Define

M, = min{M(n) : n € A,}.
Note that the set A depends only on the residue Galois module p, ,. Denote
by A% the set of n € A such that (—1)*(") = +1.

(xiii) For n coprime to Dg, we denote by Ok, = Z + nOg the order of
conductor n, and by K|[n] the ring class field of conductor n.

(xiv) A’: the set of square free products m of admissible primes (after Bertolini—
Darmon) ¢. Recall that a prime ¢ is called admissible if ¢ is prime to N Dp,
inert in K, p does not divide ¢ — 1, and the index

vp((q + 1)? — ai) > 1.

Similarly define A’., A'* etc.. Note that the two sets A and A’ are disjoint.

(xv) Let Ram(p,, ) denote the set of £|| N such that p, , is ramified at £. We
will consider the following hypothesis, called Hypothesis @, for (g, p, K):
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(1)Ram(p, ,) contains all prime factors ¢|[N™ and all ¢|N~ such that
g =11 mod p.

(2)If N is not square-free, then #Ram(p,,) > 1, and either Ram(p, ,)
contains a prime ¢||N~ or there are at least two primes factors ¢||NT.

3)For all prime ¢ with ¢2|N*, we have H'(Qq,75,,) = poile = 0. Here
( Pg,p Pg.p
Galy c Galg denotes a decomposition group at £.

2. Level-raising of modular forms

We first recall the level-raising of Ribet, following Diamond—Taylor’s gener-
alization [10, 11].

Theorem 2.1 (Ribet, Diamond-Taylor). Let g be a newform of weight two
of level N (and trivial nebentypus). Let p be a prime of Oy such that Pg.p
is irreducible with residue characteristic p = 5. Then for each admissible
prime q, there exists a newform g’ of level Nq (and trivial nebentypus), with

a prime p' of Oy and Oy o/p ~ O40/po = ko such that
Pgpo = Py’ py-
Equivalently, for all primes ¢ # q, we have

ae(g) mod p=ay(g’) modyp’,

where both sides lie in k.

Proof. Fix a place of Q above a prime £, and let Gal, < Galg be the corre-
sponding decomposition group. For ¢ # ¢, we denote by 7, the restriction of
pg,p to Galy. At £ = ¢, let 7y be the p-adic representation of Gal, correspond-
ing to an unramified twist of the Steinberg representation under the local
Langlands correspondence, such that 7, is isomorphic to the restriction of
Pg.p, 10 Galg. Such 7, exists because aq(g) = £(¢+1) mod p by the admis-
sibility of g. Then we apply [11, Theorem 1] (cf. [10, Theorem B]) to obtain a
weight two modular form ¢’ of level dividing Ng, and a prime p’ such that the
representation pg v has the prescribed restriction to the inertial subgroups
Ip: pgprlr, ~ 1|1, for all £ # p. Since the level of ¢’ depends only on the
restriction of py v to the inertia I, for all £, we see that its level is divisible
by Ngq and hence equal to Nq. To see that ¢’ has trivial nebentypus, we note
that the character det(pg ) is the p-adic cyclotomic character €, twisted
by a character x of Galg. Since the level of ¢’ is prime to p, x is unramified
at p. Since g has trivial nebentyputs, by det(pg,)|7, ~ det(pg )|z, for all
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{ # p, the character y is unramified at all primes £ # p. It follows that x is
unramified at all primes ¢ and hence xy = 1 and ¢’ has trivial nebentypus.
This completes the proof. O

Let m € A" be a product of distinct admissible primes. By Theorem 2.1,
we obtain a weight-two newform g, of level Nm together with a prime p,,
of 0, . Here all notations for g will have their counterparts for g,, and we
will simply add an index m in a self-evident way. We have the residue field
km = O, /pm and isomorphic subfields ko = Ogo/po ~ Oy, 0/Pmo- The
isomorphism will be fixed in the rest of the paper. The modular form g,
and g carry isomorphic Galg-actions on the two-dimensional kg-vector space

pgm’pm,o = pg,po'

We will fix an isomorphism and denote the underlying two-dimensional k-
vector space by V.

3. Shimura curves and Heegner points
3.1. Shimura curves and Shimura sets.

Let N = NTN=, (Nt,N7) = 1 and N~ square-free. In this section we
assume that the number of prime factors of N~ is even.

For m € At (i.e., m has an even number of prime factors), let B(N~"m)
be the quaternion algebra over QQ ramified precisely at N~ m (in particular,
indefinite at the archimedean place). We let X+ n—,, be the (compactified)
Shimura curve defined by the indefinite quaternion algebra B(N~m) with
the T'o(N1)-level structure.

For m € A'~, let B(N~m) be the quaternion algebra over Q ramified
precisely at N~™moo (in particular, definite at the archimedean place). We let
Xm 1= XN+, N-m be the double coset space defined by the definite quater-
nion algebra B(N~moo) with the T'o(N7T)-level (sometimes called “Gross
curve” in the literature, [43, §2]):

Xn+ N-m = BX\B(A;)*/R*,

where B = B(N~m), and R is an Eichler order of level N*. We will call
it a Shimura set.

For short we will write (noting that N = NTN~ is fixed) B,, for
B(N~m) when m € A'*, or B(N~moo) when m € A'~. We write the Eichler
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order in B,, by R,,. We also write
(31) Xm = XN‘*',N—m-

For example, if N~ = 1, we have X; = X(N).

From now on, we will fix an isomorphism between B&®gQ, and the matrix
algebra M» g, (a fixed division algebra over Qy, resp.) if a quaternion algebra
B over Q is unramified (ramified, resp.) at a (possibly archimedean) prime
£. This will allow us, for example, to identify Bm(Ag)) with Bmg(Agf)) for
¢,;me N and £1m.

3.2. Heegner points on Shimura curves

Let me At and A, = A, a quotient of the Jacobian J(X,,):
7 J(Xm) = An.

Let n € A be a product of Kolyvagin primes. We now define a system of
points defined over the ring class field K[n]:

Tm(n) € Xim(K[n]),  ym(n) € Am(K][n]).

Remark 6. We need to be careful when defining y,,(n). We may define an
embedding X,,, — J by z — (z) — (o0) if X,, is the modular curve Xo(N "),
i.e., N~m = 1. In general, there is no natural base point to embed X, into
its Jacobian. We may take a certain Atkin-Lehner involution w and take
Ym(n) € A (K[n]) to be the image of the degree-zero divisor (z) — (w(x))
where © = x,,(n). This works if the Atkin-Lehner involution acts on A,
by —1. Otherwise, we may take a fixed auxiliary prime ¢y and define y,,(n)
to be the image of the degree-zero divisor (¢ + 1 — Ty, )xm(n). This does
not lose generality if (¢p + 1 — ag,(gm)) is a pm-adic unit. Such ¢y exists, for
example, if p, . = is surjective. Furthermore, since we wish to eliminate
the dependence on the choice of ¢y (up to torsion points), we will define
ym(n) to be the image of the divisor with Q-coefficients

1
B EO +1-— afo(gm)

(3.2) Tm(n) : (bo +1—"Ty,)xm(n)

viewed as an element in A,,(K[n]) ®z Q.
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Remark 7. The definition of y,,(n) also involves a parametrization 7 of A,,
by J(X,,), as well as a choice A, in the isogeny class determined by g. We
will take either the optimal quotient (which has only &, o-multiplication
in general) or one with &y -multiplication. But for the moment we do not
want to specify the choice yet.

We describe the points x,,(n) in terms of the complex uniformization of
Xpm. The complex uniformization of X, is given by

Xn(C) = BX\HE x Bp(Ap)* /Ry, HE = C\R.
Fix an (optimal) embedding
(3.3) K <> By,

such that R n K = Ok. Such an embedding exists since all primes dividing
N are assumed to be split in K. Then we have a unique fixed point hg of
K> on H™T. Then the total set of Heegner points is given by (cf. [42]):

(3.4)
G = Crcm = Bi\(Bn(Q)*ho) X Bun(Ap)* /R = K*\Bn () /R -

In this paper, we only need to use a subset of €. Let

—X

B (Ag)t = K~ (H Bm<@e)X) Ry,
J4

where the restricted direct product for £ runs over all inert primes such that
((,Nm) =1 and £ = —1 mod p (hence B,(Af)*" implicitly depends on
the prime p). Define

(3.5) € = KX \B(Ag)" /Ry .
There is a Galois action of Gal(K®"/K) on €k, given by
(3.6) o([h]) = [rec(o)h],

where [h] € €km is a double coset of h € B,,(Af)*, and we have the
reciprocity map given by class field theory

rec : Gal(K*/K) ~ K*\K*.
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We now may define more explicitly the point z,,(n) already mentioned
earlier: in the set CK;, the point x,,(n) for n € A corresponds to the coset of

h = (h¢) € By (Af)*" where

¢ 0
) e‘nv
(3.7) he = (O 1)
1, (¢,n) =1.

When m = 1 or there is no confusion, we simply write
(3.8) z(n) = xzm(n), y(n) = ym(n).
3.3. Heegner points on Shimura sets
When m € A’ has odd number of prime factors, we have the Shimura set:
(3.9) Xom = B;L\Bm(Af)X/EZX~

The Shimura set is a finite set. Again fix an optimal embedding K — B,,.
We then define the set €, of Heegner points on the Shimura set X,, by

(3.10) Gm = Cicom = K \Bi(Af)* /R -

Similarly we may define the set %;m, and an action of the Galois group

Gal(K*/K) on the set €., by the formula (3.6). We again consider the
Heegner points given by the same formula as (3.7)

Tm(n) € €xm, neA.
We have a natural map (usually not injective)
(3.11) Crm — Xm-

When there is no ambiguity, we will consider z,,(n) as an element in the
Shimura set X,,.

3.4. Reduction of Shimura curves

We consider the reduction of the canonical integral model of X,;, = Xn+ v,
at a prime ¢, where me A'*.
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First let ¢ be an admissible prime not dividing the level Nm. Then X,,
has an integral model over Z, parametrizing abelian surfaces with auxiliary
structure (cf. [1] for the detail). The integral model has good reduction at g
and the set of supersingular points X,,(F,2)% are naturally parameterized
by the Shimura set X,,,:

(3.12) Xon(F2)® = Xpng,

where mg € A'~. This identification needs to choose a base point, which
we will choose to be the reduction of the Heegner point corresponding to
the identity coset in (3.4) (cf. the convention before (3.18)). Via the moduli
interpretation of the integral model of X,,, this choice of base point also gives
an embedding of K (as the endomorphism algebra of the abelian surface A
preserving the auxiliary structure, corresponding to the base point) into the
quaternion algebra B,,, (as the endomorphism algebra of the special fiber
of the A):

(3.13) K > By,

Now let glm be a prime. Then the curve X,, has a semistable integral
model, denoted by X,z , over Z, by a moduli interpretation via Drinfeld’s
special action by a maximal order in a quaternion algebra [1]. We will con-
sider the base change to Z,, the unramified quadratic extension of Z,. Let
(&(Xim), ¥ (Xin)) be the dual reduction graph of the special fiber X, r ,of
Xz, where &(Xm) (¥ (Xy), resp.) denotes the set of edges (vertices,
resp.). The graph is constructed such that each vertex corresponds to an
irreducible component and two vertices are adjacent if and only if their
corresponding components have an intersecting point. By [34, Prop. 4.4],
it follows from the Cerednik—Drinfeld uniformization [1, Theorem 5.2] that
the special fiber X, , is a union of projective lines crossing transversely.
Moreover, the set of irreducible components of Xr , can be identified with
two copies of the Shimura set X, ,:

(3.14) V(Xm) ~ Xppjq % 22,

where m/q € A'~. We choose the base point to be the irreducible component
corresponding to the unique irreducible component containing the reduction
of the base point of Heegner points in (3.4). The uniqueness follows from
the fact that Heegner points in (3.4) are reduced to a non-singular point on
the special fiber (cf. [4, §8, p.55]). This also induces an embedding (loc. cit.)
(3.15) K — B

m/q-



Selmer groups and the indivisibility of Heegner points 19

Under this identification, the Atkin-Lehner involution at ¢ acts by chang-
ing the second factor of the above product. So does the Frobenius for the
quadratic extension Fg2/F,. For our later purpose, we also give the adelic
description (cf. [34, §4], [47, Lemma 5.4.4]):

(3.16) ¥ (Xm) = By \GLa(Qg)/Q} GLa(Zg) x B(A})* /BT,

where B = B,,,, and By < B* is the kernel of v + ord,(det(7y)) (here
det denotes the reduced norm on B). The group B acts diagonally by left
multiplication on the product. Then the isomorphism (3.14) is defined as
follows: for a given B -coset [hy, h?], we send it to the B*-coset [hg, h?] in
the Shimura set X,,/,, to ordy(det(hy)) mod 2 in Z/2Z. This defines the
isomorphism in (3.16). We thus write

as a disjoint union according to ord,(det(hy)) mod 2. Noting that Q has

X

class number one and det(R*) = Z*, we have an equivalent description to

(3.9):
% — X
Xm/q = Bm/q\Bm/q(l&f)X/(@;< : Rm/q .

From this description and the isomorphism (3.14), we will identify X,
with the subset #5(X) ~ Xp,/q x {0} of 7/(Xin).

3.5. Reduction of Heegner points

We consider Heegner points (CM points in [42, 45]) on the Shimura curves
X, forme A'TF.

Let ¢ € A’ be a prime not dividing m. Then X,, has good reduction
at ¢q. The Heegner points in (5;5 m are defined over abelian extensions of K
over which the prime (¢q) < Op splits completely. Let K(q) be an abelian
extension of K containing all these fields and we fix a choice of a prime q
above (¢) < Og. This allows us to reduce these points modulo q. Identifying
Ok (q)/a9 =~ Fg2, they all reduce to supersingular points on Xm,.- We write
the composition of the isomorphism (3.12) with the reduction map as:

(3.18) Redg : €5, — Ximg-
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This is given by (3.5) and the following map:

K*\Bu(Ap)* /R — Bj\Qy % Bung(A)"/(Z;) - (Ring ® 2)"
= By \Bug(Ag) /R

where the first arrow at the g-th component is induced by b € GL2(Q,) —
det(b) € Qg, the second one is an isomorphism induced by the reduced norm
on the division algebra det : qu(Qq)X/(’)gmq(Qq) — Qg /Z; (cf. [47, Lemma
5.4.3]). We are implicitly using the embedding K — B,,4 given by (3.13).
Now let ¢ € A’ be a prime dividing m. Similarly as in the last paragraph,
we choose a prime q of K(q) above ¢ and identify O (g)/q =~ Fy2 to reduce
the Heegner points to the special fiber X, ,. Any point in the set ‘5; Nm
reduces to a non-singular point of the special fiber X, r , (cf. [4, §8, p.55]).
Hence we have a specialization map from ‘5;5 ~Nm tO the set of irreducible
components 7. Since the g-component of an element in So”['(" ~Nm has reduced

norm of even valuation, the specialization of CK; ~Nm lies in the subset X, /, %
{0} of ¥". We thus write the specialization map as

(3.19) SPy + Crt = Xing-

The specialization is given by (3.5) and the following map:

KX\Byn(Ag) " /Ry — K*\Bo (A% /Ry, @ 29)*
X x5 X
— Bm/q\Bm/q(Af) /Rm/q ,

where the first arrow is given by forgetting the g-th opponent, and the second
one maps [h9] to [1, h] for h? € By, (A%) ~ By, )4 (A%) (cf. [47, Lemma 5.4.6]).
We are implicitly using the embedding K — B, given by (3.15).

3.6. Geometric congruence between Heegner points

The main geometric observation is the following congruence between coher-
ent and incoherent Heegner points.

Theorem 3.1. Let m be in A'", X,, the Shimura curve XN+ ,N-m- Then
we have the following relation:

o When a prime g€ N does not divide m € A'F,

Redy(zm(n)) = Tme(n) € €mg. k-
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In particular, we have Redy(z,(n)) = Tmq(n) € Xing, under (3.11).
e When a prime g € A’ divides me A'+,

Spy(Tm(n)) = 2y sq(n) € Xopy /g

Proof. This follows from the description of the reduction of Heegner points
(3.18), (3.19). 0

3.7. Kolyvagin cohomology classes

We now prepare to formulate the Kolyvagin conjecture for GLo-type abelian
variety analogous to [24] for elliptic curves. We first define Kolyvagin coho-
mology classes.

We consider a newform g of level N with a prime p of & satisfying the
hypothesis in “Notations”. Let A = A, be an associated GLa-type abelian
variety over QQ with real multiplication by &. Let X be X1 = Xn+ y-.
The abelian variety A, may not be an optimal quotient of J(X). Possibly
changing A in its isogeny class (still with &-multiplication), we will choose
a parameterization

(3.20) J(X)— A

such that the image of the induced homomorphism on the p-adic Tate mod-
ule

Tp(J(X)) — Tp(4)

is not contained in pT)(A). We say that such a parameterization is (&, p)-
optimal and that the abelian variety A is (&, p)-optimal. To see that an
(O, p)-optimal parameterization exists, we note that there exists another A’
with &-multiplication and an O-isogeny A’ — A such that the image of
the induced homomorphism on the p-adic Tate module T,(A’) — Tp(A)
is pT(A). If the image of T)(J(X)) — Tp(A) is contained in pT,(A), the
morphism J(X) — A must factor through A’. We may then replace A by
A

We now define the Kolyvagin cohomology classes (cf. [15, 23] for elliptic
curves). Let T, A, be the p-adic Tate module of A, and consider the p-adic
Tate module:

Ty Ay := TyA @p, Op.

It is a free Op-module of rank two. Set

Agm =Ty A4 ®o, ﬁp/PM’
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and
Ag,oo = TpAg ®ﬁp Fp/ﬁw
where F}, is the fraction field of &),. We now define

ev(n) e HY(K, Ay ), M < M(n),

by applying Kolyvagin’s derivative operators to the points y(n) € A(K[n])®
Q defined in (3.2). Note that the denominator of y(n) is a p-adic unit and
hence we may interpret y(n) as an element of A(K[n])z, ®sgz, Op. Denote
G, = Gal(K[n]/K[1]) and G, = Gal(K|[n]/K) for n € A. Then we have a
canonical isomorphism:
Gn = H GZ:
Ln

where the group G, = Gal(K[(]/K][1]) is cyclic of order ¢ + 1. Choose a
generator gy of Gy, and define the Kolyvagin derivative operator

l+1 ‘
D, := Z ioy € Z|Gyl,

i=1

and
Dy, := | [ Dy € Z[Gy].
Ln
Fix a set G of representatives of G,,/G,,. Then we define the derived Heegner
point
P(n) =Y. o(Dny(n)) € Ag(K[n]).
oeg

We have a commutative diagram of Kummer maps:

A(K)z, ®ogz, Op/p™ HY (K, Ag )

| e

A(K[nl)z, ®ogz, Op/p™ —= H'(K[n], Agn)

where A(K)z, denotes A(K) ®z Zy. When M < M(n), the Kummer image
of P(n) in HY(K[n], Ag ) is actually Gal(K[n]/K)-invariant. Since Pg.p 18
essentially surjective and n € A, we have (cf. [15, Lemma 4.3])

Galkn) _
Ay =0.
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Hence the restriction map

HL ([{7 Ag,M) — H! (K[n], Ag’M)Gal(K[n]/K)
is an isomorphism. The derived point P(n) defines a Gal(K [n]/K)-invariant
element in A(K[n])z, ®sgz, Op/p™. Hence the Kummer image of P(n)
descends to a cohomology class denoted by

(3.21) ev(n) € HY (K, Ag ).
When n = 1, we also denote

(3.22) yx = P(1) = trgpyry(1) € A(K),

and the point yx € A(K) is usually called the Heegner point. This is the
only case where the derivative operator is trivial and hence can be related
to suitable L-values via the Waldspurger or Gross—Zagier formula, as we will
see.

One could also describe the action of the complex conjugation on the
classes cpr(n). Let € € {1} be the root number of A,. Define

(3.23) v(n) = #{{ : l|n},
and
(3.24) 6 =e-(=1)"Te{+1}.

Then the class cps(n) lies in the €, ,)-eigenspace under complex conjugation
([15, Prop. 5.4], [2, Prop. 2.6]):

cnr(n) e HY K, Ay ).
3.8. Kolyvagin’s conjecture.

Let 4 (n) € Z=p v {00} be the divisibility index of the class ¢(n), i.e., the
maximal .# € Zzo U {0} such that cys(n) € p? HY(K, Ay py) for all M <
M(n). Define 4, to be the minimal .#(n) for all n € A,. Then in [24]
Kolyvagin shows that for all r > 0:

(3.25) My = Myiy = 0.
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We define

(3.26) My (g) = linolo My
r—
as the minimum of ., for varying r > 0.
Then the conjecture of Kolyvagin [24, Conj. A] (generalized to Shimura
curves) asserts that

Conjecture 3.2. Let g be a weight two newform of level N with trivial
nebentypus. Assume that the residue representation p, , is surjective. Then
the collection of cohomology classes

(3.27) k* = {ep(n) € HY (K, Agpr) :ne A, M < M(n)}
18 nonzero. Equivalently, we have
My (g) < 0.

The rest of the paper is to confirm this conjecture under a certain re-
striction on g.

3.9. Kolyvagin classes c(n,m) e HY (K, V).

We will apply Theorem 2.1 to define Kolyvagin classes c(n,m) € H'(K,V)
parameterized by both n € A and m € A'*. Fixing m = 1, the collection of
classes c(n, 1) as n € A varies is precisely the collection c1(n) € H(K, Ag1)
defined in §3.7.

Let T+ n-p, be the Hecke algebra over Z generated by Tj for (¢, Nm) =
1 and U, for £|Nm acting on the Jacobian J(X,,), equivalently acting on
the space of weight two modular forms which are new at all factors of N~ m.
Recall that X, = Xn+ n-p, is the Shimura curve defined in §3.1, and when
¢|N~m, the operator Uy is an involution induced by a uniformizer of the
division algebra B,,(Qg)* (cf. [34, §4]). The Hecke action on the modular
form g, gives rise to a surjective homomorphism

¢:Tn+ N-m — Oy, 0,

whose kernel is denoted by .#. Then the optimal quotient by J(X,,) attached
to g, is the abelian variety

(3.28) Agm = J(Xm)/j‘](Xm)7
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on which Tx+ -, acts via the homomorphism ¢. In particular, we obtain
an Op-action on A(g)m.
Let ¢ mod p,, 0 be the composition of mod p,, ¢ with ¢:

¢ mod pimo: Tyt N-m — Of,.0/Pm0 = ko.

Denote by m the kernel of ¢ mod p, 0.

Lemma 3.3. Assume that (g,p, K) satisfies Hypothesis ©. Then for all
me At we have an isomorphism of Galg-modules

(3.29) J(Xp)[m] =2V ~ Agm [Pm.o],

where all vector spaces are 2-dimensional over ky.

Proof. The case of modular curve (i.e., N~m = 1) is well-known due to the
work of Mazur, Ribet, Wiles (cf. [4]). The case for Shimura curve under our
Hypothesis © is proved by Helm [18, Corollary 8.11]. O

For each n € A, and m € A'* 3 (i.e., with even number of factors), we
now define the Kolyvagin cohomology class

(3.30) c(n,m) e HY(K, J(X,)[m]) ~ HY(K,V),

as the derived cohomological class from the Heegner point z;,,(n) € X,,,(K[n])
and y,(n) € Agm (K[n]) (cf. §3.2). When m = 1 we simply write

c(n) = ¢(n,1) e HY(K,V).

Note that these classes only take values in V' (unlike in §3.7, where the
classes cpr(n) lie in the cohomology of some A pr). We will denote for each
meA*

Kim = {c(n,m) e HY(K,V) :ne A},
and we will again call k,, a Kolyvagin system.

Remark 8. The classes c¢(n,m) depend on the choice of the level-raising
newform g,, of level Nm, and the choice of the generators o,’s made in §3.7.
For our purpose, it will suffice to fix a choice for each m € A’t. They also
depend on the parameterization of the set of Heegner points (3.4) for each

3It is easy to see that the set A} of admissible primes for g,, almost depends
only on the Galg-module V, with only exception that the set A] for g, does not
contain prime factors of m.
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m € A'*. To compare the localization of the classes c(n,m) in §4, for each
m € At we require that the following induced embeddings K < By, into
the definite quaternion algebra are the same

e the one given by (3.13) applied to the curve X,, and an admissible
prime gq,

e the one given by (3.15) applied to the curve X,,,, and an admissible
prime ¢/,

Remark 9. We will also consider a GLa-type abelian variety A, with multi-
plication by &, attached to g. Then we will also view c(n,m) € H'(K, V) as
a class in HY(K,V ®y, k) by identifying A[p] ~ V ®y, k as k[Galg]-module.

We will again call these global cohomology classes c¢(n,m) Kolyvagin
classes. They are the main objects in the rest of the papers. We will analyze
their local property in the next section and we will see that the m-aspect of
¢(n, m) behaves very similar to the n-aspect.

4. Cohomological congruence of Heegner points

Let g be a newform of level N with a prime p of 0, as in “Notations”. Recall
that V is the 2-dimensional Galg-module over k.

4.1. Local cohomology

We recall the definition of some local cohomology groups (cf. [4, §2]).

Definition 4.1. Let q be a prime not dividing N. The finite or unramified
part of HY(K,, V) is the ko-subspace :

H}in(be V) = H&T(Klb V)

defined as the inflation of Hl(Ké“"/Kq,V), where K" is the mazimal un-
ramified extension of K. The singular part is defined as

Hl (Ktb V) = Hl (LZv V)Gal(K:r/KQ)'

sing
We have the inflation-restriction exact sequence

0— H}m(Kq, V) - HY (K, V) — H]

sing

(K, V).
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Now assume that ¢ € A’ is an admissible prime. Then the Galg-module
V' is unramified at q. Then as Galg -modules, the vector space V' splits as
a direct sum of two kg-lines :

V> ko@ko(l), ko(1):= pp ®r, ko.

Note that in our case we have ¢ # +£1 mod p. Hence the Galg, -action is
nontrivial on kg(1). In particular, the direct sum decomposition is unique.
This induces a unique direct sum decomposition:

(4.1) HY(K,, V) =H' (K, ko) ® H (K, ko(1)).

Lemma 4.2. Assume that g € A’ is an admissible prime.
(1) dim H (Ky, ko) = dim H (K, ko(1)) = 1.
(2) Inside H'(K,,V), we have
H}in(KQa V) = Hl (KQ7 k0>7

and, the restriction map induces an isomorphism

H jing (Kq, V) ~ H' (Kq, ko(1)).

sing
Proof. This is proved in [4, Lemma 2.6] or [16, Lemma 8]. O

From this lemma, we will write a direct sum decomposition
(42) Hl(Kq7V) = H}m(KLPV)@H;’mg(KWV)’

1
where H,, 9

is identified with the subspace H'(Ky, ko(1)) of HY(K,, V).
4.2. Cohomological congruence between Heegner points

Recall that in §3, for a fixed newform g of level N = NtTN~ for a square-
free N— (with ¥(N ™) even), we have defined a family of cohomology classes
c(n,m) e H'(K,V) indexed by ne€ A,me A+,

Now let

loc, : HY(K,V) - HY(K,,V)

be the localization map at a place v of K. We then have the following
cohomological congruence between Heegner points when varying m € A'*,
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which can be essentially deduced from the work of Vatsal [43] and Bertolini—
Darmon [4]. This will be the key ingredient to show the non-vanishing of
the Kolyvagin system

fim i= {c(n,m) e HY(K,V):neA}, meA™r.

Theorem 4.3. Assume that (g,p, K) is as in “Notations” and satisfies
Hypothesis Q. Let m € A+ and q1,q2 € A} not dividing m. Then we have

(4.3) locy, (c(n,m)) e HY(K, ko), locg,(c(n,mqiqz)) € H (K, ko(1)).
Fizing isomorphisms

(4.4) HY(Kq,, ko) ~ ko ~ H' (Kq,, ko(1)),

we have an equality for all n € A:

(4.5) locg, (¢(n,m)) = locg, (c(n, mqi1g2)),

up to a unit in ko (dependent only on the choice of isomorphisms (4.4)).

Remark 10. The item (3) in Hypothesis © is not used in the proof of this
result.

Proof. Let A%, AY, A9 be the optimal quotients attached to gim, Gmg,» Gmagigs-
They all carry the common Galg-module V.

We first calculate locg, (¢(n, m)). We describe the local Kummer map of
Heegner points x € € Nom'

(4.6) g, J(Xim)(Kq,) = A%(Kq,) — Hyin(Kqy, A%[Pm,0])

= H}zn(K‘Jﬂv) = Hl(KQN k())

Here we use the remark (6) to modify x into a degree-zero divisor. By [4,
§9], there exists a nontrivial kp-valued Hecke eigenform on the Shimura set:

(4.7) ¢ Xong, — ko

such that

e ¢ is the reduction of the Jacquet-Langlands correspondence of g, ,
in the sense that the Hecke operator Ty acts on ¢ by ay(gmq, ) mod p’
for all ¢ (when ¢|Nmgq, T; means Uy). This determines ¢ uniquely up
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to a scalar. Indeed under Hypothesis O, by the proof of [33, Thm. 6.2]
via “Mazur’s principle”, we have a multiplicity one property:

(4.8) dimy, Z[Xpmq, | @1 T/ ker(x) = 1,

where T = Ty+ ny-mq and x : T — kg is the algebra homomorphism
associated to ¢.

e It calculates the local Kummer map of Heegner points: for a suitable
choice of isomorphism

Hl(quv kO) = kOa
we have

(4.9) d(Redy, (x)) = dq, () € ko,

for all Heegner points z € €, = ‘gfg ~Nm- Recall that the reduction
map is Redy, : €5 — Xpg, defined by (3.18). This follows from [4,
Theorem 9.2], essentially as a consequence of Thara’s lemma in [10] for
Shimura curves over Q (also cf. [43, §6] for the use of the original Thara
lemma for modular curves).

The two items can be written in terms of the following commutative dia-
grams where ¢ = q1:

Red,
DivO(%;) —= Div0(X59) Z[ X ng]”

T T

J(Kq) J(th)HH}m(vaj[m])$H}m(Kq’V) =~ ko,

where X5 = X, (F,2)* is the set of supersingular points, and Z[X,,q]° is
the kernel of the degree map deg : Z[Xnq] — Z.
Now we move to locg, (c(n, mg1g2)). We have a Shimura curve X,q,q,
parameterizing A9 and we need to calculate the local Kummer map at go:
Ogo + S (Xomgugs ) (K g,) — A8<qu) — Hy

sing

(KQ27 V) = Hl(qu ko(l)).

For the last arrow, the image of A°(K,,) is the singular part since J(Xng,q,)
has purely multiplicative reduction at go by [4, Corollary 5.18] (cf. (5.6)
below). Together with (4.6), this shows (4.3). Let J = J(Xnq,¢,) and let
Y (Xmgiq,) = Yo b ¥4 be the disjoint union (3.17). By [4, §5, §8], we have
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e The Kummer map J(K,,) — H'(K, J[m]) = HY(K, V) factors
through the group ®(J/K,,) of connected components of the Néron
model of J over K,.

e When we only consider the set CK; = ‘5; Nmgige? the specialization
of €5 always lies in %) ~ X,q,. By [4, Prop. 5.14], there is a ho-
momorphism Z[¥]° — ®(J/K,) which calculates the specialization of
Div’(%;¥) to the group ®(J/K,).

e The Hecke eigenform ¢ in (4.7) also calculates the local Kummer map
of Heegner point on X,4,4,: for a suitable choice of isomorphism

Hl(KQQv kO(l)) = k07
we have

(4.10) ¢(Spg, (%)) = dq, (%) € Ko,

for all Heegner points = € 45 Nmaqigo- Recall that the specialization

map is Sp,, : %I;qul(h — Xynq, defined by (3.19).

These facts can be summarized in terms of the following commutative dia-
grams:

T T

J( q)*>q)(=]/Kq)*>Hl' (va‘][m])i>ﬂl

sing

(va V) ~ ko,

where ¢ = ¢o.

From the geometric congruence Theorem 3.1, and the description (4.9)
and (4.10) of the local Kummer maps in terms of ¢ in (4.7), we have for all
neA:

(4.11) locg, © 6g, (Yym(n)) = locy, © 8g, (Ymag,g. (1)),

up to a unit in ko (independent of n,m), where we view y,(n) € A°(K,,)
and Yimg,q. (1) € AJ(Ky,) as local points (noting that g1, g2 splits completely
in K[n]).

Note that the cohomology classes ¢(n, m) are the Kummer images of the
points P,,(n) derived from y,(m). We have also chosen the derivative opera-
tors D, compatibly when varying m. Then clearly (4.11) implies the desired
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congruence between the cohomological classes ¢(n, m) and ¢(n, mq1q2):

locg, (¢(n,m)) = locg, (c(n, mq1g2)).
0

Remark 11. We may simply state this as the congruence between two Koly-
vagin systems indexed by m, mqiqz € A't:

locg, (Km) = locg, (Kmg,q,)-

There is analogous property in the n-aspect of ¢(n,m): for n € A and a
prime £ € A not dividing n, we have

Ye(locge(n, m)) = locy(c(nl, m)),

where 1), is a suitable finite/singular isomorphism at ¢ (cf. (8.1) in §8 or
[26]).

Remark 12. The part on loc,, is usually called Jochnowitz congruence (cf.
[43, 4, 9] and also §6). The part on loc,, already appeared in the proof of
the anti-cyclotomic main conjecture by Bertolini-Darmon [4]. If we check the
change of root number of L(g/K, s) using (1.4), we see that the Jochnowitz
congruence switch from —1 to +1, while the Bertolini-Darmon congruence
from +1 to —1.

5. Rank-lowering of Selmer groups

In this section we study the effect on the Selmer group by level-raising of
modular forms. Suppose that we are given:

e ¢g: a newform of level N as in “Notations”, with a prime p of & above
p.

e g A’: an admissible prime.

e ¢': a level-raising form from Theorem 2.1, i.e., a newform of level Ng
which is congruent to g. The congruence also requires a choice of prime
p’ of 0" = Oy above p.

Let A, A’ be the GLy-type abelian variety over Q associated to g,¢’ with
multiplication by &, 0’. We write k' = 0’ /p’.

We want to compare the Selmer group of A and A’. This part is largely
from the idea of Gross—Parson in [16] with a slight improvement.
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5.1. Local conditions

Following [16], we describe the local conditions defining the Selmer group:
(5.1) Sel, (A/K) = {ce H' (K, A[p]) : locs(c) € Im(5;), for all £},
where

(5.2) 8¢ = A(K¢) — H'(Kq, Alp])

is the local Kummer map at ¢. As we have identified A[p] with V ®y, k, we
will denote by %7 4 the image Im(d,) as a subspace of HY (K, V)@, k. A
key observation in [16] is that, under suitable hypothesis, one could describe
the local conditions {%; 4} purely in terms of Galg-structure on V together
with the information on the reduction type at every prime.

Lemma 5.1. (1) For any prime {, we have
(5.3) HYQy, V) =0 «— VvGal —,

(2) If V. = E|[p] for elliptic curve over Qp with additive reduction and
p # L, then

H'(Q, V) = 0.

Proof. We have a trivial observation:
(5.4) dimy, H(Qy, V) = 2dim V¢,

Though this is well-known, we give a proof for the reader’s convenience. Since
¢ # p, by Tate theorem [30, Theorem 2.8] the Euler—Poincaré characteristic
is

x(Gal,, V) = 0.

Here we recall the definition [30, Chap. 1.2] of the Euler-Poincaré charac-
teristic for any finite Gal,-module M:

_ #H"(Galy, M)#H?(Galg, M)
x{Gale, M) = #H(Galy, M) :

Since det(p) = €, (the p-adic cyclotomic character), the Galois module
V is self-dual. Then the local duality asserts that H°(Qy, V) is dual to
H?(Qg,V*) = H%*(Q,V). Hence dim H°(Qy, V) = dim H?(Qy, V). Since
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HO(Qy, V) = VGl the desired equality (5.4) follows. Then the first part of
the lemma follows.

To show the second part, it suffices to show V& = E[p](Q,) = 0,
which is equivalent to E(Qy)/pE(Q¢) = 0 since ¢ # p. Since E has additive
reduction, there is a filtration E1(Q) < Eo(Q) < E(Qy) where Fq(Qy)
is a pro-¢ group, Eo(Qy)/E1(Qy) is isomorphic to Fy, and E(Qy)/Ep(Qy) is
isomorphic to the component group of the Néron model of E/Qy. Note that
the component group has order at most 4 for an elliptic curve with additive
reduction. From ¢ # p and p > 3 it follows that E(Q)/pE(Q;) = 0. This
completes the proof.

O

Theorem 5.2. Assume that Hypothesis © for (g,p, K) holds. For all primes
¢ (not only those in A), the local conditions £y 4 and £ 4 all have ko-
rational structure, i.e.: there exist ko-subspaces of H'(K;, V) denoted by
Lo a0 and Ly a0 0, such that

Loa=L1.40® ks Loa=Loa0®n k.
Moreover, we have when £ # ¢
Ziap = LA,
and when £ = q:
ZLiao=H' (K, ko), Lo =H'(Kg ko(1)).
Remark 13. This is only place where the item (3) in Hypothesis © is used.

In [16], a stronger hypothesis is imposed at a prime ¢ with £2|N.
Proof. If (¢, Np) = 1, then both A and A’ have good reduction and we have

Lyoa=Hp(Ke, V) @iy by Lon = Hpy (Ko, V) @iy K

If /2| N, then ¢ is split in the quadratic extension K/Q. Under the item
(3) in Hypothesis O, we have H'(K;,V) = 0 by Lemma 5.1 (1). In this case
we have trivially

0%14:05 &,A’ = 0.

5

Let /||N be a prime where 4 ,, is ramified at ¢ (this includes all £|[N*).
Then A has purely toric reduction and the p-part of the component group is
trivial. Let H.,, (K, V) be the subspace of H'(K,,.%;) consisting of classes

unr
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that split over an unramified extension of Ky [16, §4.2]. It depends only on
the Galg,-action on V. By [16, Lemma 6], we have

La=HL (K, V)®r ky, Loa=HL (Ko, V) ®p, K.

unr unr

Now let /|[N~q be a prime such that p,, is unramified. Recall that
V' splits uniquely as a direct sum of two ko-lines as Galg,-module: V' ~
ko @ ko(1), This induces H'(K,, V) = H*(Ky, ko) ® H' (K, ko(1)), where
each component is one-dimensional. The following is proved in [16, Lemma
8]:

e If / # ¢, both A and A’ have purely toric reduction and we have

(5.5) Lra=H'(Kp k(1) ®no ky  Loa = H (Kp, ko(1)) @, K-

e If / = ¢, A has good reduction at g, and A’ has purely toric reduction
at q. Hence

(5.6) Lya=H (K ko)®Fk, Lya=H(K;k(1)®FK.

Finally, at £ = p, both A, A’ have good reduction and the local conditions
can be described in terms of flat cohomology [16, Lemma 7].
From the description of .2y 4 and %} 4/, the desired result follows.
O

We define a kg-vector space
(5.7) Selp, (A/K) := {ce H'(K,V) :locy(c) € £ 40 for all £}.
Then we have
(5.8) Sely (A/K) = Sely, (A/K) ®y, k-

Similarly we define Sely, (A’/K). It follows that the local conditions defining
Sely, (A/K) and Sely, (A’/K) differ at exactly one prime, i.e., at g.

5.2. Parity lemma.

We record the parity lemma of Gross—Parson [16, Lemma 9]. This lemma
was also known to Howard (cf. [20, Corollary 2.2.10]). We have four Selmer
groups Sel, (K, V), * € {u,t,r, s}, contained in H'(K,V), all defined by the
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same local conditions %7 4 o except ¢ # q. At ¢, we specify the local condi-
tions

HY (K, ko), % = u (unramified),
7 - HY (K, ko(1)), * =t (transverse),
o HY(K,V), #* = r (relaxed),
0, * = s (strict).

Lemma 5.3. Ifloc, : Sel, (K,V) — 2,4, then we have

(1) dimg, Sel,(K,V) = dimy, Sels(K,V) + 1.
(2) Sely,(K,V) = Sel,(K,V) and Sel,(K,V) = Sels(K,V).

Iflocy : Sely (K, V) — %, 4, then we have
(1) dimg, Sel,.(K,V) = dimg, Sels(K,V) + 1, and
(2) Sely(K,V) = Sel,(K,V) and Sel, (K, V) = Sel,(K,V).
5.3. Rank-lowering of Selmer group
We have the following description of the Selmer group when we move from
modular form g to a level-raising one ¢’ (cf. [16, Theorem 2]).

Proposition 5.4. Let A, A’ be as in the beginning of this section. As-
sume that the localization loc, : Sel,, (A/K) < HY(K,V) — H}m(Kq, V) =
HY(K,, ko) is surjective (equivalently, nontrivial). Then we have

dim g/, Sely (A'/K) = dimg ), Sel, (A/K) — 1.
Moreover, we have
Sely, (A'/K) = Ker(locg : Sely, (A/K) — Hj;, (Kq, V).
Proof. This first follows immediately from the parity lemma 5.3. The sec-

ond part follows since Sely, (A’/K) = Sels(K,V) is the strict Selmer and
Sely, (A/K) = Sel,.(K,V) is the relaxed Selmer. O

6. A special value formula mod p

We need a criterion for the non-vanishing of Heegner points in terms of cen-
tral L-values (instead of the first derivative, as in the Gross—Zagier formula).
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To do so we calculate the image of the Heegner point under the localization
at an unramified prime g¢:

locg : A(K) — H}y, (Kq, Alp]).

A priori, we may choose an arbitrary ¢ not dividing the level N. But it is eas-
ier to do so at an admissible prime ¢ since the local unramified cohomology
is of rank one by Lemma 4.2.

6.1. A special value formula

We use a formula of Gross [14]. It can be viewed as an explicit Waldspurger
formula for the new vector in the relevant automorphic representation. Such
explicit formulae were also obtained by other authors, cf. [47, 48, 41].

Let g be a newform of level N = N*N~, where N~ has an odd number of
prime factors. Assume that (g, p, K) satisfies the hypothesis in “Notations”
(including Hypothesis Q).

Recall that X = Xx+ y- is the Shimura set attached to the definite
quaternion ramified at N~ oo. Let Ty+ ny- be the Hecke algebra generated
over Z by Hecke operators Ty, (¢, N) = 1 and Uy for ¢|N acting on Z[X],
or equivalently the N~ -new quotient of the Hecke algebra generated by
Hecke operators acting on the space of weight two modular forms of level N.
Following [43, §2.1], we consider a normalized eigenform ¢ = ¢4, an &-value
function on X, via the Jacquet-Langlands correspondence. It is normalized
such that the image of

(6.1) $p: X - O — 0,

contains a unit of &y. It is then unique up to a p-adic unit, and we view
it as an element in 0,[X|. We have a bilinear pairing (-,-) on Z[X] given
by the Petersson inner product with counting measure on X. We extend it
linearly to €[X] and define (cf. also [33, §2.1, 2.2])

(6.2) E(NT,N7) =(p, )€ 0.

We now state the Gross formula (after Vatsal [43, §2.3], also cf. [33, §2.1,
2.2]). Note that we only consider real valued function, hence we do not have
the complex conjugation.

Theorem 6.1. Let

Tx = > o(z(1) e Z[X]

oeGal(K[1]/K)
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be the Heegner divisor on the Shimura set X, (cf. (3.6)). Then we have,

(d(zk))”

1/2L(g/K, 1)
(¢, 9)

(9,90

where ug = %#(’)IX( € {1,2,3}, and {g, g)pet is the Petersson inner product
on the modular curve Xo(Nm):

= uk|D|

(g, Oper = 87 j 9(2)g@)dedy, ==z +yvL.
To(Nm)\H

6.2. Congruence numbers and canonical periods

For a newform g of level N = NTN~, we denote by n,(NT,N~) € 0,
a generator of the congruence ideal of the associated homomorphism 7, :
Tn+ N~ — O — Op. Namely as Oy-ideals, we have

(ng(NJr,N*)) = mg(Anny ker(my)) - Oy.

It is only well-defined up to a p-adic unit. We write ny(N) = ng(N, 1). We
define the canonical period (after Hida, Vatsal [43, §2.4]):

(6.3) ann _ <797ag.§7]>\§’)et’

where 7,(N), only well-defined up to units, can be taken as an element in
0. Define

ng(N)
(6.4) Ng,N+ N- = W € 0y.

We also define the algebraic part of the special value of L(g/K,1):

L(g/K,1) 1

6.5 LY (g/K,1) :=
(6.5) (9/K.1) Qe T

€ 0.

The integrality follows from the following reformulation of the formula in
Theorem 6.1:

Corollary 6.2. Up to a p-adic unit, we have

(6.6) (6(xx))? = L™8(g/K,1).
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6.3. Local Tamagawa numbers

Let g be a new form of level N as above, and A = A, the attached GLo-
type abelian variety over Q with &-multiplication. We now define the p-
component of the local Tamagawa number of A at a prime ¢|N. Let Ok, be
the integer ring of K, and ky the residue field (F, x Fy if ¢ is split in K).
For a prime ¢, let Ay/OFg, be the Néron model of A/K, and Ay, its special
fiber. Let .,422 be the connected component containing the identity of Ay,.
We consider the component group scheme

D(A/Ky) i= A, /AL,

It is a finite étale group scheme over k; with an action by &,. Let ®(A/Ky),
be the p-adic completion, which then carries an action of 0, = 0, ,. The
the p-part of the local Tamagawa number at £ is defined as the length of the
ke-points of the group scheme ®(A/Ky),:

(6.7) tg(£) = lgg, ®(A/Ke)p(ke)-

This depends on p implicitly. One may deduce the vanishing of ¢,(¢) under
a simple condition:

Lemma 6.3. If V93l = 0, then ®(A/Ky),(ke) is trivial, and hence t,(€) =
0.

Proof. By [16, Lemma 4], the space of inertia invariants A[p]’ is, as a Galy, -
module, an extension of ®(A/Ky)[p] by Age [p]. Note that A[p] = Vklf.

Under the hypothesis V&2 = 0, we deduce that A[p]’* = 0, and hence
the Galg,-invariants of Age [p] and ®(A/K,)[p] are trivial. In particular,

D(A/Ky)[p](ke) = ®(A/K)[p]“2ke = 0. It follows that ®(A/Ky)y (k) = 0.
This completes the proof. ]

Now we consider the case £||N. If p, ,, is ramified at £|| N, then ®(A/Ky),
is trivial and in particular ¢4(¢) = 0. If a prime £ is inert in K, ®(A/Ky) is
a constant group scheme since ky is a genuine quadratic extension of [Fy:

O(A/Ky) (ke) = D(A/K) (k).

Therefore when /|[N is inert in K (i.e., {[N7), the length lg, ®(A/Ky),

of the Oy-module ®(A/Ky)y(ke) is the same as t,(¢). One can describe the
length in terms of the p-adic Galois representation restricted to the inertia
I

pgp : Galg — GLg, (T, (A)) ~ GLa(Oy).
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The restriction to the inertia py |7, at £ is of the form

(o 1)

Then the length lgg ®(A/Ky)y for inert £ is the same as either

e The maximal integer ¢ such that Galg-module A[p?] is unramified at
£, or

e The maximal integer ¢ such that the (x)-part of the above matrices
lies in the ideal p* of O.

For a proof of this well-known description, see [22, p.210].

Theorem 6.4 (Ribet—Takahashi [35], Khare [22], Pollack—Weston,[33]). Let
g be as above (particularly N~ has odd number of factors). Assume that
Hypothesis O holds for (g,p, K). Then we have

(g n-) = D, lgg ®(A/Ky)p.
(N-

Proof. This equality is proved in [33, Theorem 6.8] for square-free N under
Hypothesis © (note that our 7y n+ y- defined by (6.4) is the ratio in [33,
Theorem 6.8]). The proof of [33, Theorem 6.8] relies on

e the result of Helm [18] on the multiplicity one of J[m] to show [33,
Theorem 6.2], and

e the last equality in the proof of [33, Theorem 6.8]. This equality is
deduced from the result on modular degrees established for elliptic
curves by Ribet-Takahashi [35] and Takahashi [38], and for GLa-type
abelian varieties over Q attached to g by Khare in [22].

The result of Helm [18] does not need to assume the square-freeness of N
and indeed holds if we only assume that Ram(p, ,) contains all ¢|[N~ with
q = t1 mod p. If N is not square-free, one checks the proof of Ribet—
Takahashi (the second assertion of [35, Theorem 1]) and Khare [22] to see
that the last equality in the proof of [33, Theorem 6.8] holds if we only
assume that

e #Ram(p,,) = 1, namely there is at least one /||[N such that p,, is
ramified at ¢, and

e cither Ram(p, ,) contains a prime ¢|[N~ or there are at least two
primes factors ¢||[NT.
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Therefore [33, Theorem 6.8] holds under our Hypothesis © for (g, p, K). This
completes the proof.
0

6.4. Jochnowitz congruence

We now switch to the setting at the beginning of §5: g is a newform of
level N = NTN~ and ¢ a level-raising newform of level Nq where ¢ is an
admissible prime. We have a prime p’ of €y above p and the residue filed
Og /o' =K (cf. §2).

Assume that N~ has even number of factor. Then the root number
of L(A/K,s) (L(A'/K,s), resp.) is —1 (1, resp.). We may now state the
Jochnowitz congruence. It provides a local invariant to test the non-vanishing
of Heegner point yx € A(K) (cf. (3.22)). Recall that c¢(1) € H'(K,V ®y, k)
is the Kummer image of yx . The following result has been essentially known
to other authors [43] and [4].

Theorem 6.5. Assume that g is as in “Notations” and (g,p, K) satisfies
Hypothesis ©. Assume that v(N~) is even. Then the class c(1) € H(K,V®,
k) is locally non-trivial at q if and only if the algebraic part L™9(g' /K, 1)
(defined by (6.5)) is a p'-adic unit.

Proof. By Theorem 3.1, the reduction at g of the Heegner point 1(n) € €
on the Shimura curve X is given under the chosen identification X, ~ X3
in (3.12)

Red, (a1(n)) = ,(n).

Then the Heegner divisor on X

ng= Y, ol@(l)

oeGal(K[1]/K)

has reduction given by

Lg,K = Z 0(zq(1)) € Z[Xy].

oeGal(K[1]/K)

Let ¢ be the normalized function on the Shimura set X, obtained from
the Jacquet-Langlands correspondence of ¢’ as in (6.1) applied to ¢’. The
reduction

¢ mod p': Xy — Oy /fp =k
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is a Hecke eigenform, hence equal to a multiple of the function ¢ in (4.7) (ap-
plied to the Shimura set X,) by the multiplicity-one (4.8). Possibly replacing
it by a multiple in k' we may assume that ¢/ mod p’ = ¢. In particular, we
have

(6.8) ¢ (xg ) mod p' = ¢ (vg k) -
As in §4, we fix an isomorphism:
H}in(KlIa V) = Hl(an kO) ~ ko.

By (4.9) we have
locg(e(1)) = ¢(zq k) € ko.
By the Gross formula (Corollary 6.2) for ¢’ and (6.8), we have

(locg(c(1)))? = L™ (g//K,1) mod ¢/,
where both sides take values in ky. The desired result follows. O
7. The rank one case
7.1. The B-SD formula in the rank zero case

We need the results of Kato and Skinner—Urban on the B-SD formula in the
rank zero case. This is the only place we need to impose the ordinariness
assumption.

Theorem 7.1 (Kato, Skinner—Urban). Let g be a modular form of level N
where p a prime of Oy above p > 3. Assume that:

e p is a good ordinary prime.

o The image of py, , contains SLo(Fp).

e There is a place l||N such that the residue Galois representation PA,p
is ramified at £.

Then L(g/K,1) # 0 if and only if Sely=(Ay/K) is finite, in which case we
have

(7.1) vp (L(g/“) — g, Sely- (Ag/K) + S ,(0)

Qcan
g (N

where t4(€) = lgg, ®(A/K()(ke) is the local Tamagawa number at ¢ defined
in (6.7).
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Proof. This follows from the p-adic part of the B-SD formula for A and its
quadratic twist AX separately (cf. [29, p.182, Theorem 1]). Or rather, we
use the corresponding statement for the modular form ¢ and its quadratic
twist g€,

For A and its quadratic twist A% one applies the variant of [37, Theorem
2] for GLa-type abelian varieties to show the p-adic part of the B-SD formula
for A and its quadratic twist AX . We note:

e In [37, Theorem 2], the authors only stated the result for elliptic curves.
But clearly the results extend to the setting of a modular form g with a
prime p of &, above p. To deduce the formula from the Iwasawa Main
conjecture [37, Theorem 1], they invoke a result of Greenberg which
was stated only for elliptic curves, but clearly holds for the GLo-type
abelian variety Ay (cf. the proof of [37, Theorem 3.35]).

e Note that in the proof of [37, Theorem 2|, one needs to choose an
auxiliary imaginary quadratic field, which needs not to be the K in
our paper.

e The image of py , > SL2(Fp) implies that the image of pa, p, >
SL2(Z,), a condition required to apply Kato’s result in [37].

Finally we also note that the canonical period {7*" is the product Qg Q
in [37] up to a p-adic unit.
O

Remark 14. Note that the theorem does not assume that N~ has odd num-
ber of factors. If N~ has even number of factors, then the root number of
L(g/K,s) is —1 and the theorem says that the Selmer group Sel,-(A44/K)
can not be finite.

Remark 15. We will only use that the left hand side is at most as large as
the right hand side in (7.1).

7.2. The rank one case

Theorem 7.2. Let (g,p, K) be a newform of level N as in “Notations”, sat-
isfying Hypothesis Q. If dimy Sel, (A/K) = 1, then the class ¢(1) € HY(K, V)

18 nonzero.

Proof. We need to choose a suitable admissible prime g. We record the
following well-known lemma.

Lemma 7.3. Assume p > 5. Let c € H'(K,V) be a non-zero class. Then
there exists a positive density of admissible primes q such that the localization
locy(c) is nonzero.
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Proof. This is a routine application of Cebotarev density theorem, cf. [4,
Theorem 3.2]. O

We return to prove Theorem 7.2. Let ¢ be a generator of Sel, (A4/K) <
H'(K,V). We apply the lemma to ¢ to choose an admissible prime ¢ such
that locy(c) # 0. By Theorem 2.1, there exists a level-raising modular form
g’ of level Nq. Note that Hypothesis © is stable under level-raising. Let A’ =
Ay be an associated GLa-type abelian variety with ¢’ = 0y -multiplication.
Then clearly the localization

locg : Sely, (A/K) — H},;, (Kq, V)

is surjective. By Proposition 5.4, we have dimy Sel, (A’/K) = 0. In partic-
ular,

Sel, i (A'/K) = 0.
Therefore by the B-SD formula in Theorem 7.1, we have

(7.2) Vp (W) =0+ ). tg(0).

If ||[NT, under our assumption, Pgp = Py 1s ramified at £, and hence
ty(0) = 0. If 2|N*, then VG2lr = 0 by the item (3) of Hypothesis ©. We
then have that for £2|N*, by Lemma 6.3

ty (£) = lggy, ®(A'/Ky)(ke) = 0.

The formula (7.2) is then reduced to

(7.3) vy (L(gg/ff;l)) = > ty(0).
“

{N-q
We now compare the formula (7.2) with

e Gross formula (Corollary 6.2 applied to ¢’), and
e Theorem 6.4 (note that since our admissible ¢ # £1 mod p, the form
¢’ remains to satisfy the assumption).

We see that the local Tamagawa factors at N~ ¢ exactly cancels the factor
Mg, N+ ,N-q i (6.5). We conclude that

L¥8(g//K,1) #0 mod p’.



44 W. Zhang

By Theorem 6.5, this is equivalent to the non vanishing of the localization
of ¢(1) € HY(K,V ®y, k) at ¢. In particular, the cohomology class ¢(1) €
H(K,V) is nonzero. O

8. Triangulization of Selmer group

We recall some basic property of Kolyvagin system
km = {c(n,m) e HY(K,V):ne A}

defined in §3. For their proofs, we refer to [15, 23, 24, 28]. Since we will
be working with a fixed m € A'*, we simply write c(n,m) as c(n). We will
construct a triangular basis of Selmer group in Lemma 8.4. Such triangular
basis for elliptic curves was constructed before by Kolyvagin in [24, Theorem
3] (under the condition that k* # 0).

8.1. Basic properties of k.

There is an alternating Galg-equivariant pairing
VxV —ko(1).
This induces the local Tate pairing for every prime £:
HY (K, V) x HY (K, V) — ko.

For every prime £ € A, the local cohomology group H'(K,, V) is always
4-dimensional (cf. [15]). Define the transverse part H..(K,V) as the sub-
space of H(Ky, V) from the inflation of H*(K[¢];/Ky, V) (note that Galg,
acts trivially on V). Then we have a splitting of the finite/singular exact
sequence:

Hl(Kfa V) = H}in(K€7 V) @Htlr(Kv V)7

where each component is two-dimensional and totally maximal isotropic un-
der local Tate pairing. The complex conjugation 7 € Gal(K/Q) acts on both
components and each of the eigenspace H}, (K, V)*, HL(K,V)* is one-
dimensional. The local Tate pairing then induces perfect pairings between
one-dimensional spaces:

Hjip(Ke, V)E x Hy (K, V)T — k.
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In general, for every prime ¢ (not necessarily in A), the finite part
H}m(Kg,V) is, by definition, the local condition £} 40 < HY(K,, V) (cf.
Theorem 5.2).

The collection x = {c(n) € H'(K,V) : n € A} has the following proper-
ties:

(1) For every prime ¢ (not only those in A) and n € A, we have (cf. [15])

Hp, (Kp, V) (¢,n) = 1;

toceleln)) < {Htlr(m, V) fn.

(2) For each prime £ € A, there is a finite/singular homomorphism:
Yy : H}in(Kfﬂ V) - H)tlr(Kf7 V),

which is an isomorphism (cf. [28, Prop. 4.4]) such that for all n € A
with (n,f) =1

(8.1) loce(e(nf)) = we(locy(c(n))).

Recall that we assume that the residue Galois representation p, = :
Galg — GL(V) ~ GLa(ko) is surjective. Under this assumption we have a
Cebotarev-type density theorem.

Lemma 8.1. Let c1, c2 be two ko-linear independent elements in H* (K, V).
Then there exists a positive density of primes £ € A such that

loce(c;) #0, i=1,2.
Proof. This is a special case of [28, Prop. 3.1], noting that p,,, : Galp —
GL(V) ~ GLa(ko) is assumed to be surjective. O

The following lemma allows us to pick up an element with a prescribed
set of “singular” places.

Lemma 8.2. Let £ € A and S a finite subset of A not containing £. Then
there exists ce H'(K,V)* such that

e c#0,
e loc,ce H}m(Kv, V) for all v outside S U {{}.
e loc,ce HL(K,, V) forallve S.

Proof. The same proof as [28, Lemma 5.3] still works. O
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8.2. Triangulization of Selmer group

Let (g,p, K) be as in “Notations” satisfying Hypothesis Q. Assume that N~
has even number of factors. Let k = x4 be the associated Kolyvagin system.

Definition 8.3. e The vanishing order v of k is defined to be the min-
imal v(n) such that c¢(n) # 0 for some n € A. If k = {0}, we take
v = 0.

o A prime £ is called a base point of k if £ does not divide D Np and
we have locy(c(n)) = 0 for all n € A (or, simply, locy(k) = 0). The set
of all base points is called the base locus of k, denote by B(k).

The following lemma provides one of the eigenspace of Selmer group with
a “triangular basis” entirely consisting of Kolyvagin classes. The existence
of such “explicit” triangular basis seems to be the key to our argument later
on. The following result, can be proved with the techniques, though not
stated explicitly, in [23, 28].

Lemma 8.4. Assume that k # {0}, i.e., the vanishing order v of k is finite.
Then we have

(1) The €,-eigenspace Sely (A/K) is of dimension (v +1):
dim Sely" (A/K) = v + 1,
and
dim Sel, " (A/K) < v.

(2) There exist 2v+1 distinct primes {1, ..., 02,11 € A1 such that the classes
c(ni) e HY(K, V), n;:=4lilis1..livy1, 1<i<v+1

form a basis of Selyy (A/K) with the property that, for all1 < j < v+1:

=0, >3
8.2 locy . i
32) ew<c<n>>{¢0’ L

In other words, the (v+1) x (v+1)-matriz (locy, , , (c(n;)))i,; is invertible
and upper triangular.
(3) Let Sel;—k:@(n) (A/K) be the relazed Selmer group at the base locus B(k),

i.e., the set of c € HY(K,V ® k)% such that loc,(c) € £, 4 for all v
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outside B(k) and no restriction on loc,(c) € HY(K,,V ® k) if v €
PB(k). Then we have Sel;”%(ﬁ)(A/K) = Selyy (A/K) and

dim Sel;:é(ﬂ) (A/K) <.

Proof. We first prove by induction that, if 0 < j < v, there exist a sequence
of primes /1, ...,¢,+; € A such that

e Forall 1 <i<j+1, wehave ¢(n;) # 0, where n; = £;...0, ;1.
e For all 1 < i < j, we have locy, ,,c(n;) # 0.

When j = 0, it follows from the definition of v that there exists ny = #1...4,, €
A, such that

c(n1) # 0.

This proves the case j = 0 since the second requirement is void in this case.

Now suppose that we have found /1, ..., £, ; with the desired property
and 0 < j <v—1. We apply Lemma 8.2 to S = {{;12,...., 0,1} and £ = {; 4
to obtain c € H(K, V)~ such that

e c#0,
e loc,c€e H}m(Kv,V) for all v outside {€;41,...,lv+;}.
e loc,c€ HE(K,,V) for all v € {{j1a,.... 04 }.

In particular, c lies in the opposite eigenspace to ¢(n;41) under the com-
plex conjugation. Apply Lemma 8.1 to obtain a prime denoted by £, ;1,
distinct from /1, ..., £, ;, such that

(8.3) loc, ;.. (c) #0, locy,,,;,, (c(njt1)) # 0.

v+l
We now calculate the Tate paring, as a sum of the local Tate pairing over
all places:

(8.4) 0 = e, e(njsrlutjvr)) = Z<C7 c(njs1luj1))o-

(%

We first note that both ¢ and ¢(nj410,4j+1) lie in the same eigenspace. The
(possibly) nonzero contribution only comes from v € {¢; 1, ..., 4,4+ j+1}. When
v € {{j12,...,0u4;}, both loc,c and locyc(njp1y4j41) lie in the transverse
part H} (K,,V). Hence the local pairing yields zero. When v = £, 41, by
(8.3) we have locy,, ,,c # 0 in H}m(Kg V)e+t and

vtg+1?

locfu+j+1c(nj+1€l/+j+1) = ¢@u+j+1(locf;/+j+1c<nj+1)) # 0,
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in HY.(Ky, ..., V)*+ . It follows that the local contribution at v = £, 411 is
nonzero. Hence by (8.4), both locy,,, ¢ and locy,,, ¢(nj4 14,1 j11) are nonzero.
Hence we have

locy,,, e(njlytj+1/ljv1) # 0,

or equivalently,

locy,, c(nji2) #0, nji2 ="Lijro..lyyji1.
In particular, we have
(8.5) c(njt2) # 0.

By (8.3) and (8.5) we complete the induction.
We finally add a prime 5,11 € A such that

loce,, ., c(ny41) # 0.

Such a prime exists since ¢(n,4+1) # 0. Now we have found {/1, ..., 09,11}
satisfying the property (8.2).

It is clearly ¢(n;), 1 < i < v + 1, are linearly independent and in the
Selmer group Seli (A/K). To show that they actually generate the entire
space Selgf (K, V), it suffices to show the stronger statement that they gen-
erate the relaxed Selmer Sel;';%,(ﬁ) (A/K).

Let ce Sel;“’ () (A/K). We may further assume that, perhaps subtract-
ing ¢ by a suitable linear combination of ¢(n;)’s:

locg,, . (¢)=0, 1<j<v+1

v+j
Set
/

n = Llyp1.. o loy 1 € Ay,

Then ¢(n’) is non-zero since it’s locally nonzero at ¢o,,11. In particular, the
classes ¢ and ¢(n’) are in difference eigenspaces.

Assume that ¢ # 0. By Lemma 8.1, there exists a prime f9,19 ¢ {£; : 1 <
i < 2v + 1} such that

(8.6) locy,, ., (c) # 0, 10042y+20(n') # 0.

Set

" /
n" =nloy 2 € Ayyo.
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Then c(n”) is nonzero since (8.6) implies that
(8.7) locg,,,,(c) # 0, locy,,, ,c(n”) # 0.

Moreover, the class ¢(n”) lies in the same eigenspace as c.
We calculate the Tate pairing as a sum of local terms:

0={e,e(n”)y = D lese(n )+ Dol e(n”)y.

vEB(K) Ln”

By definition of base locus #(k), we have loc,x = 0. Hence the first sum is
zero since ¢(n”) € k.
Since locy,(c) =0 for all v +1 < i < 2v + 1, by (8.6) and (8.7) we have

Z<Cv C(n”)>€ = <Cv C(n”)>€2u+2 # 0.

€|’VZ”

Contradiction! Hence ¢ = 0 and it follows that Sel®

o (A/K) = Sely (A/K)

is generated by c¢(n;),1 <i<v+ 1.
To complete the proof of Lemma 8.4, it remains to show that

dim Selgfé(n) (A/K) <.

Suppose that dim Selgij(n)(A/K) > v + 1. Then by a dimension counting,
there exists a class 0 # d € Sel,““(A/K) such that

locy,,,d=0, 1<i<w.

Since d and ¢(n,+1) lie in different eigenspaces, by Lemma 8.1, we may (re-)
choose f5,,,1 such that
locy, ., d # 0, locg,,,c(ny41) # 0.

v+1
Then, as before, we calculate the Tate paring {(d,c(n,+102,+1)), to get a
contradiction.
O
9. Kolyvagin’s conjecture

9.1. Nonvanishing of k.

We resume the notation in §3 and consider the non-vanishing of .
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Theorem 9.1. Let g be a newform of weight two of level N with trivial
nebentypus, p a prime ideal of Oy above p, and K an imaginary quadratic
field of discriminant Dy such that (D, N) = 1. Assume

N~ is square-free with even number of prime factors.
Pg.po + Galg — GL(V) >~ GLa(ko) is surjective.
Hypothesis © holds for (g,p, K).

p1 DN and p =5 is an ordinary prime.

Then we have
k= {c(n) e HY(K,V) :ne A} # {0}.
Proof. We prove this by induction on the rank

r = dimg/, Sel, (Ay/K).

We first assume that the parity conjecture (for Selmer group) holds for E/K
(cf. [32]), i.e., that r is always odd. We will remove this assumption later, as
to be shown by our method.

The case r = 1 has been treated by Theorem 7.2. Suppose now that
the rank 7 > 3. Suppose that p € {+1} is chosen such that Selj(4,/K) has
higher rank than Sel,”(A,/K). In particular, we have dim Sely (A4/K) > 2.

We proceed as follows.

e Choose a non-zero ¢; € Sely(A4,/K). We may and will require that
c1 € HY(K,V ®y, k) is ko-rational, i.e., in H'(K,V). And choose an
admissible prime ¢; such that the image of ¢; under homomorphism

100‘]1 : Selp (AQ/K> - H}in(K‘hv V)
is nonzero. In particular, the homomorphism is surjective. Then we
apply level-raising theorem 2.1 to obtain a newform g; of level Nq;
together with a prime p;. Then by Proposition 5.4, we have
dimg, ,, Selp, (A1/K) = dimg/, Sel, (A/K) — 1,
and the kp-rational Selmer group is equal to the kernel of locg, :
Selpl,o (Al/K> = Ker(lOqu : Selpo (A/K) - H}zn(K(h ) V))

e Choose a non-zero ¢ € Selyy, (A;/K). Since Sely, (A1/K) = 2, such ¢
exists. We may and will require that c; € H'(K, V). We use again the
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level-raising theorem 2.1 to obtain a newform go of level Ngig2. Then
by Proposition 5.4, we have

dimﬁz/pz SelPZ (AQ/K) = dimﬁl/pl Selpl (Al/K) —1
= dimy/, Sel, (A/K) — 2,

and the kg-rational Selmer group is equal to the kernel of locy,:
Selpz,o (AQ/K) = Ker(locq2 : Selpl,o (Al/K) - H}in(KQm V))

Moreover, the process is compatible with the action of complex conjugation.
We hence have for i = 1,2

(9.1) dimg, p, Sely, (Ai/K) = dimg ), Sely (A/K) — 1,
and
(9.2) dimg, p, Sel, /*(Ai/K) = dimg ), Sel, *(A/K).

By induction hypothesis, noting that go still satisfies the hypothesis of
Theorem 9.1, we may assume that the collection

Kggs = {c(n, q1q2) € Hl(K, V) :ne A} # {0}.

By the cohomological congruence of Heegner points (Theorem 4.3), we
have for all n € A

locg, ¢(n, 1) = locg,c(n, q1g2).
To finish the proof of k = {c(n,1) : n € A} # {0}, it suffices to show that g2
is not a base point of the Kolyvagin system rg,g,.
We show this by contradiction. Suppose that g2 is a base point of kg, g,.

We note that the local condition from As differs from that from A; only at
the place g2. We then have a trivial inclusion into the relaxed Selmer group:

(9.3) Sely (A1/K) < sel;—*m By, A2/ K.

We have two cases

(1) dim Sel};,(Az/K) remains larger than dim Sel,*(A2/K).
(2) dimSel},(A2/K) is smaller than dim Sel,/'(A2/K). This happens ex-
actly when

(9.4) dim Sely (A/K) = dim Sel,"(4/K) + 1.
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In the first case, by Lemma 8.4 we have an equality

Sely, (A2/K) = Sel]

2,%(kq, a2

)(AQ/K)-

Hence Sely, [(A1/K) < Sely, (A2/K) by (9.3). But, by our choice, the class
¢ lies in the first space but not in the second. A contradiction!

In the second case, let v = v,, be the vanishing order of x4,4,. Then we
know by Lemma 8.4 that

dim Sel, /' (A2/K) =v+1, dimSel!] (A2/K) <.

p2,07<93(”€q1q2)

However, by (9.3), the dimension of Sel’;2 o, Bk )(AQ/K> is at least that of

Sely, ,(A1/K) which is v + 1 by (9.1), (9.2), (9.3) and (9.4).
O

Remark 16. Heuristically, the two cases are treated similar to the proof that
Sel;,—|r (E/K) is rank 0 or 1 under the assumption that p does not divide the
Heegner point yx € E(K) (cf. the proof of [15, Claim 10.1, 10.3]).

9.2. The parity conjecture for Selmer groups.

We finally remark how to avoid the use of parity conjecture (for p-Selmer
group) and actually deduce the parity conjecture from our argument.

Theorem 9.2. Let (g,p, K) be as in Theorem 9.1. Then dimy, Sel, (A/K) is
odd and hence Sely=(A/K) has odd O, ,-corank.

Proof. First of all we note that under the hypothesis that N~ is square-free
with even number of prime factors, the root number of A,/K is —1, hence
L(g/K,1) = 0. Therefore r = 0 does not occur since by Theorem 7.1, we
know that L(g/K,1) #0if r = 0.

Suppose that dim Sel,(A) = 7 > 2 is even. If one eigenspace dim Sely;(A)
is strictly larger that the other, the same argument above will produce Ag
with dim Sely, (A2) = r — 2. Otherwise, the two eigenspaces have the same
dimension dim Selj; (A) = dim Sel,;”(A) > 1. We may then modify the choice
of c9 in the proof above and insist ¢o € dim Selp_” (A1). Then we again pro-
duce Ay with dim Sel,,(A2) = 7 — 2. Therefore, by induction, we have a
contradiction! We thus deduce the parity under the hypothesis that N~ has
even number of factors:

dimy, Sel, (Ay/K) =1 mod 2.
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Note that under our hypothesis, the k-vector space Sel,(A/K) can be
identified with the p-torsion of Sel,~(A/K). By the non-degeneracy of the
Cassels—Tate pairing on the indivisible quotient of the &,-module ITT(A/K),
the 0y ,-corank of Sel,» (A/K) has the same parity as Sel, (A/K’). This shows
that Sely=(A/K) has odd O ,-corank. O

9.3. Nonvanishing of k®

Now we return to the setting of §2 and confirm Kolyvagin’s conjecture 3.2
on non-vanishing of k.

Theorem 9.3. Let g be a newform of weight two of level N with trivial
nebentypus, p a prime ideal of Oy above p, and K an imaginary quadratic
field of discriminant Dy with (D, N) = 1. Assume that

N~ is square-free with even number of prime factors.
The residue representation p, , 1S surjective.
Hypothesis O holds for the triple (g,p, K).

The prime p =5 is ordinary and p{ D N.

Then we have
k® = {ep(n) e HY(K, Ag M) :n €A M < M(n)} # {0}

Indeed we have
Proof. This follows trivially from Theorem 9.1. O

Theorem 9.3 implies Theorem 1.1 since, by Lemma 5.1 (2), the item (3)
in Hypothesis © for (g, p, K) holds automatically for the weight two newform
g associated to E/Q and p = (p).

10. B-SD formula in the rank one case

In this section we prove the p-part of the B-SD formula in the rank one case
for nice p (in a precise way depending on the residue representation). For
simplicity, we will restrict ourselves to the case of elliptic curves.

We recast the situation. Let E be an elliptic curve over Q of conductor N.
We will assume that pg , is irreducible. Then there is only one isomorphism
class of E up to prime-to-p isogeny. We fix E as the strong Weil curve.

Let K an imaginary quadratic field. Suppose that in the decomposition
N = NTN~, N~ is square-free and has even number of prime factors. Let
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§(N*t, N7) be the modular degree of (the isogeny class of) E parameterized
by Xn+ n-. More precisely, in the isogeny class of E, consider an optimal
quotient E’ of the Jacobian Jy+ n- of Xn+ y-:

™ JN*,N* - El.

Then the modular degree ny+ n- is defined as the integer mom € Endg(E’) ~
Z. Similarly, we simply denote §(N, 1) = §(IN) which is the modular degree
using the modular curve Xo(N). Set

5 (N, 1)
T RN

Let ¢ be the Manin constant associated to (the strong Weil curve in the
isogeny class of) E/Q. It is conjectured to be equal to one. Let ¢, be the
local Tamagawa numbers of E/Qy (E/Ky, resp.) if ¢ is split (if £ is nonspit,
resp.) in K/Q. Under a prime-to-p isogeny E’ — E, the Heegner point
yi € E'(K) is mapped to F(K) (still denoted by yx).

Lemma 10.1. Assume that pg , is irreducible.

1. Ifords—1 L(E/K,s) = 1, then the p-part of the B-SD formula for E/K
is equivalent to the following identity

[B(K) : Zyk])? - On+ n- = CHITE/K) H cf H Ce;
N+ fN-

up to a p-adic unit.
2. Ifordse1L(E/K,s) =1 and (E,p, K) satisfies Hypothesis #, then the
p-part of the B-SD formula for E/K is equivalent to

(10.1) [B(K) : Zyk | = #II(E/K) [ ] <,
N+

up to a p-adic unit.

Remark 17. When N~ # 1, we have defined the point yx = y(1) by (3.2).
This can be viewed as an element in F(K)®Z,. In this case we understand
the index [E(K) : Zyk] as [E(K) ® Zy : Zpyk |, well-defined up to a p-adic
unit.

Proof. Under the square-freeness of N~ the Gross—Zagier formula for (F, K)
on Shimura curve Xy+ y- ([45], as specialized to the current case by [41])
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simplifies

, L'(E/K,1) 1 1 WK, YK )E/K

YK Qean| D | -2 8(N,1) _ 8(N*,N-) &2

This formula can be deduced from [45, Theorem 1.2] in a way analogous to
[17, Theorem (2.1), p.311].
The B-SD formula for E/K states (cf. [17, p.311])

L'(E/K,1)  {yk,yx) 21T e
(10.2) Qe D |12~ TE(K) ZM]Z#HI(E/K)le;[+ zﬂl;[ /-

The first result follows by comparison:

[B(K) : Zyx|on+ n- = i HIE/K) [ [ ¢ [ ] e
N+ N-

Note that ug = %#(’)X < 3. By a result of Mazur [25, Cor. 3.1], if p
divides the Manin constant ¢, then p?[4N. When PE,p 1s irreducible and
Hypothesis # holds, by the theorem of Ribet—Takahashi (the second part of
[35, Theorem 1], cf. the proof of Theorem 6.4), we have, up to a p-adic unit:

6N+,N* = H Cy.

(N
The second result then follows. O

Theorem 10.2. Let E/Q be an elliptic curve of conductor N, K an imag-
inary quadratic field. Let p = 5 be a prime such that:

(1) N~ is square-free with even number of prime factors.
(2) pg, is surjective.
(8) Hypothesis & holds for (E,p, K).
(4) p1 Dg N ‘is an ordinary prime.
Ifords—1 L(E/K, s) = 1, then the p-part of the B-SD formula for E/K holds,

1.e.:

L'(B/K,1)

10.3
( ) Qca”]DK\*lﬂReg(E/K) »

= #IE/K) [ [ [ ] e

(N+  N-

where the regqulator is defined as Reg(E/K) := % for any non-torsion

ye E(K), {y,y)nT is the Néron-Tate height pairing.
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Proof. Under Hypothesis #, all local Tamagawa numbers ¢, are p-adic units
when ¢|NT. By (10.1), it suffices to show, up to a p-adic unit,

[B(K) : Zyx]* = #11(E/K).

When ords—1 L(E/K, s) = 1, by Kolyvagin’s theorem ([23, 28] for modular
curves) on the structure of III(E/K), we have

HI(E/K)[p*] = p? =),

By Theorem 9.3, we have

The result follows from that .4 is the p-part of the index [E(K) : Zyk| by
definition. O

Remark 18. Let II(E/K)[p™] denote the quotient of ITI(E/K)[p™] by its
maximal divisible subgroup. If III(E/K)[p™] is finite, then HI(E/K)[p®] is
the same as Lﬁ(E /K)[p™]. Kolyvagin in [24, Theorem 1] proved that, under
the condition £ # 0, the structure of III(E/K)[p®] is determined in terms
of the sequence .;:

M(E/K)*[p*] ~ PZ/p™ 2), of > af > ..,

i>1
where, setting v = v,
€y .
{ai = Myi2i-1 — Myi2i, =1,
e .
v = - 1, i1
ali-i—(l/—'r';e”) %l/-‘rQ”L 2 %u—i-% 1, 1=

In particular, we have a bound
#IL(E/K)[p™] = p* "),

where the equality holds if v = 7, (for example, if v = 0).
Now recall that Ram(pg ) is the set of primes ¢|[N such that pg , is
ramified at /.

Theorem 10.3. Let E/Q be an elliptic curve of conductor N. Let p =5 be
a prime such that:

(1) g, is surjective.
(2) If £ =+1 mod p and ||N, then pg,, is ramified at .
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(8) If N is not square-free, then #Ram(pg ) = 1 and when #Ram(pg ,) =
1, there are even number of prime factors £||N.
(4) The prime p is good ordinary.

Ifords—1 L(E/Q, s) = 1, then the p-part of the B-SD formula for E/Q holds,
.e.:

L'(E,1)
Qp - Reg(E£/Q)

— |#1m(E/Q) - [ e

P ON

P
Proof. By the same argument in the proof of Theorem 1.4, we may choose
an auxiliary imaginary quadratic field K using [6, 31] such that (E,p, K)
satisfies the conditions of Theorem 10.2. It follows that the p-part of the
B-SD formula for E/K holds. Since L(E® 1) # 0, the p-part of the B-SD
formula for EX/Q holds by [37, Theorem 2] (cf. Theorem 7.1). Then the
p-part of the B-SD formula for £/Q also follows. O

11. Construction of Selmer groups

We first construct the p-Selmer group Sel, (A/K), and then all of Sel,= (E/Q)
for an elliptic curve E/Q.

Theorem 11.1. Let (g,p, K) be as in Theorem 9.1 and v the vanishing
order of k.

1. The k-vector space Seli’ (A/K) is contained in the subspace of H* (K, V)
spanned by all c¢(n, 1) where n € A.

2. The k-vector space Sel,(A/K) is contained in the subspace of H'(K, V)
spanned by all c(n,m) where n€ A and me A'F.

Proof. The first part is a consequence of Lemma 8.4 and the non-vanishing
of k by Theorem 9.1. For the second part, it suffices to show that the other
eigenspace Sel, " (A/K) is generated by ¢(n, m)’s. We may prove it by induc-
tion on the dimension of Sel,(A/K) as in the proof of Theorem 9.1. We see
that dim Sel,, (A2/K) = dim Sel, (A/K) — 2 and by induction hypothesis we
may assume that Sely,(A2/K) is generated by c(n, gigom),n € A,m e A'*.
In particular, the subspace Sel,(A2/K) is generated by c(n,q1gam),n €
A,m € A'F. The result follows from the fact that the spaces Sel, " (A/K)
and Sel, (Az2/K) have the same underlying ko-vector subspace. O]

Now we consider the p®-Selmer group. We will now consider only elliptic
curves E/Q since the result we will use is only written down in the literature
for elliptic curves. We would like to construct all elements in the group
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Sell;%o(E/K ) by the cohomology classes from Heegner points defined over
ring class fields.

We recall a result of Kolyvagin [24, Theorem 2 and 3], which does not
assume our Hypothesis #. Under the irreducibility of pp ,, we have an in-
jection

HY(K,E[pM]) — H'(K, E[p"*™)), M, M'>1.
The group H'(K, E[pM]) can be viewed as the kernel of the multiplication
by pM on H'(K, E[pM+M']). If an element ¢ € H'(K, E[p™*M']) is killed
by pM, we will view c as an element in H'(K, E[p™]). More generally, we
have a short exact sequence:

0—= HY(K, E[pM]) — HY(K, E[p*]) -2~ H(K, E[p"]).

In this way we will view cys(n) € H' (K, E[p™]) as an element of H' (K, E[p*]).

Theorem 11.2 (Kolyvagin). Let E/Q be an elliptic curve of conductor N,
K an imaginary quadratic field, p a prime, such that

e (p, DN) =1 and N~ is square-free with even number of factors.
o The residue Galois representation pg, is surjective.

Assume that M, is finite and denote by v™ the vanishing order of k*. Then
we have

(i) The Z,-coranks of Selz',im (E/K) satisfy
ry  (B/K) = v +1,

and
0<v®—r,“*(E/K)=0 mod 2.
(ii) The Selmer group Selys* (E/K) ¢ H'(K, E[p*]) is contained in the
subgroup of H'(K, E[p®]) generated by all cpr(n), ne A, M < M(n).
Proof. Kolyvagin only considered the case of parameterization of £ by mod-

ular curves. But his argument obviously works in the case where the elliptic
curve is parameterized by Shimura curve (cf. [42]). O

Corollary 11.3. Let E/Q be an elliptic curve of conductor N. Let p = 5
be a prime such that:

(1) pg,p is surjective.
(2) If £ =+1 mod p and ||N, then pg,, is ramified at .
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(8) If N is not square-free, then #Ram(pg ) = 1 and when #Ram(pg ,) =
1, there are even number of prime factors (|| N.
(4) The prime p is good ordinary.

Then there exists an imaginary quadratic field K such that the Selmer group
Sel,« (E/Q) is contained in the subgroup of H'(K, E[p®]) generated by all
cyv(n) € HY (K, E[p*]), ne A, M < M(n).

Proof. As in the proof of Theorem 10.3, we may choose K such that E/K
satisfies the assumption of Theorem 11.2 and such that the quadratic twist
EX has non vanishing L(E®, 1) (if (E/Q) = —1) or L'(EX 1) (if ¢(E/Q) =
1). Then by Theorem 11.2, if Sel,» (E/Q) has positive Z,-corank, it will be
the eigenspace Sel,.” (E//K) with larger corank, and hence generated by the
classes cyr(n) € HY(K, E[p*]), n € A,M < M(n). It remains to treat the
case when Sel,»(E/Q) is finite, which is then isomorphic to III(E/Q)[p™].
But in that case, we must have ords—1 L(E/K,s) = 1 and Kolyvagin has
shown that the group ITI(E/K)[p*] are generated by the classes cpr(n) €
HY (K, E[p*]), ne A, M < M(n). This completes the proof. O

Remark 19. In [8], the authors prove that every element in ITI(E/Q)[p™]
splits in a solvable extension of Q, for every semistable E/Q and every
prime p. Our result gives a new proof when (F,p) is as in Corollary 11.3.
Indeed, our result shows that one may choose the solvable extension to be
unramified at p. It is then easy to see that, for an element in III(E/Q)[p™]
where (E,p) is as in Corollary 11.3, one may choose the solvable extension
to be unramified at any given finite set of primes. This was achieved in [§]
only when the analytic rank is at most one.
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