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Abstract. We study a partially linearized version of the relative trace formula for the arith-
metic Gan–Gross–Prasad conjecture for the unitary group U(V ). The linear factor in this

relative trace formula provides an SL2-symmetry which allows us to prove by induction the

arithmetic fundamental lemma over Qp when p is odd and p ≥ dimV .
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1. Introduction

The theorem of Gross and Zagier [15] relates the Néron–Tate heights of Heegner points on
modular curves to the central derivative of certain L-functions. The arithmetic Gan–Gross–
Prasad conjecture [10, 47, 40] is a generalization of this theorem to higher-dimensional Shimura
varieties. This conjecture is inspired by the (usual) Gan–Gross–Prasad conjecture relating period
integrals on classical groups to special values of Rankin–Selberg tensor product L-functions. In
[21] Jacquet and Rallis proposed a relative trace formula (RTF) approach to this last conjecture
in the case of unitary groups and there have been much progress along this direction in the past
years. Inspired by their approach, in [47] the author proposed a relative trace formula approach
to the arithmetic Gan–Gross–Prasad conjecture. This approach reduces the problem to certain
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2 W. ZHANG

local statements, notably the arithmetic fundamental lemma (AFL) conjecture formulated by the
author in [47], and the arithmetic transfer (AT) conjecture formulated by Rapoport, Smithling,
and the author [38, 39]. The AFL and AT conjectures relate the special values of the derivative
of orbital integrals to arithmetic intersection numbers on a Rapoport–Zink formal moduli space
(RZ space) of p-divisible groups,

∂Orb
(
γ,1S(OF0

)

)
= − Int(g) · log q,

cf. the precise statement of Conjecture 3.8 for the AFL conjecture.
The goal of this paper is to give a proof of the AFL conjecture over F0 = Qp when p ≥ n, for

an open dense subset of regular semisimple elements (i.e., the set of “strongly regular semisimple
elements” in the sense of [46]), cf. Theorem 15.1. This restriction is harmless for the relative
trace formula approach to the arithmetic Gan–Gross–Prasad conjecture.

In fact, we also obtain a proof of the Jacquet–Rallis fundamental lemma (FL) conjecture over
p-adic field, a theorem due to Yun [46] and Gordan [14] for p large, which is an identity between
two orbital integrals

Orb(γ,1S(OF0
)

)
= Orb(g,1K0),

cf. the precise statement of Conjecture 2.4. The idea is similar to the proof of the AFL and is
easier to explain. For our proof of the FL, the main input is a study of a “partially linearized”
version of the Jacquet–Rallis RTF, which we call a semi-Lie algebra version. This is closely
related to the RTF of Yifeng Liu to the Fourier–Jacobi period/cycles [30, 31]. The advantage
of the linearization is to gain more “symmetry”, i.e., there is an “action” on the RTF (changing
test functions) by SL2 under the Weil representation. The SL2-modularity plays the role in the
global setting of the Fourier transform in the local harmonic analysis, a crucial ingredient in [48]
to prove the smooth transfer conjecture of Jacquet–Rallis.

Now we give a little more detail of our approach. Let F0 be a totally real number field,
and F a CM quadratic extension of F0. Let V be an F/F0-hermitian space with dimF V = n.
Consider the (diagonal) action of U(V ) on the product U(V ) × V . For unexplained notation,
we refer the reader to Notation §1.2 and the main body of the paper. To any Schwartz function
Φ ∈ S((U(V )× V )(A0)), we can associate a kernel function

KΦ(g) =
∑

(x,u)∈(U(V )×V )(F0)

Φ(g−1(x, u)), g ∈ U(V )(A),

which is left invariant under U(V )(F0). Then, as one usually does in the theory of relative trace
formula, one may study the distribution on (U(V )× V )(A0),

I(Φ) =

∫
[U(V )]

KΦ(g) dg.

Here [G] : = G(F0)\G(A0) for an algebraic group G over F0. Similarly, one can start with the
(diagonal) action of GLn,F0

on the product Sn × V ′n where V ′n = M1,n ×Mn,1 is the product of
the space of column and row vectors, cf. §2. To any Schwartz function Φ′ ∈ S((Sn × V ′n)(A0)),
we have a similar kernel function KΦ′ and a distribution

J(Φ′) =

∫
[GLn,F0

]

KΦ′(g) ηF/F0
◦ det(g) dg.

By the smooth transfer between Φ and Φ′ through their orbital integrals (relative to the group
actions here), one can match the distributions I and J.

Now, due to the presence of the linear factors V and V ′n respectively, the Weil representation
ω of SL2(A0) acts on S((U(V ) × V )(A0)) and S((Sn × V ′n)(A0)), hence on the distributions I
and J,

I(h,Φ): = I(ω(h)Φ), and J(h,Φ′) : = J(ω(h)Φ′)

where h ∈ SL2(A0). Moreover, the action is “modular” in the sense that h 7→ I(h,Φ) and J(h,Φ′)
are left invariant under SL2(F0), as an application of the Poisson summation formula. In other
words, we may enrich the kernel function to a two-variable one

KΦ(g, h) =
∑

(x,u)∈(U(V )×V )(F0)

ω(h)Φ(g−1(x, u)), g ∈ U(V )(A), h ∈ SL2(A0).
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The natural question now is how the Weil representation fits into the comparison of the two
distributions. From [48] and [44] one can deduce that the Weil representation commutes with
smooth transfer, cf. Theorem A.1 in the appendix.

Both distributions I and J can be expanded as a sum over orbital integrals. Then the SL2-
modularity amounts to certain recursive relations between the orbital integrals appearing in I
and J. One may hope that the recursive relations are ample enough to allow us to extract
identities such as the aforementioned fundamental lemma, starting from some simple identities
that can be verified directly. This resembles the situation in the geometric approach (cf. [36],
[46] ) where one also needs to verify some simple cases directly as a starting point before applying
the “perverse continuation principle”.

The idea does not work directly to yield a proof of the Jacquet–Rallis FL; however, it does work
if we take two additional inputs. The first input is to consider a “slice” of the semi-Lie algebra
version. Here by a slice we mean the sliced representation at a semisimple element for the action
of U(V ) on U(V )×V , which is a good approximation of the action on a neighborhood of the orbit.
In our case, we choose a regular semisimple element g0 of U(V ) and consider (g0, 0) ∈ U(V )×V , a
(relative) semisimple element. Then the sliced representation at (g0, 0) ∈ U(V )×V is isomorphic
to the induced action of the stabilizer, a maximal torus T0, on V (times the trivial action on the
Lie algebra of T0). In terms of harmonic analysis, this leads us to introducing a kernel function
for each g0,

KΦ,g0
(g) =

∑
x∈U(V )(F0)g0,u∈V (F0)

Φ(g−1(x, u)), g ∈ U(V )(A).

Here the sum runs only over a subset of U(V )(F0)-orbits on (U(V )×V )(F0). Similarly we define
a distribution

Ig0
(Φ) =

∫
[U(V )]

KΦ,g0
(g) dg.

This still keeps the action of SL2(A0) under the Weil representation ω

Ig0(h,Φ) = Ig0(ω(h)Φ), h ∈ SL2(A0). (1.1)

We have the similar construction for Sn×V ′n. Clearly by varying g0 we have refined the relations
between the orbital integrals appearing in I and J. In the local situation, this sliced version was
utilized in [48] to prove the existence of smooth transfer by an induction argument. Here we are
exploiting the global analog, i.e., the SL2(F0)-modularity of (1.1) and its counterpart for J.

Another input is to impose that U(V ) is compact at archimedean places, and at the same
time to plug in the Gaussian test functions, cf. §12. This simplifies the spectra of the SL2-
automorphic forms Ig0

(·,Φ) and its counterpart on Sn × V ′n, to the extent that the spectra are
finite. In fact, in our case, they lie in a finite dimensional vector space corresponding to classical
holomorphic modular forms with known levels and weights.

The two inputs allow us to deduce the Jacquet–Rallis fundamental lemma by induction on
the dimension of V , at least for Qp when p ≥ dimV . During the preparation of this paper,
the author learned that Beuzart-Plessis [2] has given a purely local proof of the Jacquet–Rallis
fundamental lemma for all F/F0, by induction and using a more precise version (i.e., a local
relative trace formula) of the compatibility between the local Weil representation (mainly the
Fourier transform) and smooth transfer.

Now that we have explained our approach to the FL, let us move to the AFL conjecture.
We have indicated that the extra symmetry is the SL2-modularity of the kernel function, which
follows from the Poisson summation formula. In the arithmetic setting, the extra symmetry is a
version of the modularity of generating series of special divisors in the arithmetic Chow groups
of the integral models of unitary Shimura varieties (e.g. in the recent work of Bruinier–Howard–
Kudla–Rapoport–Yang [6]).

To take advantage of the modularity, we consider the semi-Lie algebraic version of the AFL
conjecture, which has appeared in Mihatsch’s thesis [34, §8] and in Liu’s work [31, Conjecture
1.11]. In the semi-Lie algebraic version, we consider the intersection numbers of the Kudla–
Rapoport divisors (KR divisors, for short) [25] and the (derived) fixed point locus of an auto-
morphism of the RZ space. We show in §3 that there is an inductive structure similar to the
smooth transfer and the fundamental lemma. More precisely, it is possible to reduce the special
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case when the KR divisor is (formally) smooth to the AFL in one-dimension lower. This is still
hardly useful if we only work on the local moduli space. Therefore we introduce a global version
of the fixed point locus, called “the derived CM cycle”, or “the fat big CM cycle”, being a
“thickened” variant of the “big CM cycle” in the work of Bruinier–Kudla–Yang [8] and Howard
[19]. The naively defined CM cycle may have dimension larger than expected. However, we note
that it is a union of connected components of the fixed point locus of a Hecke correspondence
(over the integral model), cf. §7.5. Therefore there is a natural derived structure on the naive
CM cycle, and the derived CM cycle has virtue dimension one.

By the modularity of generating series of special divisors mentioned above, we obtain a mod-
ular form (with known level and weight) by taking the (arithmetic) intersection numbers (cf.
(9.4)) of a fixed (derived) CM cycle with special divisors, cf. §9.2. The rest is then similar to
the proof of the FL conjecture. The resulting modular form is the arithmetic analog of (1.1).
By induction, together with a special case of the AFL (cf. Prop. 3.10), one may assume that
the ξ-th Fourier coefficients are known if ξ is prime to a certain finite set of places. The desired
equality for all Fourier coefficients then follows from the modularity of the generating series
and a density principle for the Fourier coefficients of holomorphic modular forms (essentially
the newform theory, or more precisely, the classical “Ihara lemma” over complex numbers, cf.
Lemma 13.6). Finally, one deduces the AFL conjecture from the global identity, together with
a local constancy property of the intersection numbers on RZ spaces, cf. Theorem 5.5.

In our approach, it is important to understand the archimedean local intersection (i.e., the
values of Green’s function, cf. §10), and correspondingly the derivatives of the archimedean
orbital integrals for Gaussian test functions (cf. §12). After subtracting the archimedean terms,
the intersection numbers and derivative of orbital integrals at non-archimedean places all lie in
Q-linear span of log p for a finite set of primes p. One can then separate the contribution from
different primes by the linear independence of logarithms of prime numbers.

We have restricted the paper to the case F0 = Q since in a few places there are missing
ingredients in the literature and some of them are subtle. However, we have tried to present
most of the arguments in the general totally real field case, especially in the analytic side of
RTF.

We would like to point out some earlier works related to the AFL conjecture. The author
proved the AFL for low ranks of the unitary group (n = 2 and 3) in [47]. Rapoport, Terstiege and
the author [42] proved it for arbitrary rank n ≤ p and minuscule group elements. A Lie algebraic
version (in the case of artinian intersection) was studied by Mihatsch in [33, 34], simplifying the
proof and generalizing the result in [47]. Finally, in the minuscule case, Li and Zhu in [28] have
given a simplified proof of [42]; recently, He, Li, and Zhu [18] have also removed the restriction
on the residue characteristics.

1.1. Acknowledgements. An earlier version of the paper has been circulated in the ARGOS
seminar in the spring 2019, and in a seminar in Morningside center Beijing in the summer 2019.
The author would like to thank Michael Rapoport and Ye Tian for communicating comments
from their seminars, which have helped the author improve the paper. In the ARGOS seminar,
a different proof of (a stronger version of) the local constancy of intersection numbers was found
and this is the subject of the forthcoming work of Mihatsch [35].

1.2. Notation.

Notation on algebra.

• R+: the set of positive real numbers.

• Let F be a field of character zero. For a reductive group H acting on an affine variety X, we
say that a point x ∈ X(F ) is
– H-semisimple if Hx is Zariski closed in X (when F is a local field, equivalently, H(F )x is

closed in X(F ) for the analytic topology);

– H-regular if the stabilizer Hx of x has trivial stabilizer.
And we say that x is regular semisimple if it is regular and semisimple. We denote by X(F )rs

the set of regular semisimple elements, and [X(F )]rs the set of regular semisimple H(F )-orbits.
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• For global fields, unless otherwise stated, F denotes a CM number field and F0 denotes its
(maximal) totally real subfield of index 2. We denote by a 7→ a the nontrivial automorphism
of F/F0. Let F0,+ (resp., F0,≥0) the set of totally positive (resp., semi-positive) elements in
F0.

• We use the symbols v and v0 to denote places of F0, and w and w0 to denote places of F . We
write F0,v for the v-adic completion of F0, and we set Fv := F ⊗F0

F0,v; thus Fv is isomorphic
to F0,v ×F0,v or to a quadratic field extension of F0,v according as v is split or non-split in F .
We write OF0,v ⊂ F0,v for the ring of integers. We use analogous notation for other fields in
place of F0 and other finite places in place of v.

• Unless otherwise stated, we write A, A0, and AF for the adele rings of Q, F0, and F , respec-
tively. We systematically use a subscript f for the ring of finite adeles, and a superscript p for
the adeles away from the prime number p.

• For an abelian scheme A over a locally noetherian scheme S on which the prime number p is
invertible, we write Tp(A) for the p-adic Tate module of A (regarded as a smooth Zp-sheaf
on S) and Vp(A) := Tp(A) ⊗ Q for the rational p-adic Tate module (regarded as a smooth

Qp-sheaf on S). When S is a Z(p)-scheme, we similarly write V̂p(A) for the rational prime-

to-p Tate module of A. When S is a scheme in characteristic zero, we write V̂(A) for the full
rational Tate module of A.

• We use a superscript ◦ to denote the operation −⊗ZQ on groups of homomorphisms of abelian
schemes, so that for example Hom◦(A,A′) := Hom(A,A′)⊗Z Q.

• All Chow groups and K-groups have Q-coefficients.

• Given a discretely valued field L, we denote the completion of a maximal unramified extension
of it by L̆.

• We write 1n for the n×n identity matrix. Let Mn,m(R) denote the R-module of n×m-matrices
with coefficients in a ring R.

• For a vector space V over a field F , a quadratic form q : V → F has an associated symmetric
bilinear pairing defined by

〈x, y〉 = q(x+ y)− q(x)− q(y), x, y ∈ V. (1.2)

In particular,

〈x, x〉 = 2q(x). (1.3)

For a vector space V over a quadratic extension F of a field F0, an F/F0-hermitian pairing
〈·, ·〉 : V × V → F induces a symmetric bi-F0-linear pairing by (x, y) 7→ 1

2 trF/F0
〈x, y〉 ∈ F0.

In particular, the corresponding quadratic form on V (viewed as an F0-vector space) is

q(x) = 〈x, x〉 ∈ F0 (1.4)

We then denote by Vξ the set of vectors x ∈ V with q(x) = ξ.

• For a F/F0-hermitian space V over a non-archimedean local field, and an OF -lattice Λ ⊂ V
(of full rank), we denote by Λ∨ its dual lattice under the hermitian form.

Notation on automorphic forms.

• Fix a non-trivial additive character ψ : F0\A0 → C×. In the case F0 = Q we take the standard
one.

• For an algebraic variety X over a local field F , we denote S(X(F )) by the space of Schwartz
functions on X(F ). When F is non-archimedean, this is the same as the space of locally
constant functions with compact support. Similarly, for an algebraic variety X over a global
field F , we denote S(X(A)) by the space of Schwartz functions on X(A).
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• Congruence subgroups of SL2(Z)

Γ(N) =

{
γ ∈ SL2(Z)

∣∣∣γ =

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
Γ1(N) =

{
γ ∈ SL2(Z)

∣∣∣γ =

(
a b
c d

)
≡
(
∗ ∗
0 1

)
mod N

}
Γ0(N) =

{
γ ∈ SL2(Z)

∣∣∣γ =

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N

}
• H = {τ = b+ ia ∈ C | a > 0}: the complex upper half plane.

• Ahol(Γ, k): the space of holomorphic modular forms of level Γ, weight k, for Γ where Γ(N) ⊂
Γ ⊂ SL2(Z). For any subfield L ⊂ C, we denote by Ahol(Γ, k)L the L-vector space consisting
of f ∈ Ahol(Γ, k) whose Fourier coefficients in the q-expansion at the cusp ∞ all lie in L.
The C-vector space Ahol(Γ, k) has a Q-structure via the q-expansion at the cusp ∞, i.e.,
Ahol(Γ, k) = Ahol(Γ, k)Q ⊗Q C. For any L-vector space W , we have an L-vector space

Ahol(Γ, k)L ⊗LW. (1.5)

We will view this vector space as the space of formal power series in q1/N with coefficients in
W ∑

ξ≥0,ξ∈ 1
N Z

Aξq
ξ, Aξ ∈W

where there exist elements fi ∈ Ahol(Γ, k)L indexed by a finite set I whose q-expansion at the
cusp ∞ are given by

∑
ξ≥0,ξ∈ 1

N Z aξ(fi)q
ξ ∈ L[[q1/N ]], and elements wi ∈W, i ∈ I, such that

Aξ =
∑
i∈I

aξ(fi)wi, for all ξ.

• Ahol(SL2(A0),K, k): the space of automorphic forms (with moderate growth) on SL2(A0), in-
variant under K ⊂ SL2(Af ), and parallel weight k under the action of

∏
v∈Hom(F0,R) SO(2,R),

holomorphic (i.e., annihilated by the element 1
2

(
i 1
1 −i

)
in the complexifed Lie algebra of

SL2(F0,v) ' SL2(R) for every v ∈ Hom(F0,R)). This is a finite dimensional vector space over
C, and it has a basis over Q via the q-expansion at the cusp ∞. For any L-vector space W ,
we may define

Ahol(SL2(A0),K, k)L ⊗LW, (1.6)

similar to Ahol(Γ, k)L ⊗LW as above.

• To a function φ ∈ Ahol(SL2(AQ),K, k), and hf ∈ SL2(AQ,f ), we associate a function

φ[hf ∈ Ahol(Γ, k)

where Γ = hfKh
−1
f ∩ SL2(Q), by

b+ ai ∈ H 7−→ |a|−k/2φ(h∞, hf ), (1.7)

where h∞ =

(
1 b

1

)(
a1/2

a−1/2

)
. When hf = 1, we simply write it as φ[.

• Aexp(SL2(A0),K, k) when F0 = Q: this is essentially the space A!
k(ρ∨L) in [9]. This is an

infinite dimensional vector space over C.

• For ξ ∈ R and k ∈ Z, the weight-k Whittaker function on SL2(R) is defined by

W
(k)
ξ (h) = |a|k/2e2πiξ(b+ai)χk(κθ), (1.8)

where we write h ∈ SL2(R) according to the Iwasawa decomposition

h =

(
1 b

1

)(
a1/2

a−1/2

)
κθ, a ∈ R+, b ∈ R, (1.9)
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and

κ(θ) =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO(2,R). (1.10)

Here the weight k-character of SO(2,R), for k ∈ Z, is defined by

χk(κθ) = eikθ. (1.11)

Part 1. Local theory

2. FL and variants

2.1. Group-theoretic setup. Let F0 be a field, and F a quadratic semisimple F0-algebra.
Let

e := (0, . . . , 0, 1) ∈ Mn,1(F ) = Fn,

be a column vector, and e∗ ∈ M1,n(F ) ' Mn,1(F )∗ = (Fn)∗ the transpose of e. Consider the
embedding of algebraic groups over F ,

GLn−1
// GLn

γ0
� // diag(γ0, 1)

; (2.1)

this identifies GLn−1 with the subgroup of points γ in GLn such that γe = e and e∗γ = e∗.
We introduce the algebraic group G′ over F0 and its subgroups,

G′ := ResF/F0
(GLn−1 ×GLn),

H ′1 := ResF/F0
GLn−1,

H ′2 := GLn−1 ×GLn.

Here H ′1 is embedded diagonally, and H ′2 is embedded in the obvious way. We consider the
natural right action of H ′1 ×H ′2 on G′,

(h1, h2) · γ = h−1
1 γh2.

Consider the symmetric space

S := Sn := { g ∈ ResF/F0
GLn | gg = 1n }, (2.2)

and its tangent space at 1n, called “the Lie algebra” of Sn,

s := sn :=
{
y ∈ ResF/F0

Mn

∣∣ y + y = 0
}
. (2.3)

Set
H ′ := GLn−1.

Then H ′ acts on Sn and sn by conjugation

h · γ = h−1γh.

We also consider a variant (arising from the Fourier–Jacobi period [10, 30]). Let

V ′n−1 = Fn−1
0 × (Fn−1

0 )∗, (2.4)

and consider the (diagonal) action of H ′ on the product Sn−1 × V ′n−1,

h · (γ, (u1, u2)) = (h−1γh, (h−1u1, u2h)).

The action of H ′ on the its Lie algebra sn−1 × V ′n−1 is defined similarly.

Next let V ] be an F/F0-hermitian space of dimension n ≥ 2. We fix a non-isotropic vector
u0 ∈ V ], which we call the special vector. We denote by V the orthogonal complement of u0 in
V ]. We define the algebraic group G over F0 and its subgroups,

G := U(V ]),

H := U(V ), (2.5)

GV := H ×G.
We have the natural action of H ×H on GV , and the conjugation action of H on G. We also
consider the adjoint action of H on the Lie algebra g = u(V ]) of G. When dimV = 1, the Lie
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algebra u(V) is denoted by u(1), which is canonically isomorphic to F−, the (−1)-eigenspace of
F under the Galois conjugation.

The variant (arising from the RTF for the Fourier–Jacobi period [30]) is the (diagonal) action
of H = U(V ) on the product U(V ) × V and on the product u(V ) × V defined similarly. Here
the factor V is viewed as a vector space (affine space) of dimension 2(n− 1).

2.2. Orbit matching. There is a natural bijection of orbit spaces of regular semisimple ele-
ments, ∐

V

[
(U(V ])(F0)

]
rs

∼ //
[
Sn(F0)

]
rs
, (2.6)

and ∐
V

[
(U(V )× V )(F0)

]
rs

∼ // [(Sn−1 × V ′n−1)(F0)]rs , (2.7)

cf. [47] and [30], where the disjoint union runs over the set of isometric classes of F/F0-hermitian
spaces V , and the larger space V ] = V ⊕ F · u0 is then determined uniquely by demanding the
special vector u0 to have norm one (or any fixed number in F×0 when varying V ). Here the left
(resp. right) hand sides denote the orbits under the action of the group U(V ) (resp. GLn−1).
The bijections define a matching relation between regular semisimple orbits. In both cases, there
are also similar injections for orbits on the Lie algebras:∐

V

[
(u(V ])(F0)

]
rs

∼ //
[
sn(F0)

]
rs
, (2.8)

and ∐
V

[
(u(V )× V )(F0)

]
rs

∼ // [(sn−1 × V ′n−1)(F0)]rs . (2.9)

We recall how the map (2.7) is defined. Choose an F -basis for V and complete it to a basis
for V ] by adjoining u0. This identifies V with Fn−1 and V ] with Fn in such a way that u0

corresponds to the column vector e := (0, . . . , 0, 1) in Fn, and hence determines embeddings of
groups U(V ]) ↪→ ResF/F0

GLn. An element g ∈ U(V )(F0)rs and an element γ ∈ Sn(F0)rs are said
to match if these two elements, when considered as elements in ResF/F0

GLn(F0), are conjugate
under ResF/F0

GLn−1. The matching relation is independent of the choice of embeddings and
induces a bijection [47, §2]. Similarly, we view elements in (Sn−1 × V ′n−1)(F0) as elements in
ResF/F0

Mn,n(F0) by

(γ, (u1, u2)) 7−→
(
γ u1

u2 0

)
.

And we view elements (g, u) ∈ (U(V )× V )(F0) as elements in ResF/F0
Mn,n(F0)

(g, u) 7−→
(
g u
u∗ 0

)
.

Here we view u ∈ V (F0) as the corresponding element in Hom(V ⊥, V ) sending u0 ∈ V ⊥ = F ·u0

to u, and u∗ is the element in Hom(V, V ⊥) = Hom(V, F ·u0) defined by u′ 7→ 〈u′, u〉u0. Then, an
element (g, u) ∈ (U(V )×V )(F0)rs and an element (γ, (u1, u2)) ∈

(
Sn−1(F0)× Fn−1

0 × (Fn−1
0 )∗

)
rs

are said to match if these two elements, when considered as elements in ResF/F0
Mn,n(F0), are

conjugate under ResF/F0
GLn−1.

Equivalently, (g, u) ∈ (U(V )×V )(F0)rs matches (γ, (u1, u2)) ∈
(
Sn−1(F0)× Fn−1

0 × (Fn−1
0 )∗

)
rs

if and only if the following invariants are equal

det(λ1n−1 + g) = det(λ1n−1 + γ), and 〈gu, u〉 = u2γ
iu1, 0 ≤ i ≤ n− 1.

Here det(λ1n−1 + g) ∈ F [λ] is the characteristic polynomial of g.
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2.3. Orbital integral matching: smooth transfer. We recall orbital integrals [39, §2.2].
Now let F/F0 be a quadratic extension of local fields (the split F = F0×F0 is similar and simpler).
To simplify the exposition we consider the non-archimedean case, though the archimedean case
requires very little change. Then there are exactly two isometric classes of F/F0-hermitian spaces
of dimension n − 1, denoted by V0 and V1. When F/F0 is unramified, we will assume that V0

has a self-dual lattice. Then the orbit bijections are now[
(U(V ]0 )(F0)

]
rs

∐[
(U(V ]1 )(F0)

]
rs

∼ //
[
Sn(F0)

]
rs
,

and [
(U(V0)× V0)(F0)

]
rs

∐[
(U(V1)× V1)(F0)

]
rs

∼ // [(Sn−1 × V ′n−1)(F0)]rs .

For γ ∈ Sn(F0)rs, f
′ ∈ S(Sn(F0)), and s ∈ C, we define

Orb(γ, f ′, s) :=

∫
GLn−1(F0)

f ′(h−1γh)|deth|sη(h) dh, (2.10)

where | | denotes the normalized absolute value on F0, where we set

η(h) := η(deth).

We define the special values

Orb(γ, f ′) := ω(γ) Orb(γ, f ′, 0) and ∂Orb(γ, f ′) := ω(γ)
d

ds

∣∣∣
s=0

Orb(γ, f ′, s), (2.11)

where the transfer factor ω(γ) is to be explicated below by (2.14). Here, we have included the
transfer factor in the special values of the orbital integrals, different from [39, §2.2].

For (γ, u′) ∈ (Sn−1 × V ′n−1)rs(F0), Φ′ ∈ S((Sn−1 × V ′n−1)(F0)), and s ∈ C, we define

Orb((γ, u′),Φ′, s) :=

∫
GLn−1(F0)

Φ′(h · (γ, u′))|deth|sη(h) dh, (2.12)

and define their special values similar to (2.11), replacing the transfer factor ω(γ) by ω(γ, u′) to
be explicated below by (2.15).

On the unitary side, for g ∈ U(V ])(F0)rs and f ∈ S(U(V ])(F0)), we define

Orb(g, f) :=

∫
U(V )(F0)

f(h−1gh) dh.

For (g, u) ∈ (U(V )× V )(F0)rs and Φ ∈ S((U(V )× V )(F0)), we define

Orb((g, u),Φ) :=

∫
U(V )(F0)

Φ(h · (g, u)) dh. (2.13)

Finally, we define an explicit transfer factors, cf. [39, §2.4]. First fix an extension η̃ of the
quadratic character η from F×0 to F× (not necessarily of order 2). If F is unramified, then we

take the natural extension η̃(x) = (−1)v(x). For Sn, we take the transfer factor

ω(γ) := η̃
(
det(γ)−bn/2c det(γie)0≤i≤n−1

)
, γ ∈ Sn(F0)rs. (2.14)

For (γ, u′) ∈
(
Sn−1 × V ′n−1

)
(F0)rs where u′ = (u1, u2) ∈ Vn−1(F0) = Fn−1

0 × (Fn−1
0 )∗, we take

ω(γ, u′) := η̃
(
det(γ)−b(n−1)/2c det(γiu1)0≤i≤n−2

)
. (2.15)

Similarly we define transfer factors on sn and sn−1 × V ′n−1.

Definition 2.1. A function f ′ ∈ S(Sn(F0)) and a pair of functions (f0, f1) ∈ S(U(V ]0 )(F0)) ×
S(U(V ]1 )(F0)) are transfers of each other if for each i ∈ {0, 1} and each g ∈ U(V ]i )(F0)rs,

Orb(g, fi) = Orb(γ, f ′)

whenever γ ∈ S(F0)rs matches g.
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Definition 2.2. A function Φ′ ∈ S((Sn−1 × Vn−1)(F0)) and a pair of functions (Φ0,Φ1) ∈
S((U(V0)× V0)(F0))×S((U(V1)× V1)(F0)) are transfers of each other if for each i ∈ {0, 1} and
each (g, u) ∈ (U(Vi)× Vi)(F0)rs,

Orb((g, u),Φi) = Orb((γ, u′),Φ′) (2.16)

whenever (γ, u′) ∈
(
Sn−1 × V ′n−1

)
(F0)rs matches (g, u).

Remark 2.3. For the archimedean F/F0, we need to consider all isometric classes of F/F0-
hermitian spaces V of the same fixed dimension.

The definitions made above easily extend verbatim to the setting of the full Lie algebras
u(V )× V and sn−1 × V ′n−1. Finally, we remark that the definitions extend to the archimedean
local field extension F/F0 = C/R, where one only needs to replace the pair of functions (Φ0,Φ1)
by a tuple of functions {ΦV }V indexed by the set of isometric classes of F/F0-hermitian spaces
V , as in (2.7) and (2.9). We will not repeat the detail here.

2.4. Review of the FL conjecture. We review the FL conjecture, cf. [21, 47, 39]. Let F/F0

be an unramified quadratic extension of p-adic field for an odd prime p. Assume furthermore
that the special vectors ui ∈ Vi have norm one (or any fixed unit in OF0

). Then the hermitian

space V ]i is again split for i = 0 and non-split for i = 1. We write Gi = U(V ]i ), gi = LieGi, and
Hi = U(Vi). Fix a self-dual OF -lattice

Λ0 ⊂ V0,

which exists and is unique up to H0(F0)-conjugacy. Let

Λ]0 := Λ0 ⊕OFu0 ⊂ V ]0 ,

which is again self-dual. We denote by

K0 ⊂ H0(F0)

the stabilizer of Λ0, and by

K]
0 ⊂ G0(F0) and k]0 ⊂ g0(F0)

the respective stabilizers of Λ0. Then K0 and K]
0 are both hyperspecial maximal subgroups.

We normalize the Haar measures on the groups

GLn−1(F0), and U(V0)(F0)

by assigning each of the respective subgroups

GLn−1(OF0), and K0

measure one.
With respect to these normalizations, the Jacquet–Rallis Fundamental lemma conjecture is

the following statement, cf. [39, §3]. Note that the semi-Lie algebra version below is essentially
the Fourier–Jacobi case arising from the relative trace formula of Yifeng Liu [30].

Conjecture 2.4 (Jacquet–Rallis Fundamental lemma conjecture).

(a) (The group version) The characteristic function 1Sn(OF0
) ∈ S(Sn(F0)) transfers to the pair

of functions (1K0 , 0) ∈ S(G0(F0))× S(G1(F0)).

(b) (The Lie algebra version) The characteristic function 1sn(OF0
) ∈ S(sn(F0)) transfers to the

pair of functions (1k0 , 0) ∈ S(g0(F0))× S(g1(F0)).

(c) (The semi-Lie algebra version) The characteristic function 1(Sn−1×V ′n−1)(OF0
)) ∈ S((Sn−1 ×

V ′n−1)(F0)) transfers to the pair of functions (1(G0×V0)(OF0
), 0) ∈ S((G0 × V0)(F0)) × S((G1 ×

V1)(F0)).

Remark 2.5. We note that the equal characteristic analog of the FL conjecture was proved by
Z. Yun for p > n, cf. [46]; J. Gordon deduced the p-adic case for p large, but unspecified, cf. [14].

It is straightforward to check a special case.
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Proposition 2.6. The semi-Lie algebra version FL holds for (g, u) ∈ (G0×V0)(F0)rs when g is
regular semisimple (i.e. F [g] is a product of fields with total degree equal to dimV ) and generates
a maximal order OF [g] (in F [g]).

Proof. This is easy to check, e.g., [46, Lemma 2.5.5] for the Lie algebra version; but the argument
is the same for the semi-Lie algebra version. �

Proposition 2.7. Fix F/F0. Assume that q ≥ n where q denotes the cardinality of the residue
field of OF0 . Then

(i) In Conjecture 2.4, all three parts are equivalent.

(ii) In Conjecture 2.4, part (a) for Sn implies part (c) when dimV0 = n and, in the regular
semisimple orbit (g, u) ∈ G0 × V0, the norm of u is a unit.

Proof. The fact that part (a) implies part (b) was shown in [30, Thm 5.15] using Cayley map
under the assumption q ≥ n; the reverse implication can be shown by the same argument.

For the other assertions, since we will prove a similar statement for the AFL conjecture where
the situation is more delicate, we omit the argument here and only point out that the proof of
Proposition 4.12 also works here.

�

3. AFL and variants

3.1. The AFL conjecture and variants. For any n ≥ 1, we recall the construction of the
Rapoport–Zink formal moduli scheme Nn = Nn,F/F0

associated to unitary groups, cf. [39, §4].
For Spf OF̆ -schemes S, we consider triples (X, ι, λ), where

• X is a p-divisible group of absolute height 2nd and dimension n over S,

• ι is an action of OF such that the induced action of OF0 on LieX is via the structure
morphism OF0 → OS , and

• λ is a principal (OF0-relative) polarization.

Here d := [F0 : Qp]. Hence (X, ι|OF0
) is a formal OF0-module of relative height 2n and dimension

n. We require that the Rosati involution Rosλ on OF is the non-trivial Galois automorphism in
Gal(F/F0), and that the Kottwitz condition of signature (n− 1, 1) is satisfied, i.e.

char
(
ι(a) | LieX

)
= (T − a)n−1(T − a) ∈ OS [T ] for all a ∈ OF . (3.1)

An isomorphism (X, ι, λ)
∼−→ (X ′, ι′, λ′) between two such triples is an OF -linear isomorphism

ϕ : X
∼−→ X ′ such that ϕ∗(λ′) = λ.

Over the residue field k of OF̆ there is a unique such triple (Xn, ιXn , λXn) such that Xn
is supersingular, up to OF -linear quasi-isogeny compatible with the polarization. Then Nn
represents the functor over Spf OF̆ that associates to each S the set of isomorphism classes of
quadruples (X, ι, λ, ρ) over S, where the final entry is an OF -linear quasi-isogeny of height zero
defined over the special fiber,

ρ : X ×S S −→ Xn ×Spec k S,

such that ρ∗((λXn)S) = λS (a framing). The formal scheme Nn is smooth over Spf OF̆ of relative
dimension n− 1.

For n ≥ 2, define the product Nn−1,n := Nn−1×Spf OF̆
Nn. It is a (locally Noetherian) formal

scheme of (formal) dimension 2(n− 1), formally smooth over Spf OF̆ .
When n = 1, we have the (unique up to isomorphism) formal OF -module E (with signature

(1, 0)) over k and its canonical lift E over OF̆ , as well as the “conjugate” objects E and E (with
signature (0, 1)). For n ≥ 2, there is a natural closed embedding of formal schemes

δN : Nn−1
// Nn

(X, ι, λ, ρ) � //
(
X × E , ι× ιE , λ× λE , ρ× ρE

)
,

where we set X1 = E and inductively take

Xn = Xn−1 × E (3.2)
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as the framing object for Nn. Let

∆N : Nn−1

(idNn−1
,δN )

−−−−−−−−→ Nn−1 ×Spf OF̆
Nn = Nn−1,n

be the graph morphism of δN . Then

∆ := ∆N (Nn−1)

is a closed formal subscheme of half the formal dimension of Nn−1,n. Note that

Aut◦(Xn, ιXn , λXn) ∼= U
(
Vn
)
(F0), (3.3)

where the left-hand side is the group of self-framings of Xn, and where Vn is the hermitian space
attached to Xn induced by the principle polarization

Vn = Hom◦OF (E,Xn).

More concretely

U
(
Vn
)
(F0) = {g ∈ EndF (Vn) | gg∗ = id} .

Here we denote by g∗ = RosλXn
(g) the Rosati involution. Then the group U

(
Vn
)
(F0) acts

naturally on Nn by acting on the framing:

g · (X, ι, λ, ρ) = (X, ι, λ, g ◦ ρ).

Furthermore Vn contains a natural special vector u0 given by the inclusion of E in Xn = Xn−1×E
via the second factor. The norm of u0 is 1. Then Vn is a non-split hermitian space of dimension

n. Therefore, in the setting of §2.3, we can choose an identifications V ]1 = Vn and V1 = Vn−1

compatible with the natural inclusions on both sides. Hence we obtain an action of H1(F0)
on Nn−1, of G1(F0) on Nn, and of GV1

(F0) on Nn−1,n, cf. (2.5); and furthermore the maps
δN and ∆N are equivariant with respect to the respective embeddings H1(F0) ↪→ G1(F0) and
H1(F0) ↪→ GV1(F0).

For g ∈ GV1
(F0)rs, we denote by Int(g) the intersection product on Nn−1,n of ∆ with its

translate g∆, defined through the derived tensor product of the structure sheaves, cf. (B.3),

Int(g) := 〈∆, g∆〉Nn−1,n := χ(Nn−1,n,O∆ ⊗L Og∆). (3.4)

We similarly define Int(g) for g ∈ G1(F0)rs,

Int(g) :=
〈
∆, (1× g)∆

〉
Nn−1,n

. (3.5)

In both cases, when g is regular semisimple, the right-hand side of this definition is finite since
the (formal) schematic intersection ∆ ∩ g∆ is a proper scheme over Spf OF̆ . We refer to the
appendix B for the terminology regarding various K-groups of formal schems, following the work
of Gillet–Soulé for schemes in [12].

Now we introduce a new variant of the above intersection number Int(g) via the Kudla–
Rapoport special divisors [25]. This variant is closely related to in the AFL conjecture in the
context of Fourier–Jacobi cycles in the work of Yifeng Liu [31, Conjecture 1.11]. A special case
has also appeared in Mihatsch’s thesis [34, §8].

Recall from [25], for every non-zero u ∈ Vn, Kudla and Rapoport have defined a special
divisor Z(u) in Nn. This is the locus where the quasi-homomorphism u : E → Xn lifts to a
homomorphism from E to the universal object over Nn. By [25, Prop. 3.5], Z(u) is a relative
divisor (or empty) whenever u 6= 0. Then δN induces an obvious closed embedding

Nn−1
∼ // Z(u0)

for the unit norm special vector u0, which is an isomorphism by [25, Lem. 5.2]. It follows from
the definition that if g ∈ U(Vn)(F0), then

gZ(u) = Z(gu). (3.6)

Every g ∈ U(Vn) induces an automorphism of Nn. Let Γg ⊂ Nn×Spf OF̆
Nn be the graph and

define the (naive) fixed point locus N g
n as the (formal) schematic intersection (i.e, fiber product

of formal schemes)

N g
n : = Γg ∩∆Nn . (3.7)
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We also form a derived fixed point locus LN g
n , i.e., the derived tensor product

LN g
n : = Γg ∩L ∆Nn := OΓg ⊗L

ONn×Nn O∆Nn
. (3.8)

Being supported on ∆Nn , we view this derived tensor product as an element in the K-group

K ′0(N g
n ) of coherent sheaves on N g

n . Note that K ′0(N g
n ) ' K

N gn
0 (Nn) by the regularity of Nn.

Then LN g
n lies in the filtration Fn−1K

N gn
0 (Nn) under the codimension filtration F iK

N gn
0 (Nn), cf.

(B.2).
For a pair (g, u) ∈ (U(Vn)× Vn)(F0)rs, we define, cf. (B.3),

Int(g, u) := 〈 LN g
n ,Z(u)〉Nn := χ

(
Nn, LN g

n ⊗L
ONn OZ(u)

)
. (3.9)

Similar to (3.4) and (3.5), when (g, u) is regular semisimple, N g
n ∩Z(u) is a proper scheme over

Spf OF̆ and hence the right-hand side of this definition is finite. The number Int(g, u) depends
only on its U(Vn)(F0)-orbit.

Remark 3.1. By the projection formula for the closed immersion ∆ : Nn → Nn × Nn, we
obtain an equality in K ′0(Nn ×Nn),

R∆∗(
LN g

n ⊗L
ONn OZ(u)) = OΓg ⊗L

ONn×Nn O∆(Z(u)),

where we have used R∆∗(OZ(u)) = O∆(Z(u)) for a closed immersion. Therefore, an equivalent
definition of the intersection number (3.9) is

Int(g, u) = χ
(
Nn ×Nn, OΓg ⊗L

ONn×Nn O∆Z(u)

)
.

This also appears in the AFL in the context of Fourier–Jacobi cycles in [31].

Conjecture 3.2 (Arithmetic fundamental lemma conjecture).

(a) (The group version) Suppose that γ ∈ Sn(F0)rs matches an element g ∈ U(Vn)(F0)rs. Then

∂Orb
(
γ,1Sn(OF0

)

)
= − Int(g) · log q.

(b) (The semi-Lie algebra version) Suppose that (γ, u′) ∈ (Sn × V ′n)(F0)rs matches an element
(g, u) ∈ (U(Vn)× Vn)(F0)rs. Then

∂Orb
(
(γ, u′),1(Sn×V ′n)(OF0

)

)
= − Int(g, u) · log q.

Remark 3.3. We refer to [39, §4] for the homogeneous (group) version of AFL involving the
intersection numbers (3.4).

Remark 3.4. Mihatsch [33] has pointed out that a naive formulation of Lie algebra version of
AFL is not well behaved (unless the formal schematic intersection is artinian). Therefore the
semi-Lie algebraic version seems to be the best possible linearization of the AFL conjecture.

Definition 3.5. A regular semisimple element (g, u) ∈ (U(V )×V )(F0) is called strongly regular
semisimple (“srs” for short) if g is semisimple. A regular semisimple element g ∈ U(V ])(F0)
(w.r.t. V ] = V ⊕ F u0) is called strongly regular semisimple if so is (g, u0) ∈ (U(V ])× V ])(F0)
(equivalently g ∈ U(V ])(F0) is regular semisimple w.r.t. the conjugation action of U(V ]) on
itself).

Definition 3.6. A regular semisimple element (γ, u′) ∈ (Sn−1 × V ′n−1)(F0) is called strongly
regular semisimple (“srs” for short) if γ is semisimple (w.r.t. the conjugation action of GLn−1,F0

).
A regular semisimple element γ′ ∈ Sn is called strongly regular semisimple (w.r.t. Fn = Fn−1⊕
Fu0) if so is (γ, u′0) ∈ (Sn × V ′n)(F0).

Remark 3.7. On the Lie algebras the notion of “strongly regular semisimple” has appeared in
[46].

Conjecture 3.8 (Arithmetic fundamental lemma conjecture for strongly regular semisimple
elements).

(a) (The group version) Suppose that γ ∈ Sn(F0)srs matches an element g ∈ U(Vn)(F0)srs. Then

∂Orb
(
γ,1Sn(OF0

)

)
= − Int(g) · log q.
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(b) (The semi-Lie algebra version) Suppose that (γ, u′) ∈ (Sn−1 × V ′n−1)(F0)srs matches an ele-
ment (g, u) ∈ (U(Vn−1)× Vn−1)(F0)srs. Then

∂Orb
(
(γ, u′),1(Sn−1×V ′n−1)(OF0

)

)
= − Int(g, u) · log q.

3.2. Basic properties of the derived fixed point locus LN g
n .

Lemma 3.9. Let g ∈ U(Vn)(F0) be regular semisimple (relative to the adjoint action by
U(Vn)).

(i) The generic fiber of the (naive) fixed point locus N g
n is zero dimensional (or empty).

(ii) Let N g
n,H (resp., N g

n,V ) be the union of connected components of N g
n that are flat (resp.,

not flat) over Spf OF̆ . Then

Grn−1K
N gn
0 (Nn) = Grn−1K

N gn,H
0 (Nn)⊕Grn−1K

N gn,V
0 (Nn).

(Here H stands for “horizontal” and V for “vertical”. See (B.2) for the graded groups Grn−1K0

associated to the co-dimension filtration.)

Proof. For part (i), let us assume that N g
n is non-empty. It suffices to show that, over the

algebraic closed field C = F̂ , the set of tuples (X, ι, λ, ρ) over OC with an action of R is
discrete (i.e., there are only finitely many elements in Nn(OC) that are reduced to any given
quasi-compact subscheme of the reduced scheme Nn,red of Nn). Now R = OF [g] is an order in
a semisimple Qp-algebra of rank 2nd, and the p-divisible group X is of height 2nd, hence has
formal complex multiplication by R. Therefore, over OC , there are only finitely many equivalence
classes of such tuple (X, ι, λ, ρ) up to isogeny. Fixing one representative (X0, ι0, λ0, ρ0) for each
equivalence class, elements within the equivalence class are bijective to self-dual lattices in the
rational Tate module V(X0,C) (endowed with an F/F0-hermitian space by (ι0, λ0)). This shows
that the generic fiber of N g

n is zero dimensional.
For part (ii), we use Lemma B.1. By part (i), the N g

n,H is one dimensional or empty, and

hence N g
n,H ∩ N

g
n,V is at most zero dimensional. Hence passing to the quotient Grn−1 of the

respective groups in Lemma B.1 yields the desired assertion.
�

According to the direct sum in part (ii), we have a unique decomposition in Grn−1K
N gn
0 (Nn)

LN g
n = LN g

n,H + LN g
n,V , (3.10)

where LN g
n,H ∈ Grn−1K

N gn,H
0 (Nn), and LN g

n,V ∈ Grn−1K
N gn,V
0 (Nn). By Lemma B.2, the first

component is represented by the element ON gn,H (or rather its image in the quotient). Hence we

may rewrite the above decomposition as
LN g

n = N g
n,H + LN g

n,V . (3.11)

3.3. A special case of AFL.

Proposition 3.10. Let p > n. Conjecture 3.8 part (b) (i.e., the semi-Lie algebra version AFL)
holds for (g, u) ∈ (G1 × V1)(F0)srs when OF [g] is a maximal order (in F [g]).

Proof. This follows from [34, Corollary 10.9] for general F/F0. When F0 = Qp , this can also be
deduced from [19]. �

4. Relation between the two versions of AFL

4.1. Orbits in U(Vn). We recall that the Cayley map is the rational morphism

c = cn : u(Vn) // U(Vn)

x � // − 1−x
1+x .

(4.1)

Here 1+x
1−x = (1− x)−1(1 + x) = (1 + x)(1− x)−1. Its inverse is

c−1(g′) =
1 + g′

1− g′
.
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By definition Vn = Hom(E,Xn) and Xn = Xn−1 × E, we decompose

Vn = Vn−1 ⊕ End(E) = Vn−1 ⊕ F u0.

Accordingly, write g′ ∈ U(Vn) in the matrix form

Xn−1 × E
g′=

 h u
w∗ d


// Xn−1 × E (4.2)

where ∗ denotes the map induced by polarizations on Xn−1 and E, and

h ∈ End(Xn−1), u, w ∈ Vn−1, d ∈ End(E).

Lemma 4.1. Let g′ ∈ U(Vn) be as in (4.2). Write

x′ = c−1
n (g′) =

(
x ũ
−ũ∗ e

)
∈ u(Vn), (4.3)

and define

g : = cn−1(x) ∈ U(Vn−1). (4.4)

Then 
g = h+ (1− d)−1uw∗,

ũ = 2(1− d)−1(1− g)−1u,

det(1− g′) = (1− d) det(1− g),

gw = εd u,

(4.5)

where we define

εd : =
1− d
1− d

. (4.6)

Proof. By definition of c−1
n , we expand the equality 1 + g′ = (1− g′)x′(

1 + h u
w∗ 1 + d

)
=

(
1− h −u
−w∗ 1− d

)(
x ũ
−ũ∗ e

)
to obtain {

1 + h = (1− h)x+ uũ∗,

w∗ = −w∗x− (1− d)ũ∗.

The second equality yields

ũ∗ = −(1− d)−1w∗(1 + x) =⇒ ũ = −(1− d)−1(1− x)w.

Plug into the the first equality:

1 + h = (1− h)x− (1− d)−1uw∗(1 + x),

and
1 + h+ (1− d)−1uw∗ = (1− h− (1− d)−1uw∗)x.

It follows that
g = cn−1(x) = h+ (1− d)−1uw∗.

Now note that the condition for g′g′∗ = 1 amounts to

hh∗ + uu∗ = 1, hw + du = 0, w∗w + dd = 1. (4.7)

The last equality follows from

gw = hw + (1− d)−1uw∗w

= (−d+ (1− dd)(1− d)−1)u

=
1− d
1− d

u.

This in turn yields the last equality. The other equalities then follow easily. �
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We now define a rational map by the formulas in Lemma 4.1

r : U(Vn) // U(Vn−1)× Vn−1

g′
� //

(
g, u

(1−d)
√
ε

)
,

(4.8)

where ε ∈ O×F0
is chosen such that F = F0[

√
ε]. We also define a variant

r\ : U(Vn) // U(Vn−1)× Vn−1

g′
� //

(
g, ũ√

ε

)
.

(4.9)

Following the notation in Lemma 4.1, let U(Vn)◦ be the open sub-variety of U(Vn) defined
by

1− d 6= 0, and det(1− g′) 6= 0.

Let (U(Vn−1)× Vn−1 × u(1))
◦

be the open sub-variety of U(Vn−1)× Vn−1 × u(1) defined by

det(1− g) 6= 0, and det (1 + x′) 6= 0.

Lemma 4.2. The map r together with e ∈ u(1) (cf. (4.3)) induce an isomorphism, equivariant
under the action of U(Vn−1),

r̃ = (r, e) : U(Vn)◦
∼ // (U(Vn−1)× Vn−1 × u(1))

◦

g′
� // (r(g′), e).

The same holds if we replace r by r\.

Proof. By (4.5) we have

det(1− g′) = (1− d) det(1− g),

and by 1 − d 6= 0, it follows that det(1 − g) 6= 0. Then the map x 7→ c(x) is well defined since
1− g = 1

1+x . Therefore the rational map r̃ = (r, e) is defined on U(Vn)◦

To reverse the map r̃, let (g, u, e) ∈ (U(Vn−1)× Vn−1 × u(1))
◦
. First we send g to c−1(g) = x

(this is defined since det(1−g) 6= 0). Then we define ũ by ũ = 2
√
ε(1−g)−1u, cf. (4.5) and (4.8).

Finally, we apply Cayley map c (4.1) to

(
x ũ
−ũ∗ e

)
to obtain g′ (the Cayley map is well-defined

by the second condition det (1 + x′) 6= 0 when defining (U(Vn−1)× Vn−1 × u(1))
◦
). It is easy to

see that the composition of above maps is defined on (U(Vn−1)× Vn−1 × u(1))
◦

and defines an
inverse to the rational map r̃. The desired assertion for r̃ follows. It is easy to see the assertion
for r\.

�

We may apply the same construction to ξg′ for ξ ∈ F 1 = ker(Nm : F× → F×0 ):

rξ : U(Vn) // U(Vn−1)× Vn−1

g′
� // r(ξg′)

. (4.10)

We define the variant r\ξ similar to (4.9).

Lemma 4.3.

(i) An element g′ ∈ U(Vn)◦ is regular semisimple (relative to the action of U(Vn−1) for Vn =
Vn−1⊕F u0) if and only if r(g′) = (g, u) is regular semisimple as an element in U(Vn−1)×Vn−1.

(ii) Let g′ ∈ U(Vn)◦srs. Then, for but finitely many ξ ∈ F 1, the element ξg′ ∈ U(Vn)◦ and
rξ(g

′) ∈ (U(Vn−1)× Vn−1)srs.

(iii) Let (g, u) ∈ (U(Vn−1) × Vn−1)srs. Then, for all but finitely many e ∈ u(1), the element
(g, u, e) ∈ (U(Vn−1)× Vn−1 × u(1))

◦
and r̃−1(g, u, e) ∈ U(Vn)◦srs.
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Proof. The regular semi-simplicity for g′ ∈ U(Vn) is equivalent to the vectors

{g′i u0 | 0 ≤ i ≤ n− 1}

being a basis of Vn (as an F -vector space). By the decomposition (4.2), this is equivalent to
{hiu, 0 ≤ i ≤ n − 2} being a basis of Vn−1. By (4.5), we can show inductively that, for all
1 ≤ i ≤ n− 2, giu− hiu lies in the span of u, hu, · · · , hi−1u. This proves part (i).

Let P (λ) = det(λ+ h) be the characteristic polynomial of h, and let

Q(λ) = det(λ+ h) · w∗(λ+ h)−1u,

which is a polynomial in λ of degree n − 2. Then the characteristic polynomial of g′ can be
written as

det(λ+ g′) = (λ+ d)P (λ)−Q(λ). (4.11)

Since g′ ∈ U(Vn)◦srs (particularly, regular semisimple relative to the U(Vn)-conjugation action),
this polynomial in λ has only simple roots.

Let rξ(g
′) = (gξ, uξ) and now we study how the characteristic polynomial of gξ (or equivalently,

of ξ−1gξ) depends on ξ . By (4.5),

det(λ+ ξ−1gξ) = det

(
λ+ h+

ξ

1− dξ
uw∗

)
.

Set

t =
ξ

1− dξ
.

Then

det(λ+ ξ−1gξ) = det(λ+ h) det
(
1 + t uw∗(λ+ h)−1

)
= det(λ+ h)

(
1 + t w∗(λ+ h)−1u

)
= det(λ+ h) + t det(λ+ h)w∗(λ+ h)−1u

= P (λ) + tQ(λ).

Here in the second equality we have used the fact that uw∗ ∈ End(Vn−1) is of rank at most one.
Let R(ξ) be the GCD of P (λ) and Q(λ). By the semi-simplicity of g′, the polynomial R(λ) is

multiplicity free. Fix an algebraic closed field Ω ⊃ F . Since there are only finitely many t ∈ Ω
such that P/R + tQ/R and R have common roots, the question is reduced to the case R = 1
(and possibly smaller n). Now assume R = 1. Then P + tQ ∈ F [t, λ] is an irreducible (over
Ω) polynomial in t, λ, hence defines an irreducible curve C in A2

F (the affine plane in t, λ), and
t defines a non-constant rational morphism to the projective line C → P1

F . The polynomial
P + tQ has a repeated root precisely when the rational morphism is ramified at t. Hence there
are only finitely many such t ∈ Ω. This proves part (ii).

Part (iii) is proved similarly to part (ii).
�

4.2. Reduction of the intersection numbers. We recall that δ : Nn−1 → N is the embedding
whose image is the special divisor Z(u0) for a unit u0 ∈ End(E) in the above decomposition.
Consider

Nn−1 ×Nn−1
δ×δ

// Nn ×Nn

and let π2 : Nn−1 ×Nn−1
// Nn−1 be the projection to the second factor. We have the

following pull-back formula for the graph of an automorphism.

Lemma 4.4. Let g′ ∈ U(Vn)◦(F0) be such that 1− d ∈ O×F , and let (g, u) = r(g′) ∈ (U(Vn−1)×
Vn−1)(F0). Then

(δ × δ)∗Γg′ = Γg ∩ π∗2Z(u),
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where (δ × δ)∗ is the naive pull-back, i.e., the fiber product

(δ × δ)∗Γg′ //

��

�

Γg′

��

Nn−1 ×Nn−1
δ×δ
// Nn ×Nn

.

Moreover, if u is non-zero, then the same equality holds in the derived sense (i.e., as elements
in K-group with support on the schematic intersection) and

Γg ∩ π∗2Z(u) = Γg ∩L π∗2Z(u).

Remark 4.5. By (4.5), we have gw = εdu. Since d 6= 1, εd = 1−d
1−d is a unit in OF , and hence

we may replace π∗2Z(u) by π∗1Z(w) in the above statements.

Proof. We prove the natural map on S-points are the identity map. Let (X1, X2) be an S-point
of Nn−1×Spf OF̆

Nn−1, and let X ′i = Xi×E (in the notation we have omitted S and the obvious
additional structure ι, λ etc.).

We start from (X1, X2) on the graph Γg′ , i.e., there exists (uniquely) ϕ′ : X ′1 → X ′2 lifting g′.
Write ϕ′ in the matrix form

X1 × E
ϕ′=

 ϕ ψ
ψ′∗ d


// X2 × E

which lifts the diagram (4.2). We then need to construct elements in Γg ∩ π∗2Z(u). The subtle
point is that X1 and X2 are different, whereas the Xn in the target and the source in the map
g′ of (4.2) are (unfortunately) identified.

First we have X2 ∈ Z(u) (note that the u in r(g′) = (g, u) differs from the u in (4.2) only by
a unit (1− d)

√
ε, hence we ignore the difference in this proof). Consider the homomorphism

ϕ̃ : = ϕ+ ψψ′∗

1−d : X1
// X2

This is a lifting of g ∈ U(Vn) by Lemma 4.1, hence we have constructed (X1, X2) on Γg∩ π∗2Z(u).

Again by Lemma 4.1, ψ′ lifting εdg
−1u (and εd = 1−d

1−d is a unit), hence

ψ′ = εd ϕ̃
−1ψ = εd ϕ̃

∗ψ

can be recovered from ϕ̃ and ψ. The desired isomorphism follows.
Now we prove the second part of the lemma. Note that, when u is non-zero, Z(u) is a relative

divisor and Γg is the graph of an automorphism. It follows that the dimension of the intersection
is as expected. Finally, both Γg′ and Nn−1×Nn−1 are local complete intersection in the ambient
Nn ×Nn, and Lemma B.2 shows that higher Tor all vanish.

�

Corollary 4.6. Let g′ ∈ U(Vn)◦(F0) be such that 1−d ∈ O×F , and let (g, u) = r(g′) ∈ (U(Vn−1)×
Vn−1)(F0). Assume further that the vector u 6= 0 in Vn−1. Then

∆Nn−1 ∩LNn−1,n
(id× g′)∆Nn−1 = LN g

n−1 ∩LNn Z(u).

In particular, if g′ is regular semisimple (hence so is (g, u) by Lemma 4.3 (i)), then

Int(g′) = Int(g, u).

Proof. First of all, we have

∆Nn−1
∩LNn−1,n

(id× g′)∆Nn−1
= LN g′

n ∩LNn δNn−1
.

It follows from Lemma 4.4 that the following two squares are cartesian in the derived sense:

LN g
n−1 ∩L Z(u) //

��

�

Γg ∩ π∗2Z(u) //

��

�

Γg′

��

Nn−1
∆ // Nn−1 ×Nn−1

δ×δ
// Nn ×Nn

.
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This completes the proof.
�

4.3. Reduction of orbital integrals. We again use the Cayley map

c = cn : sn // Sn

y � // − 1−y
1+y

. (4.12)

Its inverse is

c−1(γ) =
1 + γ

1− γ
.

Similar to U(Vn), we now write γ′ ∈ Sn according to the decomposition Fn = Fn−1 ⊕ Fu0:

γ′ =

(
a b
c d

)
.

Lemma 4.7. Let

y′ = c−1
n (γ′) =

(
y b̃
c̃ e

)
∈ sn, and γ = cn−1(y) ∈ Sn−1. (4.13)

Then 
γ = a+ (1− d)−1bc,

b̃ = 2(1− d)−1(1− γ)−1b,

c̃ = −2c(1− d)−1(1− γ)−1,

γb = εd b,

(4.14)

where we recall that εd = 1−d
1−d , cf. (4.6).

Proof. Similar to the proof of 4.1, we obtain{
1 + a = (1− a)y + bc̃,

c = −cy − (1− d)c̃.

We obtain
c̃ = −(1− d)−1c(1 + y).

and
1 + a+ (1− d)−1bc = (1− a− (1− d)−1bc)y.

It follows that
γ = cn−1(y) = a+ (1− d)−1bc.

The remaining assertions follow similarly.
�

We now define a rational map by the formulas in Lemma 4.7

r : Sn // Sn−1 × V ′n−1

γ′
� //

(
γ,
(
b̃√
ε
, c̃√

ε
· (1− y2)−1

))
.

(4.15)

From (4.14), and the fact that y ∈ sn−1 =⇒ y2 ∈ Mn,n, it follows that the last component of

r(γ′) indeed lies in V ′n−1 = Fn−1
0 × (Fn−1

0 )∗. We also define a variant:

r\ : Sn // Sn−1 × V ′n−1

γ′
� //

(
γ,
(
b̃√
ε
, c̃√

ε

))
.

(4.16)

Following the notation in Lemma 4.7, let S◦n be the open sub-variety of Sn defined by

1− d 6= 0, and det(1− γ′) 6= 0.

Let
(
Sn−1 × V ′n−1 × s1

)◦
be the open sub-variety of Sn−1 × V ′n−1 × s1 defined by

det(1− γ) 6= 0, and det (1 + y′) 6= 0.
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Lemma 4.8. The map r together with e ∈ s1 (cf. (4.13)) induce an isomorphism (between two
open sub-varieties), equivariant under the action of GLn−1,

r̃ = (r, e) : S◦n
∼ //

(
Sn−1 × V ′n−1 × s1

)◦
γ′ � // (r(γ′), e).

The same holds if we replace r by r\.

Proof. The proof of Lemma 4.2 still works, and we omit the detail. �

We may apply the same construction to ξγ′ for ξ ∈ F 1 = ker(Nm : F× → F×0 ):

rξ : Sn // Sn−1 × V ′n−1

γ′ � // r(ξγ′).

(4.17)

We define r\ξ similar to (4.16).

Lemma 4.9.

(i) An element γ′ ∈ S◦n is regular semisimple if and only if rξ(γ
′) is regular semisimple as an

element in Sn−1 × V ′n−1.

(ii) Let γ′ ∈ S◦n,srs. Then, for but finitely many ξ ∈ F 1, the element ξγ′ ∈ S◦n and rξ(γ
′) ∈

(Sn−1 × V ′n−1)srs.

(iii) Let (γ, u′) ∈ (Sn−1 × V ′n−1)srs. Then, for all but finitely many e ∈ s1, the element (γ, u′, e)

lies in
(
Sn−1 × V ′n−1 × s1

)◦
and r̃−1(γ, u′, e) ∈ S◦n is strongly regular semisimple.

Proof. The same argument as the proof of Lemma 4.3 works here. Hence we omit the detail. �

Lemma 4.10. If γ′ ∈ Sn(F0)srs and g′ ∈ U(Vn)(F0)srs match, then the following pairs also
match (whenever they are well-defined for ξ ∈ F 1 under the rational maps):

• r\ξ(γ
′) ∈ (Sn−1 × V ′n−1)(F0)srs and r\ξ(g

′) ∈ (U(Vn−1)× Vn−1)(F0)srs;

• rξ(γ
′) ∈ (Sn−1 × V ′n−1)(F0)srs and rξ(g

′) ∈ (U(Vn−1)× Vn−1)(F0)srs.

Proof. We retain the notation in Lemma 4.3 and Lemma 4.7. We may assume ξ = 1. By
choosing a basis of Vn−1 and of Vn = Vn−1 ⊕ F u0, we write g′ ∈ Mn,n(F ) in matrix form,
cf. the discussion on matching orbits in §2.2. Since the inverse Cayley map (cf. (4.1), (4.12))
preserve the matching conditions, c−1(γ′) and c−1(g′) also match. It follows that the two elements
denoted by e in their lower right corner are equal. Moreover, there exists k ∈ GLn−1(F ) such
that (

x ũ
−ũ∗ e

)
=

(
k−1

1

)(
y b̃
c̃ e

)(
k

1

)
,

or equivalently,

x = k−1 y k, ũ = k−1 b̃, −ũ∗ = c̃ k.

It follows that

g = c(x) = k−1 c(y) k = k−1γ k,

and hence (
g ũ√

ε(
ũ√
ε

)∗
e

)
=

(
k−1

1

)(
γ b̃√

ε
c̃√
ε

e

)(
k

1

)
.

This proves the first part.
By Lemma 4.1 (4.5), ũ = 2(1− d)−1(1− g)−1u, we obtain

u = 2−1(1− d)(1− g)ũ = (1− d)(1 + x)−1ũ.

We compute the invariants of (g, u). For 0 ≤ i ≤ n− 1,

u∗giu = (1− d)(1− d)ũ∗(1 + x∗)−1gi(1 + x)−1ũ

= (1− d)(1− d)ũ∗(1− x2)−1giũ,
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where we have used that g and x commute, and x∗ = −x. In terms of the invariants of (γ, b̃, c̃)
This last quantity is equal to

u∗giu = (1− d)(1− d)ũ∗(1− x2)−1giũ

= −(1− d)(1− d)c̃ k (1− x2)−1gi k−1b̃

= −(1− d)(1− d)c̃ (1− y2)−1 γi b̃.

Obviously g and γ have the same characteristic polynomial. It follows that r(g′) = (g, u√
ε(1−d)

)

has the same set of invariants as(
γ,
(√

ε
−1
b̃,
√
ε
−1
c̃ · (1− y2)−1

))
= r(γ′).

This completes the proof of the second part.
�

Lemma 4.11. Let γ′ ∈ Sn(F0)rs and g′ ∈ U(Vn)(F0)rs be a matching pair, and ξ ∈ F 1. Assume
that

1− ξd ∈ O×F , and det(1− ξγ′) ∈ O×F . (4.18)

Then

Orb(γ′,1Sn(OF0
), s) = Orb

(
r\ξ(γ

′),1(Sn−1×V ′n−1)(OF0
), s
)

= Orb
(
rξ(γ

′),1(Sn−1×V ′n−1)(OF0
), s
)
.

Proof. It suffices to prove the assertions for ξ = 1. We also consider the orbital integral on the
Lie algebra sn. Since det(1− γ′) ∈ O×F by assumption (4.18), and the Cayley map is equivariant
under the GLn−1(F0),

h · c−1(γ′) ∈ sn(OF0) if and only if h · γ′ ∈ Sn(OF0).

It follows that

Orb(c−1(γ′),1sn(OF0
), s) = Orb(γ′,1Sn(OF0

), s).

Similarly, by det(1 + y) = (1 − d)−1 det(1 − γ′) and (4.18), we know that det(1 + y) ∈ O×F .
Therefore,

h−1yh ∈ sn−1(OF0
) if and only if h−1γh ∈ Sn−1(OF0

).

It follows that (note that d and e are now in OF and s1(OF0) respectively)

Orb(c−1(γ′),1sn(OF0
), s) = Orb

(
r\(γ′),1(Sn−1×V ′n−1)(OF0

), s
)
.

This proves the first equality.
We now simply denote

c̃′ := c̃ · (1− y2)−1

so that

r(γ′) =
(
γ,
(
b̃/
√
ε, c̃′/

√
ε
))

.

Note now that det(1 − y2) = Nm det(1 + y) ∈ O×F0
under our assumption. Therefore, when

h−1γh ∈ Sn−1(OF0
), we have

c̃′√
ε
h ∈ OnF0

if and only if
c̃√
ε
h ∈ OnF0

.

This immediately implies the second equality.
�
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4.4. Relation between the two versions of AFL.

Proposition 4.12. Fix F/F0. Assume that q ≥ n where q denotes the cardinality of the residue
field of OF0

. Then

(i) in Conjecture 3.8, part (a) for Vn is equivalent to part (b) for Vn−1.

(ii) in Conjecture 3.8, part (a) for Vn−1 implies part (b) for Vn−1 and (g, u) ∈ (U(Vn−1) ×
Vn−1)(F0)srs where the norm of u is a unit.

Remark 4.13. Similar results hold for Conjecture 3.2 for regular semisimple elements.

Proof. For part (i), let g′ ∈ U(Vn)(F0)srs. We may assume that d ∈ OF and the characteristic
polynomial of g′ has integral coefficients (otherwise both sides of part (a) vanish). Since q+1 > n,
there exists ξ ∈ F 1 such that det(1 − ξg′) ∈ O×F is a unit (looking at the reduction of the
characteristic polynomial modulo the uniformizer $F of OF ). Since both side of part (a) for Vn
are invariant under the substitution g′ 7→ ξg′, we may just assume that g′ has the property that
d ∈ OF and det(1 − g′) ∈ O×F . Then g′ ∈ U(Vn)◦(F0)srs, so that we may apply the map r. By
Lemma 4.3, we may adjust ξ ∈ F 1 within the same residue class mod $F such that the image
r(g′) = (g, u) lies in (U(Vn−1)× Vn−1)(F0)srs. Now, by Corollary 4.6,

Int(g′) = Int(g, u).

Now we consider the orbital integral. By Lemma 4.11

∂Orb(γ′,1Sn(OF0
)) = ∂Orb

(
r(γ′),1(Sn−1×V ′n−1)(OF0

)

)
.

Here we refer to [38, Lemma 11.9] for the comparison of the transfer factors. By Lemma 4.10,
r(γ′) ∈ (Sn−1 × V ′n−1)(F0)srs and r(g′) ∈ (U(Vn−1)×Vn−1)(F0)srs match. This shows that part
(b) for Vn−1 implies part (a) for Vn.

For the inverse direction, we start from (g, u) ∈ (U(Vn−1)×Vn−1)(F0)srs. Again it suffices to
prove part (b) when the invariants of (g, u) are all integers. By multiplying a suitable ξ ∈ F 1,
we may assume det(1 − g) ∈ O×F . Then det(1 + x) ∈ O×F . By Lemma 4.3 part (iii), there

exists e ∈ u(1)(OF0
) such that det(1 + x′) ∈ O×F , (g, u, e) lies in (U(Vn−1)× Vn−1 × u(1))

◦
and

g′ = r̃−1(g, u, e) ∈ U(Vn)◦srs. Then we may apply Corollary 4.6. Similar procedure proves the
desired identity between orbital integrals. This shows that part (a) for Vn implies part (b) for
Vn−1.

For Part (ii) we note that for g ∈ U(Vn−1)(F0)srs, the pair (g, u0) ∈ (U(Vn−1)×Vn−1)(F0)srs,
and it is easy to see

Int(g) = Int(g, u0).

One can show that the orbital integrals are equal easily, and we leave the detail to the reader.
�

5. Local constancy of intersection numbers

This section is not used until §15.

5.1. Local constancy of the function Int(g, ·). We recall the Bruhat–Tits stratification of
the underlying reduced scheme Nn,red of Nn, following the work of Vollaard–Wedhorn [43]. The
scheme Nn,red admits a stratification by Deligne–Lusztig varieties of dimensions 0, 1, . . . , bn−1

2 c,
attached to unitary groups in an odd number of variables and to Coxeter elements, with strata
parametrized by the vertices of the Bruhat–Tits complex of the special unitary group for the
non-split n-dimensional F/F0-hermitian space Vn. The vertices of the Bruhat–Tits complex is
bijective to vertex lattices in Vn where anOF -lattice (of full rank) Λ ⊂ Vn is called a vertex lattice
if Λ ⊂ Λ∨ ⊂ $−1Λ. The parametrization of the strata by vertex lattices in Vn is compatible with
the action of the group U(Vn) on Nn,red (cf. (3.3)) and on Vn. The type of a vertex lattice Λ
is by definition the integer t(Λ) := dimk Λ∨/Λ. Denote by V(Λ) the corresponding (generalized)

Deligne–Lusztig variety; it is smooth projective of dimension t(Λ)−1
2 , cf. loc. cit.. Note that the

type t(Λ) is odd in our case because the F/F0-hermitian space Vn is non-split.
Let Λ ⊂ Vn be a vertex lattice of type 3. We define

IntV(Λ)(u) := χ
(
Nn,V(Λ) ∩L Z(u)

)
, u ∈ V \ {0}.
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The following result may be of some independent interest.

Lemma 5.1. Let Λ ⊂ Vn be a vertex lattice of type 3. Then

IntV(Λ) =
∑

Λ⊂Λ′, t(Λ′)=1

1Λ′ − q2(1 + q)1Λ.

Proof. This is [27, Lemma 6.2.1]. �

Lemma 5.2. Let n ≥ 3, and Λ ⊂ Vn a vertex lattice of maximal type (i.e., type 2[(n−1)/2]+1).
Let C ∈ Ch1,V(Λ)(Nn,red). Then the function

IntC : Vn // Q
u
� // χ(Nn, C ∩L Z(u))

is locally constant and compactly supported. Here, even though the function is only defined for
u 6= 0, the local constancy around u = 0 is to be interpreted as that the function takes a constant
value for all u 6= 0 in a neighborhood of 0 ∈ V.

Proof. On the DL variety V(Λ) there is a collection of DL curves V(Λ′) for type-3 vertex lattices
Λ′ nested between Λ and Λ∨

Λ ⊂ Λ′ ⊂ Λ′∨ ⊂ Λ∨.

It can be deduced from the computation of Lusztig [32] (for type 2A2m) that for any ` 6= p, the
Tate classes1 in H2(V(Λ)F,Q`) is spanned by the classes of these DL curves, cf. [27, Theorem
5.2.2] for a detailed proof. Since the intersection number depends only on the cohomology class
of C on V(Λ), it suffices to prove the assertion when C is (the equivalence class of) a DL curve
V(Λ′). However, in that case, the local constancy follows immediately from Lemma 5.1. This
completes the proof.

�

Proposition 5.3. Fix a regular semisimple element g ∈ U(Vn). Let

Vn,g : = {u ∈ Vn | (g, u) is not regular semisimple}.
Then the function

Int(g, ·) : Vn \ Vn,g // Q
u � // Int(g, u) = χ(Nn, LN g

n ∩L Z(u))

is locally constant.

Proof. By the decomposition (3.11) we have

LN g
n = N g

n,H + LN g
n,V ∈ Grn−1K

N gn
0 (Nn).

Therefore we may represent them by a formal (locally finite) sum
∑
C multC · [OC ] where C

are formal curves (i.e., integral closed formal subschemes of formal dimension one) on N g
n , and

multC ∈ Q. Let C be an irreducible formal curve on N g
n . We claim that that the function

IntC : Vn \ {0} // Q
u
� // χ(Nn, C ∩L Z(u))

is locally constant. This would imply the desired local constancy, because the intersection
N g
n ∩ Z(u) is a proper scheme over Spf OF̆ , and hence only finitely many irreducible curves

contribute to the intersection Int(g, u).
There are the following (mutually exclusive) possibilities for C

• an irreducible closed formal subscheme of N g
n,H , which is of formal dimension one and inter-

sects Nn,red with dimension zero,

• an irreducible closed formal subscheme of N g
n,V of formal dimension one that intersects Nn,red

with dimension zero,

• an irreducible closed subscheme of Nn,red.

1Here by Tate classes in H2(V(Λ)F,Q`(1)) we mean all classes that are fixed by some powers of Frobenius.
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For the third type, we have proved an even stronger version in Lemma 5.2. Now we show the

locally constancy for the other two types. We take C̃ to be the normalization of C, and C̃ → Nn
the induced morphism. Then

χ(Nn, C ∩L Z(u)) = χ(Nn,OC̃ ⊗
L
Nn OZ(u)).

Now C∩Z(u) must be zero dimensional (otherwise C ⊂ Z(u); however we know that N g
n ∩Z(u)

is supported in Nn,red).

Pull back the universal object on Nn to C̃ and we obtain a family of unitary p-divisible groups

on C̃. Then IntC(u) is the length of the artinian scheme where the special homomorphism u

lifts. We prove this on the complete local ring A of C̃ at a point in the support of C̃ ∩ Z(u).
Here A is isomorphic to F[[t]] or a finite extension of Spf OF̆ , and we will simply write t for a
uniformizer of A. Let (X , ι, λ, ρ) be the unitary p-divisible group over Spf A. For all i ≥ 0,
HomA/(ti)(E ,X ) must be a lattice (of full rank) in HomA/(t)(E,Xn) = Vn. This implies the
desired local constancy.

�

5.2. Local constancy of the function Int(·, ·).

Lemma 5.4. Fix (g0, u0, e0) ∈ (U(Vn)× Vn × u(1))
◦

such that g′ = r̃−1(g0, u0, e0) ∈ U(Vn+1)srs

(cf. Lemma 4.3 for the notation). Then the map (defined on some open subsets of F0-varieties)

char(g0, ·, ·) : Vn × u(1) // [U(Vn+1)//U(Vn+1)]

(u, e) � // char poly(̃r−1(g0, u, e))

is submersive (i.e., the induced map on tangent spaces is surjective) at (u0, e0).
Here [U(Vn+1)//U(Vn+1)] denotes the categorical quotient (with respect to the adjoint action)

and char poly denotes the characteristic polynomial.

Proof. The question is local on the source. Tracing the definition back to (4.8) and Lemma 4.2,

we may reduce the question to the Lie algebra version: for a fixed

(
x0 u0

−u∗0 e0

)
∈ u(Vn+1)srs,

the map

Vn × u(1) // [u(Vn+1)//U(Vn+1)]

sending (u, e) to the characteristic polynomial of

(
x0 u
−u∗ e

)
∈ u(Vn+1) is submersive at (u0, e0).

Note that a complete set of generators of invariants relative to the U(Vn)-action on u(Vn+1)
is given by:

char poly(x), e, u∗xju, 0 ≤ j ≤ n− 1,

where x′ =

(
x u
−u∗ e

)
∈ u(Vn+1) cf. [47]. It is easy to see that an equivalent set is

char poly(x), char poly(x′).

Therefore, it suffices to show the analogous map

Vn //
∏n−1
i=0 F

(−1)j

sending u ∈ Vn to the invariants

u∗xju, 0 ≤ j ≤ n− 1,

is submersive at u0. Here F (−1)j is the (−1)j-eigenspace of F under the Galois conjugation.
Now the assertion follows from the regular semi-simplicity of x0, which reduces the question to
the case n = 1, but for the product of field extensions of F . This is routine and we omit the
detail.

�
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Theorem 5.5. The function

Int(·, ·) : (U(Vn)× Vn)(F0)srs
// Q

(g, u) � // Int(g, u)

is locally constant. Its support is compact modulo the action of U(Vn)(F0).

Remark 5.6. See the forthcoming work of Mihatsch [35] for a different proof, which also yields
the local constancy on the regular semisimple locus.

Proof. We may assume that the invariants of (g, u) are all integers. We now fix such a pair (g, u)
and we want to show the local constancy near (g, u).

First, by the argument in the proof of part (i) of Proposition 4.12, there exists g′ = r̃−1(g, u, e) ∈
U(Vn+1)◦(F0)srs such that

Int(g′) = Int(g, u). (5.1)

In fact, by the same argument the equality holds if we replace (g, u, e) by any element (g], u], e])
near it, and g′ by the respective image g′] under the map r̃−1.

On the other hand, we may write

Int(g′) = Int(g′, u′0),

where u′0 ∈ Vn+1 is the fixed unit normed vector that induces the embedding Nn ↪→ Nn+1. We
now apply Proposition 5.3 to (g′, u′0):

Int(g′, u′0) = Int(g′, u′),

where u′ ∈ Vn+1 is close to u′0. In particular the equality holds for u′ = hu′0 for h ∈ U(Vn+1) in
a small neighborhood of 1. By the invariance under U(Vn+1), we have for u′ = hu′0

Int(g′, u′) = Int(h−1g′h, u′0).

It follows that Int(g′, u′0) = Int(h−1g′h, u′0) and hence

Int(g′) = Int(h−1g′h) (5.2)

for h ∈ U(Vn+1)(F0) in a small neighborhood of 1. This shows that, as a function on the
quotient [U(Vn+1)//U(Vn)](F0), Int(g′) is constant on those elements near g′ and having the
same characteristic polynomial (as g′).

Now we claim that the desired local constancy near (g, u) ∈ (U(Vn)×Vn)(F0)srs follows from
the following two properties

(1) the local constancy in the u-variable (for a fixed g), by Proposition 5.3;

(2) the invariance (5.2) under conjugation by elements h near 1 ∈ U(Vn+1).

To show the claim, let g′] be an element in a small neighborhood of g′. By Lemma 5.4,
there exists a neighborhood Ω ⊂ Vn × u(1) of (u, e) such that g′] is conjugate (by an element
h ∈ U(Vn+1)(F0) near 1) to r̃−1(g, u], e]) for some (u], e]) ∈ Ω. By the invariance (5.2), we have

Int(g′]) = Int(̃r−1(g, u], e])).

By (5.1) (and the remark following it),

Int(̃r−1(g, u], e])) = Int(g, u]).

By Proposition 5.3 for the local constancy in u,

Int(g, u]) = Int(g, u).

Again by (5.1) Int(g, u) = Int(g′), we obtain Int(g′]) = Int(g′). The desired local constancy of
Int(g, u) follows from (5.1) (and the remark following it).

To show the compactness of the support modulo U(Vn)(F0), it suffices to show the claim: the
support is contained in the union of compact subsets

KΛ × Λ ⊂ (U(Vn)× Vn)(F0),

where Λ runs over all vertex lattices, and KΛ is the stabilizer of Λ. Then the desired compactness
follows from the fact that the group U(Vn)(F0) acts transitively on the set of vertex lattices of
any given type t (and there are only finitely many possible types t = 1, 3, · · · , 2[(n− 1)/2] + 1).
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Now we show the claim. If Int(g, u) 6= 0, then there exists a point x ∈ Nn
(
k
)

lying on Z(u) and
N g
n . Let V(Λ) for some vertex lattice Λ be the smallest stratum containing the point x. Then

gΛ = Λ (otherwise the intersection gV(Λ)∩V(Λ) is non-empty and is a strictly smaller stratum),
and u ∈ Λ by [25, Prop. 4.1]. Therefore (g, u) ∈ KΛ × Λ as desired. �

Part 2. Global theory

6. Shimura varieties and their integral models

In this section we recall the construction of the integral models of certain Shimura varieties,
following [6, 40, 41]. In fact we need less precise information than provided in loc. cit.. We only
need a regular integral model over away from a suitable finite set of places of the full ring of
integers. Therefore we will not give the complete detail on the formulation moduli spaces as in
loc. cit..

6.1. Shimura variety.

6.1.1. Shimura data. Let F be a CM number field with maximal totally real subfield F0 and
nontrivial F/F0-automorphism a 7→ a. Let n be a positive integer. A generalized CM type of
rank n is a function r : HomQ(F,Q)→ Z≥0, denoted ϕ 7→ rϕ, such that

rϕ + rϕ = n for all ϕ. (6.1)

Here ϕ denotes the pre-composition of ϕ by the nontrivial F/F0-automorphism. When n = 1, a
generalized CM type is the same as a usual CM type (i.e., a half-system Φ of complex embeddings
of F ), via Φ = {ϕ ∈ HomQ(F,Q) | rϕ = 1}.

Let (V, ( , )) be an F/F0-hermitian vector space of dimension n. Fix a CM type Φ of F . Then
the signatures of V at the archimedean places determine a generalized CM type r of rank n (and
vice versa), by the following recipe

sigVϕ = (rϕ, rϕ), ϕ ∈ Φ, Vϕ := V ⊗F,ϕ C. (6.2)

Let GQ be the group of unitary similitudes of (V, ( , )),

GQ :=
{
g ∈ ResF0/Q GU(V )

∣∣ c(g) ∈ Gm
}
,

considered as a linear algebraic group over Q (with similitude factor in Gm).
Given Φ, r and V , we define Shimura datum [41]. For each ϕ ∈ Φ, choose a C-basis of Vϕ

with respect to which the matrix of ( , ) is given by

diag(1rϕ ,−1rϕ). (6.3)

The conjugacy class {hGQ} in the Shimura datum is the GQ(R)-conjugacy class of the homomor-
phism hGQ = (hGQ,ϕ)ϕ∈Φ, where the components hGQ,ϕ are defined with respect to the inclusion

GQ(R) ⊂ GLF⊗R(V ⊗ R)
Φ−→∼
∏
ϕ∈Φ

GLC(Vϕ), (6.4)

and where each component is defined on C× by

hGQ,ϕ : z 7−→ diag(z · 1rϕ , z · 1rϕ).

Then the reflex field E(GQ, {hGQ}) is the reflex field Er of r, which is the subfield of Q defined
by

Gal(Q/Er) =
{
σ ∈ Gal(Q/Q)

∣∣ σ∗(r) = r
}
. (6.5)

Now, in addition to the CM type Φ, we also fix a distinguished element ϕ0 ∈ Φ. We will
assume that the generalized CM type r is of strict fake Drinfeld type relative to Φ and ϕ0, in
the sense of [41], i.e.,

rϕ =

{
n− 1, ϕ = ϕ0;

n, ϕ ∈ Φ r {ϕ0}.
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The first special case is when n = 1 and V is totally positive definite, i.e., V has signature (1, 0)
at each archimedean place2. In this case, we write ZQ := GQ (a torus over Q) and hZQ := hGQ .
The reflex field of (ZQ, {hZQ}) is EΦ, the reflex field of Φ.

Now for general n, we set

G̃ := ZQ ×Gm GQ, (6.6)

where the two maps are respectively given by NmF/F0
and the similitude character. We form a

Shimura datum for G̃ by

hG̃ : C×
(h
ZQ ,hGQ )

−−−−−−−→ G̃(R).

Then (G̃, {hG̃}) has reflex field E ⊂ Q being the composite EΦEr (cf. [40]). In particular, the
field F is a subfield of E via ϕ0.

Note that, by [40, Remark 3.11], over E we have

ShKG̃
(
G̃, {hG̃}

)
' ShK

ZQ

(
ZQ, {hZQ}

)
× ShKG

(
ResF/F0

G, {hG}
)
, (6.7)

for the Shimura variety ShKG
(
ResF/F0

G, {hG}
)

associated to the unitary group defined in [10].

6.2. Integral models.

6.2.1. The auxiliary moduli problem for ZQ. We recall the moduli problem M0 over OE of [40,
§3.2]. Its generic fiber is a disjoint union of copies of the Shimura variety ShK

ZQ

(
ZQ, {hZQ}

)
.

For a locally noetherian OE-scheme S, we defineM0(S) to be the groupoid of triples (A0, ι0, λ0),
where

• A0 is an abelian scheme over S;

• ι0 : OF → End(A0) is an OF -action satisfying the Kottwitz condition:

char
(
ι(a) | LieA0

)
=
∏
ϕ∈Φ

(
T − ϕ(a)

)
for all a ∈ OF ; (6.8)

and

• λ0 is a principal polarization on A0 such that the induced Rosati involution via ι0 coincides
with the Galois involution on OF .

A morphism between two objects (A0, ι0, λ0) and (A′0, ι
′
0, λ
′
0) in this groupoid is an OF -linear

isomorphism µ0 : A0 → A′0 under which λ′0 pulls back to λ0. Then M0 is a Deligne–Mumford
stack, finite and étale over SpecOE cf. [19, Prop. 3.1.2].

Remark 6.1. In order to avoid the possible emptiness of M0 in some cases (cf. loc. cit.), we
assume that F/F0 is ramified throughout the paper. We let M0 denote the generic fiber ofM0.
Its complex fiber M0 ⊗OE C is isomorphic to a finite number of copies of ShK

ZQ (ZQ, {hZQ}).
The parameterization of the copies is rather subtle, roughly in correspondence to isomorphism
classes of one-dimensional F/F0-hermitian spaces satisfying certain conditions (and the possible
emptiness is accounted by the possible non-existence of hermitian spaces). It suffices for our
purpose to note that the partition descends over E, and hence we will work with a fixed copy
through out the paper. Hence we will suppress this issue in the notation and simply write M0

for this fixed copy. A detailed discussion is in [40, §3].

6.2.2. The RSZ integral model for
(
G̃, {hG̃}

)
. We will follow [40, 41] to define the moduli in-

terpretation of our Shimura varieties associated to the Shimura datum
(
G̃, {hG̃}

)
for certain

special level structure. When F0 = Q, this is closely related to [26, 6]. In fact for this paper we
only need to define an integral model over a Zariski open subscheme of SpecOE .

Let D0 denote the set consisting of all non-archimedean places v of F0 such that

• the residue characteristic of v is 2, or

• v is ramified in F , or

• v is inert in F where Vv is non-split.

2Here we follow the convention of [41], which differs from [40] where the space V is totally negative definite.
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Let D be a finite set of non-archimedean places containing D0, such that D is pull-back from a
set of places DQ of Q. Define

d =
∏
p|DQ

p.

We fix an OF -lattice Λ in V such that for all v /∈ D

Λv = Λ∨v .

There is no requirement at v ∈ D .
We consider the open compact subgroups

K◦G :=
{
g ∈ G(Q̂)

∣∣ g(Λ⊗Z Ẑ) = Λ⊗Z Ẑ
}
,

and

K◦
G̃

= K◦ZQ ×K◦G ⊂ G̃(Q̂),

where K◦ZQ = ZQ(Ẑ) is the unique maximal compact open subgroup of ZQ(Q̂).
From now on we will consider a fixed componentM0 of the auxiliary moduli problem in §6.2.1

(cf. Remark 6.1).

Definition 6.2. The functor MK◦
G̃

(G̃) associates to each locally noetherian OE [1/d]-scheme S

the groupoid of tuples (A0, ι0, λ0, A, ι, λ), where

• (A0, ι0, λ0) is an object of M0(S);

• A is an abelian scheme over S;

• ι : OF → End(A) is an action satisfying the Kottwitz condition of signature

((n− 1, 1)ϕ0
, (n, 0)ϕ∈Φr{ϕ0})

on OF ; and

• λ : A→ A∨ is a polarization on A whose Rosati involution inducing the Galois involution on
OF with respect to ι.

• We impose the sign condition (cf. [40, §4.1]) and require that the kernel of the polarization
λ : A→ A∨ is of the prescribed type defined by the lattice Λ for every p, see [40, §4.1].

A morphism (A0, ι0, λ0, A, ι, λ)→ (A′0, ι
′
0, λ
′
0, A

′, ι′, λ′) in this groupoid is given by an isomor-

phism (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in M0(S) and an OF -linear isomorphism A

∼−→ A′ of abelian
schemes pulling λ′ back to λ.

By [40, Prop. 3.5], the generic fiber ofMK◦
G̃

(G̃) is naturally isomorphic to the canonical model

of ShK◦
G̃

(G̃, {hG̃}). By [40, Theorem 5.2], MK◦
G̃

(G̃) is a Deligne–Mumford stack, the morphism

MK◦
G̃

(G̃)→ SpecOE [1/d] is separated of finite type, and smooth of relative dimension n− 1.

6.2.3. Level structure. We will need certain moduli spaces that are more general thanMK◦
G̃

(G̃),

defined by level-structure at the finite set of places dividing d. Let KG =
∏
vKG,v ⊂ K◦G = K◦G,v

be a compact open subgroup and KG,v = K◦G,v for v - d, and accordingly define KG̃ = K◦ZQ×KG.

We define the moduli problem MKG̃
(G̃) analogous to MK◦

G̃
(G̃).

Definition 6.3. The functor MKG̃
(G̃) associates to each locally noetherian OE [1/d]-scheme S

the groupoid of tuples (A0, ι0, λ0, A, ι, λ, η), where

• (A0, ι0, λ0) is an object of M0(S);

• A is an abelian scheme over S;

• ι : OF [1/d]→ End(A)⊗Z Z[1/d] is an action satisfying the Kottwitz condition of signature

((n− 1, 1)ϕ0
, (n, 0)ϕ∈Φr{ϕ0})

on OF [1/d]; and

• λ : A→ A∨ is a prime-to-d principle polarization whose Rosati involution inducing the Galois
involution on OF [1/d] with respect to ι;
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• η is a
∏
v|dKG,v-orbit of isometries of hermitian modules (as smooth Fd =

∏
v|d Fv-sheaves

on S endowed with its natural hermitian form induced by the polarization)

η : Vd(A0, A)
∼ // V (F0,d) , (6.9)

where

Vd(A0, A) : =
∏
p|d

Vp(A0, A), and Vp(A0, A) = HomF⊗QQp(Vp(A0), Vp(A))

and

V (F0,d) : =
∏
p|d

V ⊗Q Qp =
∏
v|d

V ⊗F0
F0,v. (6.10)

More precisely, this is understood in the sense of, e.g., [26, Remark 4.2]. Fixing any geometric
point s of a connected scheme S, the rational Tate module Vd(A0, A) is a smooth Fd =

∏
v|d Fv-

sheaf on S determined by the rational Tate module Vd(A0,s, As) together with the action of
the fundamental group π1(S, s). Moreover, the polarizations on A0 and A defines an Fd-valued
hermitian forms 〈·, ·〉 on Vd(A0,s, As):

〈x, y〉 = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndFd

(Vd(A0,s)) = Fd.

Then the level structure η is a
∏
v|dKG,v-orbit of isometries of hermitian modules

η : Vd(A0,s, As)
∼ // V (F0,d) , (6.11)

that is required to be stable under the action of π1(S, s). The notion of
∏
v|dKG,v-level structure

is independent of the choice of the geometric point s on S.

• Finally, we also impose the sign condition (cf. [40, §4.1]).

A morphism between two objects (A0, ι0, λ0, A, ι, λ, η) and (A′0, ι
′
0, λ
′
0, A

′, ι′, λ′, η′) is an iso-

morphism (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in M0(S) and an OF -linear prime-to-d isogeny A → A′,

pulling λ′ back to λ and η′ back to η.

Similar toMK◦
G̃

(G̃), the functorMK◦
G̃

(G̃) is a Deligne–Mumford stack, the morphismMK◦
G̃

(G̃)→
SpecOE [1/d] is separated of finite type, and smooth of relative dimension n−1. When

∏
v|dKG,v

is small enough, the functor MK◦
G̃

(G̃) is represented by a quasi-projective scheme.

Finally, we briefly recall the moduli functor MKG̃
(G̃) for the canonical model of the Shimura

variety ShK◦
G̃

(G̃, {hG̃}) over SpecE, for any compact open subgroup K◦
G̃

of the form KG̃ =

K◦ZQ ×KG. Similar to Definition 6.3, the functor MKG̃
(G̃) associates to each locally noetherian

scheme S over SpecE the groupoid of tuples (A0, ι0, λ0, A, ι, λ, η), where everything is the same
as Definition 6.3 with the following minor change. Now ι : F → End◦(A) is an action, λ : A→ A∨

is a polarization, and η is a KG-orbit of isometries of hermitian modules

η : V̂(A0, A)
∼ // V (A0,f ) , (6.12)

where V̂(A0, A) : =
∏
p Vp(A0, A), and V (A0,f ) = V ⊗F0

AF0,f . The rest is the same as Definition

6.3, with the appropriate modification of the definition of morphisms in the groupoid, cf. [40,
§3.2].

7. Kudla–Rapoport divisors and the derived CM cycles

In this section we consider two type of special cycles on the integral models of Shimura
varieties in the previous section

• the Kudla–Rapoport special divisors [26], and

• the derived CM cycle, which is a variant of the (1-dimensional) “big CM cycle” of Bruinier–
Kudla–Yang and Howard [8, 19].

The derived CM cycle is the main novel geometric construction of this paper.
We make the following notational remark: in Part 2 of the paper, all Schwartz functions on

totally disconnected topological spaces are Q-valued.
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7.1. The global Kudla–Rapoport divisors on MKG̃
(G̃) over SpecE. We first define the

global Kudla–Rapoport divisors on the canonical model MKG̃
(G̃) over SpecE, introduced at the

end of §6, for an arbitrary compact open subgroup K◦
G̃

of the form KG̃ = K◦ZQ ×KG. We follow

[26] when F0 = Q, and [31, Definition 4.21] and [41] for general totally real F0.
Let ξ ∈ F0,+ and let µ ∈ V (A0,f )/KG be a KG-orbit.

Definition 7.1. For a locally noetherian scheme S over SpecE, the S-points of the KR cycle
Z(ξ, µ) is the groupoid of tuples (A0, ι0, λ0, A, ι, λ, η, u) where

• (A0, ι0, λ0, A, ι, λ, η) ∈MKG̃
(G̃)(S), and

• u ∈ Hom◦F (A0, A) such that 〈u, u〉 = ξ, and η(u) is a homomorphism in the KG-orbit µ. Here
〈·, ·〉 denotes the hermitian form induced by the polarization λ0 and λ:

〈x, y〉 = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ End◦F (A0) ' F.

A morphism between two objects (A0, ι0, λ0, A, ι, λ, η, u) and (A′0, ι
′
0, λ
′
0, A

′, ι′, λ′, η′, u′) is an

isomorphism (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in M0(S) and an F -linear isogeny ϕ : A→ A′, compat-

ible with λ and λ′, and with η and η′, and such that u′ = u ◦ ϕ.

Forgetting u defines a natural morphism i : Z(ξ, µ) → MKG̃
(G̃), and we defer to Proposi-

tion 7.3 for its properties. In particular, the push-forward defines a class in the Chow group

Ch1(MKG̃
(G̃)). For φ ∈ S(V (A0,f ))KG ,3 we define

Z(ξ, φ) : =
∑

µ∈V (A0,f )ξ/KG

φ(µ)Z(ξ, µ), (7.1)

viewed as an element in the Chow group Ch1(MKG̃
(G̃)). Here

V (A0,f )ξ : = {µ ∈ V (A0,f ) | 〈µ, µ〉 = ξ}.

Note that (7.1) is a finite sum due to the compactness of the support of φ (and G(A0,f ) acts
transitively on V (A0,f )ξ when ξ 6= 0).

7.2. The global Kudla–Rapoport divisors on the integral model MKG̃
(G̃). We now

consider the moduli function M = MKG̃
(G̃) with level structure at primes dividing d, cf.

Definition (6.3). Here K◦
G̃

is of the form KG̃ = K◦ZQ × KG with KG,v = K◦G,v for v - d where

K◦G,v is the stabilizer of a self-dual lattice Λv.

Let ξ ∈ F0,+ and µ ∈ V (F0,d)/KG,d. Here V (F0,d) is as in (6.10).

Definition 7.2. For a locally noetherian scheme S over SpecOE [1/d], the S-points of the KR
cycle Z(ξ, µ) is the groupoid of tuples (A0, ι0, λ0, A, ι, λ, η, u) where

• (A0, ι0, λ0, A, ι, λ, η) ∈MKG̃
(G̃)(S), and

• u ∈ HomOF (A0, A) ⊗Z Z[1/d] such that 〈u, u〉 = ξ, and η(u) is a homomorphism in the
KG,d-orbit µ. Here 〈·, ·〉 denotes the hermitian form induced by the polarization λ0 and λ:

〈x, y〉 = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndOF (A0)⊗Z Z[1/d] ' OF [1/d].

A morphism between two objects (A0, ι0, λ0, A, ι, λ, η, u) and (A′0, ι
′
0, λ
′
0, A

′, ι′, λ′, η′, u′) is an

isomorphism (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in M0(S) and an OF -linear prime-to-d isogeny ϕ : A→

A′, compatible with λ and λ′, and with η and η′, and such that u′ = u ◦ ϕ.

Forgetting u defines a natural morphism i : Z(ξ, µ)→MKG̃
(G̃).

Proposition 7.3. (a) The morphism i : Z(ξ, µ) → MKG̃
(G̃) is representable, finite and un-

ramified.

(b) The morphism i defines étale locally a Cartier divisor. Moreover, the morphism Z(ξ, µ) →
SpecOE [1/d] is flat.

3Henceforth we will assume all the Schwartz functions (i.e., locally constant with compact support) that
are used to define cycles are Q-valued, in order to define elements in various Chow group or K-groups with

Q-coefficients.
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Proof. When F0 = Q, part (a) follows from [26, Prop. 2.9], part (b) from [6, §2.5]. For a general
totally real F0, both follow from [31, Prop. 4.22]. �

To a function φd ∈ S(Vd)KG,d , we associate φ = 1Λd ⊗φd ∈ S(V (A0,f )), where Λd =
∏
v-d Λv.

Then we define

Z(ξ, φ) : =
∑

µ∈V (F0,d)ξ/KG

φd(µ)Z(ξ, µ), (7.2)

viewed as an element in the Chow group Ch1(MKG̃
(G̃)). The generic fiber of Z(ξ, φ) is Z(ξ, φ)

defined by (7.1) (specializing to the current level K̃G).

7.3. Special divisors in the formal neighborhood of the basic locus. We consider the

restriction of the KR divisors to the formal completion of M =MKG̃
(G̃) along the basic locus.

Let ν - d be a non-archimedean place of E. Its restriction to F (F0, resp.) is a place denoted
by w0 (v0, resp.). Assume that v0 is inert. We recall from [40, §8, in the proof of Thm. 8.15]
the non-archimedean uniformization along the basic locus:

MÔĔν
: =

(
M(ν) ⊗OE,(ν)

OĔν
)̂= G̃′

∖[
N ′ × G̃(Apf )/Kp

G̃

]
. (7.3)

Here the hat on the left-hand side denotes the completion along the basic locus in the special fiber

of M(ν). The group G̃′ is an inner twist of G̃. More precisely, the group G̃′ is associated to the
“nearby” hermitian space V ′, that is positive definite at all archimedean places, and isomorphic
to V , locally at all non-archimedean places except at v0. Let N → Spf OF̆w0

be the relative

RZ space, i.e., the formal scheme of polarized p-divisible groups with action by OF,w0 satisfying

the Kottwitz condition of signature ((1, n− 1)ϕ0 , (0, n)ϕ∈Φv0r{ϕ0}). Let NOĔν = N ⊗̂OF̆w0

OĔν .

Then as in loc. cit. we may rewrite (7.3) as

MÔĔν
= G̃′(Q)

∖[
NOĔν × G̃(Av0

f )/Kv0

G̃

]
. (7.4)

Here we denote (even though G̃ is not an algebraic group over F0)

G̃(Av0

f )/Kv0

G̃
= G̃(Apf )/Kp

G̃
×
(
ZQ(Qp)/KZQ,p

)
×

∏
v∈Vpr{v0}

G(F0,v)/KG,v.

Here we fix an isomorphism G′(Av0

f ) ' G(Av0

f ).

Note that the uniformization (7.4) induces a projection to a discrete set (in fact an abelian
group)

MÔĔν
// ZQ(A)\

(
ZQ(Af )/KZQ

)
. (7.5)

This gives a partition of the formal scheme MÔĔν
, each fiber is naturally isomorphic to

MÔĔν ,0
:= G′(Q)

∖[
NOĔν ×G(Av0

f )/Kv0

G

]
. (7.6)

Recall that we have the local KR divisors Z(u) on N for each u ∈ V ′⊗F0,v0 ' Hom◦(E,Xn),
the hermitian space of local special homomorphisms (w.r.t. some fixed framing objects E and
Xn in the uniformization (7.4) above). For a pair (u, g) ∈ V ′(F0)×G(Av0

f )/Kv0

G with u 6= 0, we

define the product divisor on NOĔν ×G(Av0

f )/Kv0

G

Z(u, g)Kv0
G

= Z(u)× 1g Kv0
G
, (7.7)

and its image in the quotient (7.6)

[Z(u, g)]Kv0
G

=
∑
Z(u′, g′)Kv0

G
, (7.8)

where the sum is over (u′, g′) in the G′(Q)-orbit of the pair (u, g) (for the diagonal action of
G′(Q) on V ′(F0)×G(Av0

f )/Kv0

G ).
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Proposition 7.4. Let ξ ∈ F0,+. The restriction of the special divisor Z(ξ, φ) to each fiber of
the above projection (7.5) is the sum∑

(u,g)∈G′(Q)\(V ′(F0)ξ×G(Av0f )/K
v0
G )

φv0(g−1u) · [Z(u, g)]Kv0
G
, (7.9)

viewed as a divisor on (7.6). This is a finite sum.

Remark 7.5. This is similar to the description of the special divisors over the complex number,
cf. (8.8).

Proof. This follows from the proof of [26, Proposition 6.3], also cf. [31, §4.2] �

7.4. Fat big CM cycles. We introduce a fat variant of the “big CM cycle” of [8, 19] on our

moduli space M =MKG̃
(G̃) with level structure at primes dividing d (cf. Definition 6.3).

Let F ′0 be a totally real extension of F0 of degree n. Then F ′ = F ⊗F0 F
′
0 is a CM extension

of F ′0.

F ′ = F ⊗F0 F
′
0

F ′0 F

F0

Q

Fix an F/F0-hermitian space V as before. Consider a 1-dimensional F ′/F ′0-hermitian space
(W, (·, ·)F ′0) such that

(RF ′/FW, trF ′/F (·, ·)F ′0)
∼ // (V, (·, ·)) . (7.10)

Here RF ′/FW denotes the “restriction of scalar” of W , i.e., to view it as an F -vector space. To
choose such an isometry is the same as to choose an embedding (as F0-algebraic groups)

i : F ′1 // G = U(V ), (7.11)

where

F ′1 = ker(Nm : F ′× −→ F ′×0 ) = U(W ). (7.12)

Let R be an OF [1/d]-order in F ′, i.e., a locally free OF [1/d]-subalgebra of F ′ of rank [F ′ : F ].
Let Ram(R) be the set of primes v - d of F0 where R is non-maximal (i.e., R ⊗OF0

OF0,v is not

a product of DVRs). We make the following important hypothesis throughout the rest of the
paper:

The order R is monogenic R = OF [1/d, g0] for some element g0 ∈ F ′1.

Denote by charF (g0) ∈ OF [1/d][T ] the characteristic polynomial of g0 (acting on F ′ as an F -
vector space). Then it is irreducible of degree equal to [F ′ : F ].

Definition 7.6. The functor CMR=OF [1/d,g0] associates to each locally noetherian OE [1/d]-

scheme S the groupoid of tuples (A0, ι0, λ0, A, ι, λ, η, ϕ) where (A0, ι0, λ0, A, ι, λ, η) ∈ MKG̃
(G̃)

and ϕ ∈ EndOF (A)⊗ Z[1/d] such that

• the characteristic polynomial charF (g0) annihilates the endomorphism ϕ;

• ϕ is compatible with λ, i.e., ϕ∗λ = λ, or equivalently, the Rosati involution sends ϕ to ϕ−1;
and
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• ϕ preserves the level structure η, i.e., we have a commutative diagram

Vd(A0, A)

ϕ

��

η1 // V (F0,d)

id

��

Vd(A0, A)
η2 // V (F0,d),

where ηi ∈ η.

Morphisms are defined in the obvious way.

Remark 7.7. We warn the reader that the stack CMR=OF [1/d,g0] depends not only on R but also
the characteristic polynomial charF (g0), and therefore the notation may be a little misleading.

We have a natural forgetful map

CMR
//MKG̃

(G̃).

We call CMR the (naive) fat big CM cycle, or simply CM cycle.

Remark 7.8. Strictly speaking our moduli space does not cover the big CM cycle in [19] where
R is a maximal order and hence may not be monogenic of the desired type. Note that we do
not impose any Kottwitz signature condition in our Definition 7.6, while [19] does. Unlike the
moduli space for ZQ, our moduli space M′0 for F ′/F ′0 is alway non-empty (cf. Remark 6.1).
Note that the emptiness was caused by non-existence of certain hermitian space. In our case, we
start from the one-dimensional hermitian space W . The price we pay is that we have lost control
on the order R and the moduli space CMR could have very bad fibers, e.g., a large dimension
in positive characteristic. In this sense, the fat big CM cycle seems not very practically useful.
However, the AFL type identity allows us to understand some basic property of such moduli

spaces, at the bad fibers (with a natural derived structure on them) where the ambientMKG̃
(G̃)

has good reduction.

We define a twisted variant of CMR. Let R = OF [1/d, g0] be as before.

Definition 7.9. Let g ∈
∏
v|dG(Fv). The functor CMR(g) associates to each OE [1/d]-scheme

S the groupoid of tuples (A0, ι0, λ0, A, ι, λ, η, ϕ) where (A0, ι0, λ0, A, ι, λ, η) ∈ MKG̃
(G̃) and

ϕ ∈ EndOF (A)⊗ Z[1/d] such that

• the characteristic polynomial charF (g0) annihilates the endomorphism ϕ;

• ϕ is compatible with λ, i.e., ϕ∗λ = λ, or equivalently, the Rosati involution sends ϕ to ϕ−1;
and

• We have a commutative diagram

Vd(A0, A)

ϕ

��

η1 // V (F0,d)

g

��

Vd(A0, A)
η2 // V (F0,d),

where ηi ∈ η.

Morphisms are defined in the obvious way.

Remark 7.10. When KG is a normal subgroup of K◦G, and g ∈ K◦G, the last condition is
simplified as ϕ = η−1(g) for some η ∈ η in the sense that we have a commutative diagram

Vd(A0, A)

ϕ

��

η
// V (F0,d)

g

��

Vd(A0, A)
η
// V (F0,d).
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Remark 7.11. We may think of CMR=OF [1/d,g0] as the (naive) “fixed point locus of g0” even

though there is no group action of F ′1 on the entire moduli space MKG̃
(G̃). Then the twisted

variant may be viewed as the (naive) “fixed point locus of g0 composed with a Hecke correspon-
dence corresponding to the double coset KG g KG”.

Proposition 7.12. Let g ∈
∏
v|dG(Fv).

(a) The morphism CMR(g)→M is representable, finite and unramified.

(b) The morphism CMR(g) → SpecOE [1/d] is proper. Its restriction to the open sub-scheme
SpecOE [1/d] \ Ram(R) is finite étale.

Proof. The first part follows similarly to Proposition 7.3 (it is representable of locally finite type
by the theory of Hilbert scheme; it is unramified by the rigidity of quasi-isogeny; it is quasi-finite
because there are only finitely many ways to endow an action of R to a given (A, ι, λ) over
an arbitrary field; it satisfies the valuative criterion by the Néron property of abelian scheme,
therefore it is proper, and hence finite).

The properness of CMR(g) → SpecOE [1/d] follows by the valuative criterion (the toric part
of a semi-abelian scheme will have too small dimension to have an action of R). Finally, the
argument of [19, Prop. 3.12] still holds to show the finiteness and étaleness over SpecOE [1/d] \
Ram(R): at every place above v /∈ Ram(R), the local order R ⊗OF OF,v is maximal and hence
the p-divisible group has formal multiplication by a local maximal order. �

7.5. Hecke correspondences and their fixed point loci. We first define the Hecke corre-
spondence.

Definition 7.13. Let g ∈
∏
v|dG(Fv). The functor Hk[KG g KG] associates to each OE [1/d]-

scheme S the groupoid of tuples

(A0, ι0, λ0, A, ι, λ, η, A
′, ι′, λ′, η′, ϕ)

where (A0, ι0, λ0, A, ι, λ, η), (A0, ι0, λ0, A
′, ι′, λ′, η′) ∈ MKG̃

(G̃)(S), and a quasi-isogeny ϕ ∈
HomOF (A,A′)⊗ Z[1/d] such that

• ϕ is compatible with λ, λ′.

• There exist η ∈ η and η′ ∈ η′ such that the diagram

Vd(A0, A)

ϕ

��

η
// V (F0,d)

g

��

Vd(A0, A
′)

η′
// V (F0,d)

commutes. Here the left vertical map on rational Tate modules is induced by ϕ. Note that
this is to be understood similarly to the definition of level structure (cf. Definition 6.3).

Morphisms are defined in the obvious way.

We have a natural morphism

Hk[KG g KG]
//M×OE [1/d]M.

This morphism is finite, and the projection to any one factor is a finite étale morphism.
Now consider the fiber product, called the “fixed point locus of the Hecke correspondence

Hk[KG g KG]”

M[KG g KG] : = Hk[KG g KG] ×M×M ∆M

��

// Hk[KG g KG]

��

M ∆ //M×OE [1/d]M.

Let S be a connected scheme. To any object in M[KG g KG](S), we may associate a char-
acteristic polynomial with coefficients in F as follows. First of all we may assume that such
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an element in M[KG g KG](S) is of the form (A0, ι0, λ0, A, ι, λ, η, A, ι, λ, η, ϕ). Fix any geometric
point s of S, and a representative η in the

∏
v|dKG,v-orbit η of isometries of hermitian modules

η : Vd(A0,s, As)
∼ // V (F0,d) .

Then we have an endomorphism

η(ϕs) := η ◦ ϕs ◦ η−1 ∈ EndFd
(V (F0,d)) .

Then we define the characteristic polynomial (over F ) of ϕ, denoted by charF (ϕ), to be the
characteristic polynomial of η(ϕs), an element in the polynomial ring Fd[T ] (where T is the
indeterminant) of degree n. This is independent of the choice of the geometric point s on S, and
the choice of the representative η ∈ η.

Here is an alternative definition of the characteristic polynomial charF (ϕ) of ϕ. First of all,
any ϕs ∈ End◦(As) (not necessarily commuting with the OF -action) induces an endomorphism
of the Q`-vector space V`(As) where ` is any prime different from the characteristics of s. The
characteristic polynomial, a priori with Q`-coefficients, has coefficients in Q because they can
be computed as intersection numbers between algebraic cycles (with Q-coefficients) on powers
of A. We denote it by charQ(ϕ) ∈ Q[T ]deg=n[F :Q], where Q[T ]deg=n[F :Q] denotes the set of
monic polynomials of degree n[F : Q] with coefficients in Q. Similarly we can define the trace
trQ(ϕ) ∈ Q, and knowing trQ(ϕi) for all i ≥ 0 is equivalent to knowing charQ(ϕ). If ϕ commutes
with the OF -action on A, we can define trF (ϕ) ∈ F , characterized by

trF/Q(a trF (ϕ)) = trQ(ι(a)ϕ), for all a ∈ OF .

From trF (ϕi) for all i ≥ 0, there exists a unique charF (ϕ) ∈ F [T ]deg=n with expected properties.
It is clear that the two definitions of charF (ϕ) coincide (via the natural embedding F ↪→ Fd).

Therefore we obtain a locally constant map (for the Zariski topology on the source)

charF : M[KG g KG]
// F [T ]deg=n. (7.13)

The image is a finite set because the source is of finite type and hence has only finitely many
connected components. It follows that the fixed point locus M[KG g KG] is a disjoint union of
open and closed substacks, indexed by the image under the map (7.13):

M[KG g KG] =
∐

a∈Im(charF )

char−1
F (a). (7.14)

Finally, back to Definition 7.9, let R be a monogenic order R = OF [1/d, g0] for some element
g0 ∈ F ′1 with (irreducible) characteristic polynomial char(g0) ∈ F [T ]deg=n.

Lemma 7.14. The fiber of the map charF (7.13) above the polynomial charF (g0) is canonically
isomorphic to the twisted CM cycle CMR(g) as in Definition 7.9.

Proof. By Definition (7.13), the fiber of charF P above charF (g0) is the functor whose S-points
are the groupoid of tuples (A0, ι0, λ0, A, ι, λ, η, ϕ) satisfying the same conditions as in Definition
7.9, except the first one, i.e., charF (g0)(ϕ) = 0. This condition is equivalent to the condition
on the characteristic polynomial of ϕ by Cayley–Hamilton theorem and the assumption that
charF (g0) is irreducible.

�

7.6. Derived CM cycle LCMR(g). In §7.5, the twisted variant CMR(g) is recognized as a
union of some connected components of the fixed point locus M[KG g KG], cf. (7.13):

CMR(g) //M[KG g KG]

��

// Hk[KG g KG]

��

M ∆ //M×OE [1/d]M.



36 W. ZHANG

This allows us to endow CMR(g) with a derived structure, by taking the restriction of the derived
tensor product

LCMR(g) := [OHk[KG gKG]
⊗L OM] |CMR(g)∈ K ′0(CMR(g)). (7.15)

Moreover, since ∆ is a regular immersion, by the dimension calculation, this element lies in the
filtration

LCMR(g) ∈ F1K
′
0(CMR(g)). (7.16)

We extend the derived CM cycle to a weighted version. Let S
(∏

v|dG(Fv),KG,d

)
be the

space of bi-KG,d-invariant Schwartz functions. For φd ∈ S
(∏

v|dG(Fv),KG,d

)
, we denote φ0 =

1Kd
G
⊗ φd ∈ S(G(A0,f )) (here Kd

G =
∏
v-dK

◦
G,v). We then define LCMR(φ0) as a formal sum of

above twisted variants

LCMR(φ0) =
∑

g∈KG\G(A0,f )/KG

φ0(g) LCMR(g), (7.17)

where we now view the summands as elements in
⊕

g∈KG\G(A0,f )/KG
K ′0(CMR(g)). Moreover,

these elements lie in the filtration, cf. (7.16),

LCMR(φ0) ∈
⊕

g∈KG\G(A0,f )/KG

F1K
′
0(CMR(g)). (7.18)

7.7. Hecke correspondences in the formal neighborhood of the basic locus. We now
consider the restriction of the Hecke correspondence HkKG g KG to the formal neighborhood of
the basic locus at a non-archimedean place v0 - d inert in F , via the RZ uniformization (7.4).
We resume the notation there.

We consider the fiber product (in the category of locally noetherian formal schemes)

Hk[̂KG g KG]

��

// Hk[KG g KG]

��

MÔĔν
×Spf OĔν

MÔĔν
//M×OE [1/d]M.

The commutative diagram in fact lives over the base ZQ(A)\
(
ZQ(Af )/KZQ

)
, cf. (7.5). Therefore

it suffices to consider the fiber (cf. (7.6)) over any fixed element of ZQ(A)\
(
ZQ(Af )/KZQ

)
.

Then it follows immediately that

Proposition 7.15. Let

Hk
(v0)
[KG g KG] := {(g1, g2) ∈ G(Av0

f )/Kv0

G ×G(Av0

f )/Kv0

G | g
−1
1 g2 ∈ KGgKG}

with the two obvious projection maps, and the diagonal action by G′(Q) from the left multiplica-
tion. Then the Hecke correspondence Hk[̂KG g KG],0 can be identified with

Hk[̂KG g KG],0

��

∼ // G′(Q)
∖[
NOĔν ×Hk

(v0)
[KG g KG]

]
��

MÔĔν ,0
×MÔĔν ,0

∼ // G′(Q)
∖[
NOĔν ×G(Av0

f )/Kv0

G

]
×G′(Q)

∖[
NOĔν ×G(Av0

f )/Kv0

G

]
where the right vertical map is induced by the diagonal NOĔν → NOĔν × NOĔν , and the two

projection maps from Hk(v0)
g .
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7.8. CM cycles in the formal neighborhood of the basic locus. We now consider the
restriction of the fat big CM cycle and its derived version to the formal neighborhood of the
basic locus at a non-archimedean place v0 - d inert in F , via the RZ uniformization (7.4). We
resume the notation there.

Fix an embedding F ′1 → G′ (viewed as Q-algebraic groups). Such embedding exists if the
cycle CMR has non-empty restriction to the basic locus.

Lemma 7.16. Let G′(g0) be the variety of G′-orbit of g0 (i.e., elements with the same charac-
teristic polynomial Pg0). Then there is only one G′(Q)-orbit in G′(g0)(Q).

Proof. The G′(Q)-orbits in G′(g0)(Q) is parameterized by the kernel of the natural map between
Galois cohomology (as pointed sets)

H1(Q, F ′1) −→ H1(Q, G′).
This map is injective when F ′1 is not a product of tori of lower ranks (i.e., “no nontrivial
endoscopy” of G′ involves the torus F ′1). �

For gv0
∈ G′(F0,v0

), let N gv0 be the fixed point locus of g on the RZ space N for Fw0
/F0,v0

(cf.

§3.1), and its base change N gv0
OĔν

. For (γ, h) ∈ G′(Q) × G(Av0

f )/Kv0

G , we define a closed formal

subscheme of NOĔν ×G(Av0

f )/Kv0

G :

CM(γ, h)Kv0
G

= N γ
OĔν
× 1hKv0

G
, (7.19)

and its image in the quotient formal scheme (7.6)[
CM(γ, h)

]
K
v0
G

=
∑
CM(γ′, h′), (7.20)

where the sum runs over (γ′, h′) in the G′(Q)-orbit of (γ, h) ∈ G′(Q)×G(Av0

f )/Kv0

G . Here G′(Q)

acts diagonally on G′(Q)×G(Av0

f )/Kv0

G by g · (γ, h) = (gγg−1, gh).

Furthermore, we have a derived version of (7.19) and (7.20) by replacing the naive fixed point
locus N gv0

OĔν
in (7.19) by the derived fixed point locus LN gv0

OĔν
defined by (3.8).

We then have an analog of Proposition 7.4.

Proposition 7.17. Let R = OF [1/d, g0] be monogenic for some element g0 ∈ F ′1.

(i) The restriction of the CM cycle CMR to each fiber of the projection (7.5) is the disjoint union∐
(γ,h)

[
CM(γ, h)

]
K
v0
G

,

where the index runs over the set{
(γ, h) ∈ G′(Q)\

(
G′(g0)(Q)×G(Av0

f )/Kv0

G

)
| h−1γh ∈ Kv0

G

}
.

(ii) Let φ0 = 1Kd
G
⊗ φd ∈ S(G(A0,f )) where φd ∈ S

(∏
v|dG(Fv),KG,d

)
. The restriction of the

twisted (derived) CM cycle LCMR(g) (7.17) to each fiber of the projection (7.5) is the sum∑
(γ,h)∈G′(Q)\

(
G′(g0)(Q)×G(Av0f )/K

v0
G

)φv0
0 (h−1γh) ·

[ LCM(γ, h)
]
K
v0
G

,

as an element in the group (7.18).

Remark 7.18. One can define an analog of the cycle LCMR(φ0) on a semiglobal integral model
(i.e., over the localization OE,(ν) of OE at a place ν above v0, cf. [40, §4]) where one allows more
general level structure Kv0

G away v0, and therefore allows φ0 = 1KG,v0 ⊗φ
v0 ∈ S(G(A0,f )) where

φv0 ∈ S
(
G(Av0

f ),Kv0

G )
)
.

Proof. We prove part (i), and the other assertion concerning the derived version follows along
the same line.

Over the formal scheme (7.6), CMR consists ofG′(Q)-cosets of (X,hKv0

G ) ∈ NOĔν×G(Av0

f )/Kv0

G

together with a quasi-isogeny ϕv0 : X → X and g ∈ G(Av0

f ), satisfying the following conditions:

there exists γ ∈ G′(Q) such that the endomorphism of the framing object Xn induced by ϕv0
is γ,
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and both g and γ fix hKv0

G and they induce the same automorphism of hKv0

G ; the characteristic
polynomial Pg0

annihilates g and ϕv0
(or equivalently γ by the rigidity of quasi-isogeny). In

particular, γ ∈ G′(g0)(Q).
Here we view G(Av0

f )/Kv0

G as a groupoid in which the automorphism group of hKv0

G is isomor-

phic to hKv0

G h
−1. If both γ and g fix hKv0

G and induce the same automorphism of hKv0

G , then
g = γ (“rigidity away from v0”). It follows that the condition that g fixes hKv0

G is equivalent to
γhKv0

G = hKv0

G , i.e., h−1γh ∈ Kv0

G .
The condition on the existence of a quasi-isogeny ϕv0 lifting γ amounts to X ∈ N γ

OĔν
.

Therefore for a fixed γ ∈ G′(g0)(Q), we obtain that the desired pairs (X,hKv0

G ) are exactly
those lying on N γ

OĔν
× 1hKv0

G
subject to the condition h−1γh ∈ Kv0

G . Then we just need to sum

over all γ ∈ G′(g0)(Q) to complete the proof of Part (i). �

8. Modular generating functions of special divisors

In this section we collect a few modularity results for the generating functions of special
divisors with valued in Chow groups, and in a reduced version of arithmetic Chow groups.

8.1. Generating functions of special divisors on MK̃G
(G̃). We first define the generating

functions of special divisors on the canonical model MK̃G
(G̃) over SpecE. The moduli functor is

introduced at the end of §6, for an arbitrary compact open subgroup K◦
G̃

of the form KG̃ = K◦ZQ×
KG. For φ ∈ S(V (A0,f ))KG , and ξ ∈ F0,+, we have defined the divisor Z(ξ, φ) ∈ Ch1(MKG̃

(G̃))
by (7.1). When ξ = 0, we define

Z(0, φ) = −φ(0) c1(ω) ∈ Ch1(MK̃G
(G̃)), (8.1)

where ω is the automorphic line bundle [23], and c1 denotes the first Chern class.
In §11.1 we will recall the Weil representation ω of SL2(A0,f ) on φ ∈ S(V (A0,f ))KG . We

define the generating function on SL2(A0) by

Z(h, φ) = Z(0, ω(hf )φ)W
(n)
0 (h∞) +

∑
ξ∈F0,+

Z(ξ, ω(hf )φ)W
(n)
ξ (h∞), (8.2)

where h = (h∞, hf ) ∈ SL2(A0), h∞ = (hv)v|∞ ∈
∏
v|∞ SL2(Fv), and

W
(n)
ξ (h∞) =

∏
v|∞

W
(n)
ξ (hv),

cf. (1.8) for the weight-n Whittaker function W
(n)
ξ on SL2(R).

Theorem 8.1. The generating function Z(h, φ) lies in Ahol(SL2(A0),K, n)Q
⊗

Q Ch1(MK̃G
(G̃)),

where K ⊂ SL2(A0,f ) is a compact open subgroup which fixes φ ∈ S(V (A0,f )) under the Weil
representation.

We refer to (1.6) (and (1.5)) for the definition of the vector space in the statement.
The result has an analog for orthogonal Shimura varieties, which is due to Borcherds when

F0 = Q (generalizing Gross–Kohnen–Zagier theorem), and [45] for totally real fields F0; Bruinier
also gave a proof in [5] where he also constructed the automorphic Green function. By the
embedding trick [29, §3.2, Lemma 3.6], this result implies the analogous modularity for Shimura
varieties ShKG

(
ResF/F0

G, {hG}
)
.4 Then the assertion in the theorem above follows from the fact

that, after base change to C, MK̃G
(G̃) is a disjoint union of copies of ShKG

(
ResF/F0

G, {hG}
)
,

cf. (6.7).

4In the unitary case, one expect to obtain a U(1, 1)-automorphic form. However, the SL2-automorphic form
suffices for our purpose, and in fact the extra information in U(1, 1)-automorphy is not useful for us at all because

the analytic side only has SL2-automorphy.
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8.2. Complex uniformization of special divisors. We now study the analog over the com-
plex numbers of the uniformization of the special divisors in the formal neighborhood of the
basic locus, cf. §7.3.

We start with the complex uniformization of our Shimura varieties. This is very much similar
to the (7.4), cf. [40, Remark 3.2, Prop. 3.5]. Let ν : E ↪→ C be a complex place of the reflex
field E. Its restriction to F (F0, resp.) is a place denoted by w0 (v0, resp.). Let Mν,C =

MKG̃
(G̃) ⊗E,ν C be the complex orbifold via ν. Let V ′ be the “nearby” hermitian space, i.e.,

the unique one that is positive definite at all archimedean places except v0 where the signature
is (n − 1, 1), and isomorphic to V locally at all non-archimedean places. Then let G′ be the
unitary group (viewed as a Q-algebraic group) associated to V ′. Let Dv0 be the Grassmannian
of negative definite C-lines in V ′ ⊗F,w0 C. Then we have a complex uniformization

Mν,C = G̃′(Q)
∖[
Dv0
× G̃(Af )/KG̃

]
. (8.3)

Analogous to (7.5), we have a partition by the projection

Mν,C // ZQ(Q)\
(
ZQ(Af )/KZQ

)
, (8.4)

where each fiber is naturally isomorphic to

Mν,C,0 : = G′(Q)
∖[
Dv0
×G(Af )/KG

]
. (8.5)

Here we fix an isomorphism G′(Af ) ' G(Af ).
Now we return to describe the complex uniformization of the special divisors. For each

u ∈ V ′(F0) with totally positive norm, let Dv0,u ⊂ Dv0 be the space of negative definite C-lines
perpendicular to u.5 For a pair (u, g) ∈ V ′(F0)×G(Af )/KG, we define

Z(u, g)KG = Dv0,u × 1g KG (8.6)

and its image in the quotient (8.5):

[Z(u, g)]KG =
∑

Z(u′, g′)KG , (8.7)

where the sum is over (u′, g′) in the G′(Q)-orbit of the pair (u, g) (for the diagonal action of
G′(Q) on V ′(F0)×G(Af )/KG.

Then, we have an archimedean analog of Proposition 7.4 for the special divisor Z(ξ, φ) defined
by (7.1).

Proposition 8.2. Let ξ ∈ F0,+. Then the restriction of the special divisor Z(ξ, φ) ⊗E,ν C to
each fiber of the projection (7.5) is the formal sum∑

(u,g)∈G′(Q)\(V ′(F0)ξ×G(Af )/KG)

φ(g−1u) · [Z(u, g)]KG . (8.8)

Remark 8.3. We may rewrite the above result into a form that has appeared in the formula of
special divisors in [45, §1]. Let G′u ⊂ G′ the stabilizer of u under the action of G′ on V ′, viewed
as an algebraic group over Q. Instead of (8.6), we define

Z̃(u, g)KG := Dv0,u × 1G′u(Af ) g KG .

Similarly we denote its image in the quotient (8.5) by [Z̃(u, g)]KG . Then we may rewrite the
sum as (8.8) ∑

u∈G′(Q)\V ′(F0)ξ

∑
g∈G′u(Af )\G(Af )/KG

φ(g−1u) · [Z̃(u, g)]KG .

This is exactly the formula in loc. cit..

5The codimension one analytic space Dv0,u on Dv0 is the archimedean analog of the local KR divisor Z(u)

on N in §7.3.



40 W. ZHANG

8.3. Green’s functions. We recall the Green functions of Kudla [24], and the automorphic
Green functions of Bruinier [5]. The former is more convenient when comparing with the analytic
side, while the latter is more suitable for proving (holomorphic) modularity of generating series.
The difference between them is studied by Ehlen–Sankaran in [9] when F0 = Q.

We first recall Kudla’s Green functions, defined for the orthogonal case in [24] which can be
carried over easily to the unitary case (cf. [29, §4B]). Let u ∈ V ′(F0) be as in the previous
subsection. Let z ∈ Dv0

. Let uz be the orthogonal projection to the negative definite C-line z
of V ′ ⊗F,w0

C. Define

R(u, z) = 〈uz, uz〉 =
〈u, z̃〉2

〈z̃, z̃〉
, (8.9)

where z̃ is any C-basis of the line z.
We will need the exponential integral defined by

Ei(−r) = −
∫ ∞
r

e−t

t
dt, r > 0. (8.10)

This function has a logarithmic singularity around 0, more precisely, when r → 0+,

Ei(−r) = γ + log r +

∞∑
n=1

(−r)n

n · n!
.

Here γ is the Euler constant.

Let h∞ = (hv)v|∞ ∈ SL2(F0⊗Q R) and hv =

(
1 bv

1

)(√
av

1/
√
av

)
κv in Iwasawa decom-

position, cf. (1.9). For each non-zero vector u ∈ V (F0), Kudla defined a Green function on Dv0
,

parameterized by h∞

GK(u, h∞)(z) = −Ei(2πav0
R(u, z)), z ∈ Dv0

\ Dv0,u. (8.11)

It has logarithmic singularity along the divisor Dv0,u. Note that this is defined for every non-zero
vector u ∈ V ′(F0) (in particular, u may have null-norm). If Dv0,u is empty, the function is then
smooth on Dv0 . When u = 0, we set

GK(0, h∞) = − log |av0 |. (8.12)

Now we descend the Green function on Dv0 to the quotient (8.5): for all ξ ∈ F0, define

GK(ξ, h∞, φ) =
∑

φ(g−1u) ·
(
GK(u, h∞)× 1Gu(Af ) g KG

)
(8.13)

where the sum is over the double coset (u, g) ∈ G′(F0)\ (V ′(F0)ξ ×G(Af )/KG). This defines a
Green’s function for the divisor Z(ξ, φ), cf. [29, Prop. 4.9].

We now recall the automorphic Green functions of Bruinier [5, 6]. Since the role of them are
indirect to this paper, we just say that there is a Green’s function GB(ξ, φ) for each ξ ∈ F0,+,
and φ ∈ S(V (A0,f )), cf. [6, §7.3].

We define the generating function of the difference of the two Green functions

Zv0,corr(h, φ) : =
∑
ξ∈F0

(
GK(ξ, h∞, ω(hf )φ)− GB(ξ, ω(hf )φ)

)
W

(n)
ξ (h∞), (8.14)

where the notation is the same as (8.2). We note that this definition depends on the archimedean
place v0 of F0, though it is omitted in the right hand side of the equality.

The following theorem is due to Ehlen–Sankaran [9].

Theorem 8.4. Assume that F0 = Q. The generating function Z∞,corr(h, φ) lies in the space
Aexp(SL2(A0),K, n), in the sense that, for each [z, g] ∈ Mν,C, the value of the generating func-
tions at [z, g] lies in Aexp(SL2(A0),K, n). Here K ⊂ SL2(A0,f ) is a compact open subgroup
which fixes φ ∈ S(V (A0,f )) under the Weil representation.

Proof. In [9, Thm. 3.6], the authors proved the assertion for orthogonal groups, from which the
case of unitary groups follows (e.g, by the embedding trick [29, §3.2]). �
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8.4. Modularity in the reduced arithmetic Chow group Ĉh
1

◦(M). We will use the Gillet–
Soulé arithmetic intersection theory cf. [13, 11] (in the non-proper case, cf. [4]). First we recall

the arithmetic Chow group Ĉh
1
(M) (with Q-coefficient) for a regular flat DM stack (possibly

non-proper) M → SpecOE . Elements are represented by arithmetic divisors, i.e., Q-linear

combinations of tuples
(
Z, (gZ,w)w∈HomQ(E,Q)

)
, where Z is a divisor onM and gZ,w is a Green’s

function of Zw(C) on the orbifold Mw(C) via the embedding w : E ↪→ Q ⊂ C (cf. [13, §3.3]).
Principal arithmetic divisors are tuples associated to rational functions f ∈ E(M)×:(

div(f), (− log |f |2w)w∈HomQ(E,Q)

)
.

(e.g., when E = Q, we have Vp = (0, 2 log |p|) in Ĉh
1
(M), where Vp is the fiber of M over a

prime p.)
Fix a finite set S of non-archimedean places, including all ν where Mν has bad reduction

over OE,ν . Denote by Ch1
|S|(M) the subgroup of Ĉh

1
(M) consisting of elements supported at

the fibers above ν ∈ S. This is a finite dimensional vector space. Define the reduced arithmetic

Chow group (w.r.t. the fixed S) as the the quotient of Ĉh
1
(M)

Ĉh
1

◦(M) : = Ĉh
1
(M)/Ch1

|S|(M).

From the definition, the reduced arithmetic Chow group depends only on the integral model
over the Zariski open SpecOE \ S. In fact, it is clear that the definition only requires a regular
flat DM stackM→ SpecOE \S (rather than the restriction of some regular flat DM stack over
SpecOE).

Now we specialize to our interest, the moduli stack M =MKG̃
(G̃) introduced in Definition

6.3. Let S be a finite set of non-archimedean places, including all ν whereMν has bad reduction
over OE,ν (in particular all places above d).

Let φ ∈ S(V (A0,f ))KG be of the form φ = 1Λd ⊗ φd (cf. (7.2)). For ξ ∈ F0,+, we endow
the special divisor Z(ξ, φ) (cf. (7.2)) with the automorphic Green function GB(ξ, φ). Denote by

ẐB(ξ, φ) the resulting element in Ĉh
1

◦(M). When ξ = 0, we define

Z(0, φ) = −φ(0) c1(ω̂) ∈ Ĉh
1

◦(M), (8.15)

where ω̂ = (ω, || · ||Pet) is the extension of the automorphic line bundle ω to the integral model
M, endowed with its Petersson metric [6, §7.2].

We define the generating series with coefficients in the reduced arithmetic Chow group

Ĉh
1

◦(M)

ẐB(τ, φ) =
∑

ξ∈F0, ξ≥0

ẐB(ξ, φ) qξ, (8.16)

where

τ = (τv)v|∞ ∈
∏
v|∞

H, qξ : = e2πi trF0/Q(τξ). (8.17)

The following theorem can be deduced from by [6].

Theorem 8.5. Let F0 = Q. The generating series ẐB(·, φ) lies in Ahol(Γ(N), n)Q
⊗

Q Ĉh
1

◦(M),
where N depends only on φ and all prime factors of N are contained in S.

Proof. In [6] the authors proved a stronger version in the maximal level case (principle polarized)
over the full ring of integers of E. Since the reduced arithmetic Chow group omits a finite set
of bad places S (including primes ramified in F ), the computation of divisors of the regularized
theta lifts and Borcherds product on the integral models over SpecOE [1/d] of loc. cit. still
applies to our (simpler) situation.

�
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Remark 8.6. Note that the statement of the modularity in the (reduced) arithmetic Chow
group is weaker than the analog on the generic fiber (the special case F0 = Q of Theorem 8.1).
The main difference is that we have not defined the special divisors on the arithmetic Chow
group for an arbitrary function φ ∈ S(V (A0,f ))KG , cf. (7.1) and (7.2). This is the reason we
define a generating function (8.2) in h ∈ SL2(A0) for special divisors on the generic fiber, while
only a generating function (8.16) in τ ∈ H[F0:Q] for the integral model.

9. Local intersection: non-archimedean places

9.1. Arithmetic intersection theory for the reduced arithmetic Chow groups. Now
let M→ B = SpecOE be a pure dimensional flat (not necessarily proper) morphism of regular

schemes with smooth generic fiber. Let Z̃1,c(M) be the group of proper (over the base B) 1-
cycles on M (with Q-coefficient). Then there is an arithmetic intersection pairing between two
Q-vector spaces (cf. [3, §2.3] when the ambient scheme is proper)

(·, ·) : Ĉh
1
(M)× Z̃1,c(M) // R. (9.1)

Let S be a finite set of places of E, and let Sp be the subset of places above p. Let Ĉh
1

◦(M) be
the reduced arithmetic Chow group. Consider the quotient of R by a finite dimensional Q-vector
space:

RS := R/spanQ{log p : #Sp 6= 0} (9.2)

which is an (infinite dimensional) Q-vector space. Then the above pairing descends to the

quotient Ĉh
1

◦(M) with values in RS

(·, ·) : Ĉh
1

◦(M)× Z̃1,c(M) // RS . (9.3)

Moreover, the definition of [3] works directly if we replace the base B = SpecOE by B =
SpecOE,S (i.e., without an integral model over the full ring of integers OE), and yields a pairing

with valued in RS . Note that the cycles in Z̃1,c(M) are assumed to be proper over B. This will
be the pairing we will apply to our integral models (away from a finite set of primes) of Shimura
varieties.

Here we remark that, by [3, Prop. 2.3.1 (ii)], for cycles in Z̃1,c(M) supported on special
fibers, the pairing only depends on their rational equivalence classes. This motivates us to define

a quotient group Z1,c(M) of Z̃1,c(M) by the subgroup generated by 1-cycles that are supported
on proper substacks Y of the special fibers and are rationally equivalent to zero on Y . We have
the resulting pairing

(·, ·) : Ĉh
1

◦(M)×Z1,c(M) // RS . (9.4)

We apply the above remark to M = MKG̃
(G̃) → B = SpecOE,S . For the moment, S can

be any finite set containing all places ν | d. We define an element in Z1,c(M) starting from the
derived CM cycle LCMR(g) (7.15), which is an element in F1K

′
0(CMR(g)), (7.16). The finite

morphism CMR(g)→M induces a homomorphism

K ′0(CMR(g)) −→ K ′0,CMR(g)(M)

preserving the respective filtrations, where K ′0,CMR(g)(M) denotes the K-group of coherent

sheaves with support on the image of CMR(g). Since CMR(g) → B is proper and the generic
fiber of CMR(g) is zero dimensional (cf., Prop. 7.12 (b)), there is a natural homomorphism
Ch1,CMR(g)(M)→ Z1,c(M). We now consider the composition

F1K
′
0(CMR(g)) // Gr1K

′
0,CMR(g)(M)

∼ // Ch1,CMR(g)(M) // Z1,c(M),

where the isomorphism in the middle is [12, Theorem 8.2], and Gr1 denotes the grading F1/F0.
By abuse of notation, we still denote by LCMR(g) the image in Z1,c(M) of the element LCMR(g) ∈
F1K

′
0(CMR(g)) (cf. (7.16)) under the above composition.
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9.2. Intersection of special divisors and CM cycles. We now let M = MKG̃
(G̃) be the

moduli stack introduced in Definition 6.3. Let Φ = ⊗v0
Φv0
∈ S((G × V )(A0,f )) be of the form

φ0 ⊗ φ, where

• φ0 = 1Kd
G
⊗ φ0,d and φ0,d ∈ S

(∏
v|dG(Fv),KG,d

)
(cf. (7.17)), and

• φ = 1Λd ⊗ φd and φd ∈ S(V (F0,d))KG,d (cf. (7.2)).

Let R = OF [1/d, g0] be our fixed monogenic order for some g0 ∈ F ′1. We define

Int(τ,Φ): =
1

τ(ZQ) · [E : F ]

(
ẐB(τ, φ), LCMR(φ0)

)
, (9.5)

where ZB(τ, φ) is (8.16), and

τ(ZQ) := #ZQ(A)\
(
ZQ(Af )/KZQ

)
. (9.6)

Remark 9.1. By Theorem 8.5, when F0 = Q, this is a holomorphic modular form (of weight
n, and level depending only on φ) valued in RS , i.e.,

Int(·,Φ) ∈ Ahol(Γ(N), n)Q ⊗Q RS . (9.7)

Our results in this and the next section are still valid for general totally real fields F0 since they
do not use the modularity.

Similarly we define for each ξ ∈ F0

Int(ξ,Φ): =
1

τ(ZQ) · [E : F ]

(
Ẑ(ξ, φ), LCMR(φ0)

)
. (9.8)

When ξ = 0, this is by definition

Int(0,Φ) =
1

τ(ZQ) · [E : F ]

(
ω̂, LCMR(φ0)

)
φ(0). (9.9)

Then by (8.16),

Int(τ,Φ) =
∑

ξ∈F0, ξ≥0

Int(ξ,Φ) qξ. (9.10)

Now let ξ 6= 0. We will express the arithmetic intersection number (9.8) in terms of the local
intersection numbers from the AFL over good places and the archimedean local intersection.

9.3. The support of the intersection. We first study the intersection of the special divisor
Z(ξ, φ) and the CM cycle LCMR(φ0). First we have the following analog to [40, Thm. 8.5].

Theorem 9.2. Let ξ 6= 0 and Φ = ⊗v0
Φv0
∈ S((G×V )(A0,f ))KG . Let S be a finite set of places

containing all places above d, and such that at v0 /∈ S, Φv0 = 1K◦G,v0
⊗ 1Λ◦v0

.

Then the following statements on the support of the intersection of the special divisor Z(ξ, φ)
and the CM cycle CMR(φ0) on M hold.

(i) The support does not meet the generic fiber.

(ii) Let ν /∈ S be a place of E lying over a place of F0 which splits in F . Then the support does
not meet the special fiber M⊗OE κν .

(iii) Let ν /∈ S be a place of E lying over a place of F0 which does not split in F . Then the
support meets the special fiber M⊗OE κν only in its basic locus.

Proof. Note that R = OF [1/d, g0] is monogenic with g0 ∈ F ′1. The proof of [40, Thm. 8.5] goes
through verbatim (since g0 generates a field F ′ over F , hence the pair (g, u) is regular semisimple
for any non-zero vector u in V (F0)). �

Since their generic fibers do not intersect by Theorem 9.2, the intersection pairing Int(R, ξ, φ)
localizes to a sum over all places of E. We define

Int\ν(ξ,Φ) :=
〈
Ẑ(ξ, φ), LCMR(φ0)〉ν log qν , (9.11)

where qν is the cardinality of the residue field of OE,(ν). Here we recall that the local intersection

number
〈
·, ·〉ν is defined for a non-archimedean place ν through the Euler–Poincaré characteristic

of a derived tensor product on M⊗OE OE,(ν), comp. [13, 4.3.8(iv)]. For an archimedean place
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ν, the local intersection number is the value of the Green’s function at the complex point of the
CM cycle:

Int\ν(ξ,Φ) :=
〈
GBν (ξ, φ), LCMR(φ0)ν,C〉 log qν (9.12)

where by definition log qν = 2 for complex places ν (and 1 if ν were a real place).
For a place v0 of F0, we set

Intv0(ξ,Φ) :=
1

τ(ZQ) · [E : F ]

∑
ν|v0

Int\ν(ξ,Φ). (9.13)

Then we have a decomposition into a sum over places v0 of F0

Int(ξ,Φ) =
∑
v0

Intv0
(ξ,Φ). (9.14)

Combining (9.10), we obtain a decomposition of the generating function of arithmetic intersection
numbers

Int(τ,Φ) = Int(0,Φ) +
∑
v0

Intv0
(τ,Φ), (9.15)

where

Intv(τ,Φ): =
∑

ξ∈F0,+

Intv0
(ξ,Φ) qξ, (9.16)

Corollary 9.3. (to Theorem 9.2) If v0 is split in F/F0, we have

Intv0
(ξ, φ) = 0. (9.17)

9.4. Local intersection: inert non-archimedean places. Now let v0 be a place of F0 inert
in F , and w0 the unique place of F above v0. The notation here follows §7.3.

Theorem 9.4. Assume that v0 - d and Φ = Φv0
⊗ Φv0 where

Φv0
= 1K◦G,v0

⊗ 1Λ◦v0
.

Then

Intv0(ξ,Φ) = 2 log qv0

∑
(g,u)

Intv0(g, u) ·Orb ((g, u),Φv0) , (9.18)

where the sum runs over the G′(Q)-orbits (g, u) in the product

G′(g0)(Q)× V ′(F0)ξ.

Here Intv0(g, u) is the quantity defined in the AFL conjecture (semi-Lie algebra version) for the
unramified quadratic extension Fw0

/F0,v0
, cf. (3.9), and the orbital integral is the product of the

local orbital integral defined by (2.13) with Haar measures on G(F0,v) such that vol(KG,v) = 1.

Proof. The proof goes along a similar line to [47, Thm. 3.11] and [40, Thm. 8.15].
First, by Theorem 9.2 (iii), the intersection only takes place in the basic locus. Hence it

suffices to consider the question in the formal completion along the basic locus. We now fix a
place ν of E above v0. Now by Proposition 7.4, and Proposition 7.17, it suffices to consider the
intersection number for each fiber of the projection (7.5), and multiply the result by the factor
τ(ZQ) (hence canceling the factor τ(ZQ) in the denominator of (9.13)). Therefore we consider
only the fiber MÔĔν ,0

by (7.6).

Recall that by Proposition 7.4, the restriction to MÔĔν ,0
of the special divisor Z(ξ, φ) is∑

(u,g′)∈G′(Q)\(V ′(F0)ξ×G(Av0f )/K
v0
G )

φv0(g′−1u) ·
[
Z(u, g′)

]
K
v0
G

,

and by Proposition 7.17 the restriction of the derived CM cycle LCMR(φ0) is the sum∑
(γ,h)∈G′(Q)\(G′(g0)(Q)×G(Av0f )/K

v0
G )

φv0
0 (h−1γh) ·

[ LCM(γ, h)
]
K
v0
G

.
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We may compute the intersection number by pulling-back to the covering formal scheme NOĔν ×
G(Av0

f )/Kv0

G in the uniformization (7.6). The intersection number LCMR(φ0) ∩L Z(ξ, φ) log qν
(restricted to MÔĔν ,0

) is equal to a sum of

φv0
0 (h−1γh)φv0(g′−1u) · LCM(γ, h)Kv0

G
∩L Z(u, g′)Kv0

G
· log qν ,

over G′(Q)-orbits (via diagonal action) of tuples (γ, h, u, g′):

(γ, h) ∈ G′(g0)(Q)×G(Av0

f )/Kv0

G , and (u, g′) ∈ V ′(F0)ξ ×G(Av0

f )/Kv0

G .

Here, we are abusing the notation ∩L to denote the Euler–Poincare characteristics of the corre-
sponding derived tensor product.

By (7.7) and (7.19), we obtain

LCM(γ, h)Kv0
G
∩L Z(u, g′)Kv0

G
· log qν = LN γ

OĔν
∩L Z(u)OĔν log qν · 1Kv0

G
(g′−1h).

The first term is equal to

LN γ
OĔν

∩L Z(u)OĔν log qν = [Eν : Fw0 ] ·
( LN γ ∩L Z(u)

)
log qw0

= 2[Eν : Fw0
] · Intv0

(γ, u) log qv0
.

Here the factor 2 is due to qw0
= q2

v0
. In particular, it is invariant under the (diagonal) action

of G′(Q) on the product G′(g0)(Q)× V ′(F0)ξ.
The second term (g′, h) ∈ (G′(Av0

f )/Kv0

G )2 7→ 1Kv0
G

(g′−1h) is also invariant under the (diago-

nal) G′(Q)-action. For a fixed pair (γ, u), we obtain∑
(g′,h)∈(G′(Av0f )/K

v0
G )2

φv0
0 (h−1γh)φv0(g′−1u) · 1Kv0

G
(g′−1h)

=
∑

h∈G′(Av0f )/K
v0
G

φv0
0 (h−1γh)φv0(h−1 · u)

=

∫
G′(Av0f )

φv0
0 (h−1γ h)φv0(h−1 · u) dh

= Orb ((γ, u),Φv0) ,

where we note that the Haar measure on G′(Av0

f ) is normalized such that vol(Kv0

G ) = 1.

To summarize, the intersection number LCMR(φ0) ∩L Z(ξ, φ) log qν (restricted to MÔĔν ,0
)

is equal to

2[Eν : Fw0
]
∑
(γ,u)

Orb ((γ, u),Φv0) · Intv0
(γ, u) log qv0

,

where the sum is over G′(Q)-orbits of pairs (γ, u) ∈ G′(g0)(Q)× V ′(F0)ξ.
Finally the sum over all places ν | v0 will cancel the factor [E : F ] in (9.13), by∑

ν|w0

eν/w0
fν/w0

=
∑
ν|w0

dν/w0
= [E : F ],

where eν/w0
(resp., fν/w0

, dν/w0
) denotes the ramification degree (resp., inert degree, degree) of

the extension Eν/Fw0 . This completes the proof. �

10. Local intersection: archimedean places

The goal of this section is to compute the local intersection at ν of E above an archimedean
place v0 of F0. In fact we will replace the automorphic Green function by Kudla’s Green function,
i.e., we consider the analog of (9.12):

Int\,Kν (ξ,Φ) :=
〈
GKν (ξ, φ), LCMR(φ0)ν,C〉 log qν . (10.1)

When F0 = Q the difference is addressed by Theorem 8.4. Similar to (9.13), we set for ξ ∈ F0,

IntKv0
(ξ,Φ) :=

1

τ(ZQ) · [E : F ]

∑
ν|v0

Int\,Kν (ξ,Φ). (10.2)
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We note that by (8.11) and (8.12), there is a parameter h∞ ∈ SL2(F0 ⊗Q R) implicitly in the
above expression.

The strategy is analogous to Theorem 9.4. We follow the notation in §8.2 and §8.3.

Theorem 10.1. Let Φ ∈ S((G× V )(Af )). Let ξ 6= 0. Then we have

IntKv0
(ξ,Φ) =

∑
(g,u)

Intv0
(g, u) ·Orb ((g, u),Φ) , (10.3)

where the sum runs over the G′(Q)-orbits (g, u) on the product

G′(g0)(Q)× V ′(F0)ξ.

Here Intv0(g, u) is defined as the special value of the function

Intv0
(g, u) = GK(u, h∞)(zg), (10.4)

where zg is the unique fixed point of g on Dv0
. Moreover, the point zg does not lie on any Dv0,u

for non-zero vector u ∈ V ′(F0).

Proof. The proof goes along the same line as that of Theorem 9.4, so we will not repeat the
detail, except to prove the claim on the point zg. By the embedding F ′1 ↪→ G′ twisted by g, the
hermitian space V ′ is endowed with a one-dimensional F ′/F ′0-hermitian structure, cf. (7.10).
Then the C-algebra F ′w0

:= F ′ ⊗F,w0
C acts on the n-dimensional C-vector space V ′ ⊗F,w0

C.
If a negative definite C-line is fixed by g, then it is also fixed by the algebra F ′w0

. Therefore it
must be an eigen-line for F ′w0

, which must be unique by the signature (n− 1, 1) condition.
If zg lies on a divisor Dv0,u for non-zero vector u ∈ V ′(F0), it also lies on Dv0,gi·u, the

translation of gi, for all i ∈ Z. Equivalently, the line zg is perpendicular to all gi · u. Since u is
non-zero vector, and {gi | 0 ≤ i ≤ n− 1} generate F ′ over F , the vectors gi · u span V ′ ⊗F,w0 C
over Fw0 . Contradiction!

�

It remains to compute (10.4), or equivalently R(u, zg) defined by (8.9). By the invariance
of R(u, zg) under the action (by conjugation) of G′(F0,v0

), we may assume that g = g0. The
F -vector space V ′ then carries the structure of a one-dimensional F ′/F ′0-hermitian space,

〈·, ·〉F ′0 : V × V // F ′, (10.5)

cf. (7.10), with signatures (1, 0) for all but one archimedean place v′0 of F ′0 over v0. We define a
refined invariant

ξ′ = q′(u) ∈ F ′0, (10.6)

where q′ is the quadratic form to the hermitian form, cf. 1.4.
According to the action of F ′0, we have an orthogonal direct sum decomposition

V ′ ⊗F,w0
C =

⊕
v′∈Hom(F ′0,R),v′|F0

=v0

Cv′ ,

where F ′0 acts on the line Cv′ through v′ : F ′0 ↪→ R. Then there is a unique negative-definite
summand, say Cv′0 for a place v′0 above v0. It follows that

R(u, zg0
) = v′0(q′(u)) = −|ξ′|v′0 , (10.7)

where the last equality is due to the fact v′0(q′(u)) < 0.

Corollary 10.2. Under the same assumptions as Theorem 10.1, we have

IntKv0
(ξ,Φ) = −

∑
Ei(−2π|ξ′|v′0) ·Orb ((g0, u),Φ) , (10.8)

where (g0, u) is the unique orbit with the refined invariant q′(u) = ξ′ ∈ F ′0, and the sum runs
over all ξ′ ∈ F ′0 such that

• trF ′0/F0
(ξ′) = ξ, and

• there exists exactly one archimedean place v′0 of F ′0 where ξ′ is negative, and this place v′0 is
above v0.
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Finally, we address the difference between the two Green functions. Define, for any place
v | ∞ of F0, and h ∈ SL2(A0),

IntK−Bv (h,Φ) =
1

τ(ZQ) · [E : F ]

(
Zv,corr(h, φ), LCMR(φ0)

)
, (10.9)

cf. (8.14), and

IntK−B(h,Φ) =
∑
v|∞

IntK−Bv (h,Φ). (10.10)

We note that the definition works without any reference to the integral modelsM, hence makes
sense for all φ0 ∈ S (G(A0,f ),KG) and φ ∈ S(V (A0,f ))KG .

Corollary 10.3 (to Theorem 8.4). Let F0 = Q. Then the function h ∈ SL2(A0) 7→ IntK−B(h,Φ)
belongs to Aexp(SL2(A0),K, n), where K ⊂ SL2(A0,f ) is a compact open subgroup which fixes
φ ∈ S(V (A0,f )) under the Weil representation.

11. Weil representation and RTF

Starting from this section, we study a partially linearized version of the Jacquet–Rallis relative
trace formula, and the “action” on the RTF by SL2(A) under Weil representation (by changing
testing functions on the linear factor of the RTF).

11.1. Weil representation and theta functions. For now we let F be a global field. Let
(V, q) be a (non-degenerate) quadratic space over F of even dimension d, where q : V → F is
the quadratic form with the associated symmetric bilinear pairing 〈·, ·〉 : V × V → F by (1.2).
Let O(V ) = O(V, q) be the isometry group, viewed as an algebraic group over F .

Let S(V (A)) be the space of Schwarz functions. The product group O(V )(A)× SL2(A) acts
on S(V (A)) via Weil representation denoted by ω: for φ ∈ S(V (A)), the function ω(g, h)φ is
defined by

(ω(g, h)φ)(x) = (ω(h))φ(g−1x), (g, h) ∈ O(V )(A)× SL2(A),

where the action of SL2(A) is defined as follows. Let χV =
∏
v χVv be the quadratic character

of F×\A×F defined by

χV (a) = (a, (−1)d/2 det(V ))F ,

where (·, ·) is the Hilbert symbol over F , and det(V ) ∈ F×/(F×)2 is the determinant of the
moment matrix 1

2 (〈xi, xj〉)1≤i,j≤d of any F -basis x1, · · · , xd of V . For a place v of F , and
φv ∈ S(V (Fv)), the action of SL2(Fv) is determined by

ωv

(
a

a−1

)
φv(x) = χVv (a)|a|d/2v φv(ax),

ωv

(
1 b

1

)
φv(x) = ψv(bq(x))φv(x), (11.1)

ωv

(
1

−1

)
φv(x) = γVv φ̂v(x),

where γVv is the Weil constant (an eighth root of unity), and the Fourier transform is defined by

φ̂v(x) =

∫
V (Fv)

φv(y)ψv (〈x, y〉) dy.

Here dy is a self-dual Haar measure on V (Fv).
For φ ∈ S(V (A)), we define the theta function by the absolute convergent sum

θφ(g, h) =
∑
ξ∈V

ω(g, h)φ(ξ), (g, h) ∈ O(V )(A)× SL2(A).

This is left invariant under O(V )(F )× SL2(F ).
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11.2. Automorphic kernel functions. In this subsection we work with a fairly general setting.
It serves to explain the idea behind the more explicit setting in later sections.

Let G be a connected reductive algebraic group over F , acting on V and preserving the
quadratic form q (i.e., the homomorphism G → GL(V ) factors through O(V, q)). Let X be an
affine variety over F with an action of G. Consider the diagonal action r of G on X × V . Then
G(A) acts on S((X × V )(A)).

The group SL2(A) acts on S((X×V )(A)) through the second factor V via Weil representation.
Note that now the formula for the action of SL2(A) is only applied to the second coordinate,

e.g., locally at v, the element

(
1

−1

)
acts on S((X × V )(Fv)) by (up to the Weil constant

γVv ) the partial Fourier transform w.r.t. the V -component.
Let φ0 ∈ S(X(A)), and let x0 ∈ X(F ) be a fixed semisimple element (w.r.t. the G-action).

Let φ ∈ S(V (A)). We define the automorphic kernel function associated to Φ = φ0 ⊗ φ ∈
S((X × V )(A)),

KΦ,x0
(g, h) :=

∑
u∈V,x∈G(F )x0

φ0(g−1 · x)ω(h)φ(g−1 · u) (11.2)

=
∑

u∈V,x∈G(F )x0

ω(h)Φ(g−1 · (x, u)),

where g ∈ G(A), h ∈ SL2(A). This is again left invariant under G(F )× SL2(F ). It follows that

h ∈ SL2(A) 7−→ J(h,Φ) =

∫
[G]

KΦ,x0
(g, h)dg,

when absolutely convergent, is invariant under SL2(F ). The same applies if we replace the pure
tensor φ0 ⊗ φ by more general function Φ in S((X × V )(A)) (this does not make any essential
difference at non-archimedean places, but does at archimedean places).

Let T0 be the stabilizer of x0 (for the G-action on X). The above kernel function may be
rewritten as a sum over the G(F )-orbits in G(F )x0 × V (F )∑

u∈V,x∈G(F )x0

r(g)Φ(x, u) =
∑
u∈V,

γ∈T0(F )\G(F )

r(g)Φ(γ−1 · x0, u)

(changing u to γ−1 · u) =
∑

γ∈T0(F )\G(F )

∑
u∈V

r(g)Φ(γ−1 · (x0, u))

=
∑

u∈V (F )/T0(F )

∑
γ∈T0(F )\G(F ),

t∈T0,u(F )\T0(F )

r(g)Φ(γ−1 · (x0, t · u))

=
∑

u∈V (F )/T0(F )

∑
γ∈T0,u(F )\G(F )

r(g)Φ(γ−1 · (x0, u)),

where T0,u is the stabilizer of u ∈ V . Note that T0,u is equal to G(x0,u), the stabilizer of (x0, u)
under the diagonal G-action on X×V . Then the inner sum as a function of G(A) is left invariant
under G(F ). We obtain

J(h,Φ) =

∫
[G]

∑
u∈V, x∈G(F )x0

r(g)ω(h)Φ(x, u) dg (11.3)

=
∑

u∈V (F )/T0(F )

∫
G(x0,u)(F )\G(A)

ω(h)Φ(g−1 · (x0, u)) dg. (11.4)

So far we have not justified the convergence, but we will do so later in the cases of our interest.
Luckily in this paper we will consider actions where all but very few orbits in V (F )/T0(F ) are
regular semisimple. In fact, below we apply the set up to group actions arising from the Jacquet–
Rallis relative trace formulas. In these cases, the stabilizers of (x0, u) will turn out to be either
trivial or T0.
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Now we return to our earlier convention. Let F0 be a totally real field, and F/F0 a CM field
extension. Let

η = ηF/F0
: F×\A×0 −→ {±1}

be the quadratic character by class field theory. Note that now F0 plays the role of the base
field F in above discussion. From now on we denote

H = SL2

as an algebraic group over F0.

11.3. The case of unitary groups. Now we consider the Jacquet–Rallis RTF for unitary
groups. Let V be a F/F0-hermitian space of dimension n. Let G = U(V ) be the unitary group.
Viewing V as an F0-vector space RF/F0

V of dimension 2n, the hermitian form defines a quadratic
form on RF/F0

V (cf. 1.2 (1.4) for the convention on hermitian forms and quadratic forms). We
consider the adjoint action of G = U(V ) on G, and on its Lie algebra g = u(V ), respectively.

Let x0 ∈ X = G or g be a regular elliptic element, i.e., the stabilizer (for the G-action on X)
is an anisotropic maximal torus T0 of G. Then V (F0) breaks into T0(F0)-orbits among which,
except u = 0, all the others are regular semisimple (w.r.t. T0-action) and have trivial stabilizer.
Then we rewrite (11.3)

J(h,Φ) =

∫
[G]

∑
u∈V,x∈G(F0)x0

r(g)ω(h)Φ(x, u) dg

= vol([T0])

∫
T0(A0)\G(A0)

ω(h)Φ(g−1 · x0, 0) dg (11.5)

+
∑

u∈V (F0)/T0(F0),u 6=0

∫
G(A0)

ω(h)Φ(g−1 · (x0, u)) dg.

Lemma 11.1. For any Φ ∈ S((X × V )(A0)), the sum (11.5) over nonzero u is absolutely
convergent, ∑

u∈V (F0)/T0(F0),u6=0

∫
G(A0)

|Φ(g−1 · (x0, u))| dg <∞.

In particular, the function h ∈ H(A0) = SL2(A0) 7→ J(h,Φ) is left invariant under H(F0).

Proof. The convergence follows from [1, Prop. A.2.1]. �

The summands in (11.5) are related to the global Jacquet–Rallis (relative) orbital integral
(for the G-action on X × V ) of ω(h)Φ. For Φ ∈ S((X × V )(A0)), and a regular semisimple
(x0, u) ∈ (X × V )(F0), we define

Orb((x0, u),Φ): =

∫
G(A0)

Φ(g−1 · (x0, u)) dg. (11.6)

When u = 0, we define

Orb((x0, 0),Φ) := vol([T0])

∫
T0(A0)\G(A0)

Φ(g−1 · x0, 0). (11.7)

It follows easily that, for ξ ∈ F×0 , the ξ-th Fourier coefficient of J(·,Φ) is equal to∑
u∈V (F0)/T0(F0), q(u)=ξ

Orb((x0, u), ω(h)Φ). (11.8)

Here, for a left N(F0)-invariant continuous function ϕ on H(A0), its ξ-th Fourier coefficient for
ξ ∈ F0 is defined as the function

h ∈ H(A0) 7−→
∫
F0\A0

ϕ

[(
1 b

1

)
h

]
ψ(−ξb)db. (11.9)
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Note that the orbit of u ∈ V (F0)/T0(F0) depends only on the refined invariant ξ′ = q′(u) ∈ F ′0,
cf. (10.6), and ξ = trF ′0/F0

ξ′. We may rewrite (11.8) as∑
ξ′∈F ′0, trF ′0/F0

ξ′=ξ

Orb((x0, u),Φ), (11.10)

where for a fixed ξ′, u ∈ V (F0)/T0(F0) is the unique orbit such that q′(u) = ξ′.
Now assume that V are positive definite at all archimedean places v | ∞ of F . In particular,

the group G(R) is compact.
Note that, since x0 is semisimple, the map

G(A0)/T0(A0) // X(A0)

g � // g · x0

is a closed embedding. It follows that the image has compact intersection with the support of
φ0 in both the group and the Lie algebra case; this is due to the compactness of G(R) and of
the support of φ0 away from archimedean places. Therefore we may fix a large compact subset
Ω of G(A0) such that Φ(g ·x0, u) = 0 unless g ∈ ΩT0(A0). We introduce a Schwartz function on
V (A0)

φ(u) :=

∫
Ω

Φ(g−1 · (x0, u)) dg. (11.11)

We may normalize the measure such that the orbital integral (11.6) is simplified as

Orb((x0, u),Φ) =

∫
T0(A0)

φ(t−1 · u) dt (11.12)

and we denote the right hand by Orb(u, φ). Similarly (11.7) becomes

Orb(0, φ) = vol([T0])φ(0).

We simplify (11.5)

J(h,Φ) =
∑

u∈V (F0)/T0(F0)

Orb(u, ω(h)φ), h ∈ SL2(A0). (11.13)

11.4. The case of general linear groups. We resume from the end of §11.2. Now we consider
the Jacquet–Rallis RTF for general linear groups. Now let V0 = Fn0 be the n-dimensional vector
space of column vectors over F0. We identify the dual vector space V ∗0 = HomF0

(V0, F0) with
the space of row vectors. Consider the natural quadratic form on V ′ = V0 × V ∗0 :

q : V0 × V ∗0 // F0

u′ = (u1, u2)
� // u2(u1)

. (11.14)

Let
〈·, ·〉 : V ′ × V ′ // F0 .

be the the associated symmetric bilinear pairing (so that 〈u′, u′〉 = 2q(u′)). Let G′ = GL(V0)
act on V ′ by (std, std∨). Then G′ ' GLn,F0

via the given identification V0 = Fn0 .
Consider the diagonal action of G′ on X ′ × V ′ where X ′ is either the symmetric space Sn,

or its Lie algebra sn, cf. (2.2) and (2.3). Let x′0 ∈ X ′(F0) be a regular elliptic element in the
sense that F ′ = F [x′0] is a field extension of F of degree n. Note that the condition implies and
is stronger than that the stabilizer x′0 (for the G′-action on X ′) is a maximal torus T ′0 that is
anisotropic modulo the center of G′.

Let F ′0 be the subfield fixed by the involution on F induced by that of F/F0 and x′0 7→ x′−1
0

(resp., x′0 7→ −x′0) when X ′ = Sn (resp., sn). Then we have a natural isomorphism

T ′0 ' ResF ′0/F0
Gm,

viewed as F0-algebraic groups. Note that F ′ = FF ′0 and the character η ◦ det (of G′(A0)) is
nontrivial on T ′0(A0). Via the action of F ′0, the vector space V0 (hence V ∗0 ) carries a structure of
a one-dimensional F ′0-vector space. Furthermore, we can identify

HomF ′0
(V0, F

′
0) ' V ∗0



WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 51

as one-dimensional F ′0-vector spaces. There is a unique bi-F ′0-linear symmetric pairing

〈·, ·〉F ′0 : V ′ × V ′ // F ′0 (11.15)

such that

〈u1, u2〉 = trF ′0/F0
〈u1, u2〉F ′0 .

Let

q′ : V0 × V ∗0 // F ′0 (11.16)

be the associated quadratic form over F ′0.
Then V ′(F0) breaks into T ′0(F0)-orbits among which, except the (relative) x0-nilpotent cone,

all the others are regular semisimple (w.r.t. T ′0-action) and have trivial stabilizer. The nilpotent
cone breaks into three orbits

{(0, 0)},
0+ := {(u1, 0) : u1 ∈ V0(F0) \ {0}},
0− := {(0, u2) : u2 ∈ V ∗0 (F0) \ {0}}.

(11.17)

The last two are regular (i.e., with trivial stabilizers).
For Φ′ ∈ S((X ′ × V ′)(A0)), we consider, for s ∈ C

J(h,Φ′, s) =

∫
[G′]

 ∑
u′∈V ′,x′∈G′(F0)x′0

r(g)ω(h)Φ′(x′, u′)

 |det(g)|sF0
η(g) dg. (11.18)

Here and thereafter we will simply denote by η the character η ◦ det of G′(A0). The definition
depends on the fixed x′0, which will be suppressed in the notation. Similar to the unitary case,
we write it as a sum over orbits:

J(h,Φ′, s) =J(h,Φ′, s)0 +
∑

u′∈V ′(F0)rs/T ′0(F0)

∫
G′(A0)

ω(h)Φ′(g−1 · (x′0, u′))|det(g)|sF0
η(g) dg,

(11.19)

where the sum is over the regular semisimple orbits in u′ ∈ V ′(F0)rs/T
′
0(F0), and the term

J(h,Φ′, s)0 is the sum over the regular x′0-nilpotent orbits 0± in (11.17), which will be defined in
§12.6 by an analytic continuation. We have discarded the orbit {(0, 0)} since η is a non-trivial
character on the stabilizer T0(A0).

Lemma 11.2. For any Φ ∈ S((X ′ × V ′)(A0)), the sum over regular semisimple orbits in u′ ∈
V ′(F0)/T ′0(F0) is absolutely convergent∑

u′∈V ′(F0)rs/T ′0(F0)

∫
G′(A0)

|Φ′(g−1 · (x′0, u′))|det(g)|sF0
dg <∞,

and uniformly for s in any compact subset in C.

Proof. This also follows the same argument as in [1, Prop. A.2.1]. �

We will defer the H(F0)-invariance to the next section, cf. Lemma 12.15. For now, we
define the (global) Jacquet–Rallis (relative) orbital integral (for the G′-action on X ′ × V ′). For
Φ′ ∈ S((X ′ × V ′)(A0)), and a regular semisimple (x′0, u

′) ∈ (X ′ × V ′)(F0), we define

Orb((x′0, u
′),Φ′, s) :=

∫
G′(A0)

Φ′(g−1 · (x′0, u′)) |det(g)|sF0
η(g) dg. (11.20)

Choose the product Haar measure on G′(A0). Then the global orbital integral is a product of
local orbital integrals

Orb((x′0, u
′),Φ′v, s) :=

∫
G′(F0,v)

Φ′v(g
−1 · (x′0, u′)) |det(g)|svη(g) dg. (11.21)
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12. RTF with Gaussian test functions

It is difficult to explicate the sum (11.5) (resp., (11.19)) in its full generality (this is essentially
the same difficult as the geometric side of Jacquet–Rallis relative trace formula). Instead, we
will simplify the sum for fixed x0 (resp., x′0) by plugging in a Gaussian test function at every
archimedean place.

12.1. Gaussian test functions: the compact unitary group case. Now let F/F0 be the the
archimedean local field extension C/R. Let V be an n-dimensional positive definite hermitian
space with the unitary group G = U(V ) and its Lie algebra u(V ). We define a special test
function, called the Gaussian test function (cf. [40, §7]), in the Lie algebra setting

Φ(x, u) = e−|x|
2

⊗ e−π〈u,u〉 ∈ S((u(V )× V )(R)), (12.1)

and in the semi-Lie algebra setting,

Φ(x, u) = 1G(R)(x)⊗ e−π〈u,u〉 ∈ S((G× V )(R)). (12.2)

Since they are invariant under G(R), their orbital integrals (2.13) take a very simple form. We
will normalize the Haar measure on G(R) such that vol(G(R)) = 1.

We explicate the action of SL2(R) by the Weil representation (w.r.t. the fixed additive
character ψ : x ∈ R 7→ e2πix). Write h ∈ SL2(R) according to the Iwasawa decomposition

h =

(
1 b

1

)(
a1/2

a−1/2

)
κθ, a ∈ R+, b ∈ R,

where κ(θ) is as in (1.10). First of all, the Gaussian test functions above are eigen-vectors of
weight k = n under the action of the maximal compact SO(2,R) of SL2(R), i.e.,

ω(κθ)Φ = χn(κθ)Φ, (12.3)

where χn is the character (1.11). In general, for h of the form (1.9),

ω(h)Φ(x, u) = χn(κθ)1G(R)(x)⊗ |a|1/2eπi(b+ia)〈u,u〉,

on U(V )× V (12.2); a similar formula holds for the Gaussian function Φ (12.1) on u(V )× V .

12.2. Gaussian test functions: the general linear group case. On the general linear group
side, we define Gaussian test functions as the smooth transfer of the Gaussian test functions on
the unitary side (cf. [40, §7]). We recall the bijection of regular semisimple orbits (2.7) and
(2.9). Note that in the disjoint union, one component is from the positive definite hermitian
space V . We then defined the notion of transfer at the end of §2.3.

Definition 12.1. We call Φ′ ∈ S((Sn×V ′n)(R)) (resp., S((sn×V ′n)(R))) a Gaussian test function
(relative to Ω0) if it is a transer of the tuple {ΦV }V where ΦV is the Gaussian test functions
(12.1) (resp., (12.2)) for the positive definite hermitian space V , and ΦV = 0 for all the other
(isometric classes of) hermitian spaces V .

Theorem 12.2. Gaussian test functions on (Sn × V ′n)(R) and (sn × V ′n)(R) exist.

Proof. Since the group G(R) is compact, the dual uncertainty principle in [48] holds for (u(V )×
V )(R). Therefore, the existence of smooth transfer of the Gaussian test function on (u(V )×V )(R)
follows from [44] and the procedure in [48] for non-archimedean local fields. Then the Lie algebra
case implies the group case by the localization method in [48]. �

However, it seems very difficult to explicate the Gaussian test functions on (Sn × V ′)(R) or
(sn × V ′)(R) (with one exception: the case n = 1). Fortunately a weaker version suffices for
our purpose. We only need a partial matching, i.e., only Schwartz functions that have matching
orbital integrals for elements with a fixed component on sn or Sn; we will name them “partial
Gaussian test functions”.

For sn or Sn, we call the subset tn, Tn of diagonal elements their compact Cartan subspaces.
We have

tn ' u(1)(R)n, Tn ' U(1)(R)n.

Let trsn and T rs
n denote the open sets of the regular semisimple elements in the Cartan subspaces

(i.e., those with distinct diagonal entries).



WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 53

Definition 12.3. Let Ω0 be a compact subset of trsn or T rs
n . We call Φ′ ∈ S((Sn × V ′n)(R)) or

S((sn × V ′n)(R)) a partial Gaussian test function (relative to Ω0) if, for all regular semisimple
(x′0, u

′) ∈ Ω0 × V ′ matching (x, u) ∈ (U(V ) × V )(R) (resp., (u(V ) × V )(R)) for the positive
definite hermitian space V , we have

Orb((x′0, u
′),Φ′) = Orb((x0, u),Φ), (12.4)

where in the right hand side Φ is the Gaussian test functions (12.1) (resp., (12.2)), and Orb((x′0, u
′),Φ′) =

0 whenever a regular semisimple (x′0, u
′) matches an orbit from non-positive-definite hermitian

spaces in (2.7) (resp., (2.9)) .

Now we construct “partial Gaussian test functions” explicitly, for any compact subset Ω0 of
trsn or T rs

n . We first consider the case n = 1, and then reduce the general case to n = 1.

12.3. Gaussian test functions when n = 1. Assume n = dimV = 1. Then G′(R) ' R×,
and the symmetric space S1(R) is compact. The orbital integrals have been defined in §2.3,
cf. (2.12). Since the G′-action on s1 and S1 is trivial, we simply work with the vector space
component and suppress the fixed x′0 ∈ s1 or S1 in the orbital integrals.

Let V = C be 1-dimensional hermitian space (with the standard norm), and let

φ(z) = e−π zz ∈ S(V ).

Then we have φ̂ = φ.
Let V ′ ' R× R, with R×-action

t · (x, y) = (t−1x, ty)

Recall from (11.14) that the quadratic form on V ′ is q(x, y) = xy. We consider the following
Schwartz function in the Fock model,

φ′(x, y) = 2−3/2(x+ y)e−
1
2π(x2+y2) ∈ S(R× R). (12.5)

It has the symmetry

φ′(x, y) = φ′(y, x), φ′(−x,−y) = −φ′(x, y).

Recall that the K-Bessel function is defined as

Ks(c) =
1

2

∫
R+

e−
1
2 c(u+1/u)us

du

u
, c > 0, s ∈ C.

Lemma 12.4. Let ξ ∈ R×. Then

Orb((1, ξ), φ′, s) = 2−1/2|ξ|(−s+1)/2
(
K(s+1)/2(π|ξ|) + η(ξ)K(s−1)/2(π|ξ|)

)
.

In particular,

Orb((1, ξ), φ′) =

{
e−πξ, ξ > 0,

0, ξ < 0,

and when ξ < 0,

∂Orb((1, ξ), φ′) =
1

2
e−πξ Ei(−2π|ξ|).

Here Ei is the exponential integral (8.10).

Remark 12.5. Here the special value at s = 0 has taken into account of the transfer factors,
cf. §2.3.
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Proof. By definition of orbital integrals (2.12) (except we have suppressed the s1 and S1 com-
ponent), we have

Orb((1, ξ), φ′, s) = 2−1/2

∫
R+

(t+ η(ξ)|ξ|/t)e− 1
2π(t2+ξ2/t2)t−s

dt

t

= 2−1/2|ξ|(−s+1)/2

∫
R+

(t+ η(ξ)/t)e−
1
2π|ξ|(t

2+1/t2)t−s
dt

t

= 2−1/2|ξ|(−s+1)/2

∫
R+

e−
1
2π|ξ|(t

2+1/t2)(t−s+1 + η(ξ)t−s−1)
dt

t

= 2−3/2|ξ|(−s+1)/2

∫
R+

e−
1
2π|ξ|(u+1/u)(u(−s+1)/2 + η(ξ)u(−s−1)/2)

du

u

= 2−1/2|ξ|(−s+1)/2
(
K(−s+1)/2(π|ξ|) + η(ξ)K(−s−1)/2(π|ξ|)

)
.

To evaluate at s = 0, we note

K1/2(ξ) =

√
π

2

e−ξ

ξ1/2
.

Also we note that the transfer factor (2.15) takes value one at elements of the form (1, ξ), applied
to F/F0 = C/R.

The assertion for the first derivative follows from the following identity [37],

d

ds

∣∣∣
s=1/2

Ks(y) = −
√
π

2

ey

y1/2
Ei(−2y), y > 0.

�

We now explicates the action of SL2(R) by the Weil representation ω. Similar to the unitary
case, the Gaussian test functions above are eigen-vectors of weight k = n = 1 under the action of
the maximal compact SO(2,R), cf. (12.3), (1.11). Write h ∈ SL2(R) according to the Iwasawa
decomposition

h =

(
1 b

1

)(
a1/2

a−1/2

)
κθ, a ∈ R+, b ∈ R,

where κθ ∈ SO(2,R) is as in (1.10).

Lemma 12.6. Let ξ ∈ R×. Then

Orb((1, ξ), ω(h)φ′, s) = 2−1/2χ1(κθ)a|ξ|(−s+1)/2
(
K(−s+1)/2(πa|ξ|) + η(ξ)K(−s−1)/2(πa|ξ|)

)
.

In particular,

Orb((1, ξ), ω(h)φ′) =

{
a1/2eπiξ(b+ia), ξ > 0,

0, ξ < 0,

and when ξ < 0,

∂Orb((1, ξ), ω(h)φ′) =
1

2
χ1(κθ)a

1/2 eπi|ξ|(b−ia) Ei(2πa|ξ|).

Here Ei is the exponential integral (8.10).

Proof. This follows by straightforward computation using Lemma 12.4, and the formulas (11.1)
defining Weil representation in §11.1. �

12.4. Partial Gaussian test functions: general n. We will use the Iwasawa decomposition
of the group G′(R) = GLn(R),

G′(R) = ANK, (12.6)

where K = SO(n,R), N the group of unipotent upper triangular matrices, and A ' (R×)n the
diagonal torus. We have a homeomorphism

G′(R) ' AN ×µn−1
2

K (12.7)
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as real manifolds, where the fiber product is over the intersection AN ∩K, which is equal to

K ∩A = ker(µn2 −→ µ2) ' µn−1
2 .

We will take the natural Haar measure on each factor (e.g., the measure dt
|t| on R× and the

product measure on (R×)n ' A) and take the induced measure on G′(R) by the above product
(12.7).

Note that the torus A is the stabilizer of a regular semisimple element in the Cartan subspace
tn or Tn. Then NK · T rs

n (the conjugation action) defines an open subset Sc,rsn (“c” is for
“compact”) in Sn:

NK × T rs
n

∼ // Sc,rsn ⊂ Sn
(h, t) � // h−1th.

The map is a K ∩A-torsor, and induces a K ∩A-torsor:

NK × T rs
n × (V0 × V ∗0 ) // Sc,rsn × (V0 × V ∗0 )

(h, t, u′)
� // (h−1th, h · u′).

(12.8)

Now let Ω0 ⊂ T rs
n be any compact subset. We consider functions on NK × T rs

n × (V0 × V ∗0 )
of the form Ψ = φ0 ⊗ φ′, with φ′ ∈ S(V0 × V ∗0 ) and

φ0 = ϕN ⊗ ϕK ⊗ ϕTn , (12.9)

where

(1) the function ϕTn ∈ C∞c (T rs
n ) satisfies ϕTn |Ω0

= 1Ω0
,

(2) the function ϕN ∈ C∞c (N) satisfies
∫
N
ϕN (n)dn = 1,

(3) the function ϕK is a constant multiple of 1K such that
∫
K
ϕK(k)dk = 1,

(4) the function φ′ is invariant under the finite group K ∩A.

By the K ∩A-invariance of φ′ and of φ′, the function Ψ = φ0⊗φ′ descends along the map (12.8)
to a Schwartz function Φ′c on Sc,rsn × (V0 × V ∗0 ). Then the extension-by-zero of Φ′c, denoted by
Φ′, is a Schwartz function on Sn × (V0 × V ∗0 ).

For Ω0 ⊂ sn, we note that the Cartan subspace tn is also naturally embedded into the Lie
algebra u(V ) of the compact unitary group U(V ) (by choosing an orthogonal basis of V ). Then
we replace 1Ω0

by the restriction of the first component of the Gaussian test function (12.1) to
the Cartan subspace tn, viewed as a subspace of u(V ).

Finally we specify φ′ on V0 × V ∗0 . Identify V0 × V ∗0 with Rn × Rn ' (R× R)n and we define

φ′ = 2−3n/2
∏

1≤i≤n

(xi + yi)e
− 1

2π(x2
i+y

2
i ), (12.10)

cf. (12.5) for the case n = 1. It is obviously invariant under K ∩A. Therefore by our recipe this
function φ′ (with any φ0 above) gives us a Schwartz function Φ′ on Sn × (V0 × V ∗0 ).

Now we define the orbital integral Orb(u′, φ′, s) for u′ ∈ V0 × V ∗0 , relative to the A-action on
V0 × V ∗0 , in the obvious way generalizing the case n = 1, cf. (2.12).

Lemma 12.7. Let x′0 ∈ Ω0 ⊂ T rs
n . Then for regular semisimple (x′0, u

′), the local orbital integral
(11.21) is equal to

Orb((x′0, u
′),Φ′, s) = Orb(u′, φ′, s).

In particular, by Lemma 12.4, the function Φ′ is a partial Gaussian test function (relative to
the compact subset Ω0).

Proof. By the Iwasawa decomposition (12.6), the local orbital integral (11.21) is equal to∫
A

∫
NK

Φ′((nk)−1 · (x′0, a−1 · u′)) |det(a)|sη(a) dn dk da.
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By our choice of Φ′, we obtain∫
NK

Φ′((nk)−1 · (x′0, u′)) dn dk

=

(∫
N

ϕN (n)dn

∫
K

ϕK(k)dk

)
ϕTn(x′0)φ′(u′)

=φ′(u′).

Therefore

Orb((x′0, u
′),Φ′, s) =

∫
A

φ′(a−1 · u′)|det(a)|sη(a)da = Orb(u′, φ′, s).

This completes the proof.
�

Remark 12.8. This result holds even if u′ is a regular nilpotent orbit and the orbital integral
is regularized by (12.17) and (12.23) below.

Similar result holds for sn × (V0 × V ∗0 ), and we omit the detail.

12.5. Modular analytic generating functions when n = 1. Now we return to the global
situation §11.4. Assume that n = 1. Then we may identify V ′ = F0 × F0 and the special
orthogonal group SO(V ′, q) can be identified with the F0-group G′ := GL1,F0

, via the action on
the V ′ by g · (u1, u2) = (g−1u1, gu2). The map u′ = (u1, u2) 7→ ξ = q(u′) = u1u2 identifies the
categorical quotient V ′//G′ with the affine line. Note that regular semisimple orbits (w.r.t. the

G′-action) are exactly the fibers over ξ 6= 0, and each fiber has exactly one G′-orbit and has
trivial stabilizer.

Let φ′ ∈ S(V ′(A0)). Consider the integral,

J(φ′, s) =

∫
[G′]

 ∑
u′∈V ′(F0)

φ′(g−1 · u′)

 |g|sη(g) dg. (12.11)

The integral is not necessarily convergent, and we define it by a regularization procedure.
As before (cf. (11.19)), we write the integrand as a sum over the G′(F0)-orbits in V ′(F0). For

each ξ = u1u2 ∈ F0 ' V ′//G′(F0), denote its fiber by V ′(F0)ξ. Then the sum over ξ ∈ F×0 yields∫
[G′]

∑
ξ∈F×0

∑
u′∈V ′(F0)ξ

φ′(g−1 · u′))

 |g|sη(g) dg =
∑
ξ∈F×0

∫
G′(A0)

φ′(g−1 · u′)|g|sη(g) dg (12.12)

where each integral and the sum are absolutely convergent, and uniformly for s a compact set
in C (cf. Lemma 11.2). We denote the term for (u1, u2) with ξ = u1u2 ∈ F× by

Orb((u1, u2), φ′, s) :=

∫
G′(A0)

φ′(g−1 · u′)|g|sη(g) dg. (12.13)

The fiber over ξ = 0 breaks into three orbits
{(0, 0)},
0+ = {(u1, 0) : u1 ∈ F×0 },
0− = {(0, u2) : u2 ∈ F×0 }.

The stabilizer of the first one is G′, and the other two have trivial stabilizer. Note that η is
non-trivial on G′(A0), and hence we define the integral for the first orbit to be zero. For the
other two orbits, we define

Orb(0+, φ
′, s) :=

∫
A×0

φ′(g, 0)|g|sη(g) dg, (12.14)

and

Orb(0−, φ
′, s) =

∫
A×0

φ′(0, g−1)|g|sη(g) dg =

∫
A×0

φ′(0, g)|g|−sη(g) dg. (12.15)
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Both will be understood as Tate’s global zeta integrals. More precisely,

Orb(0+, φ
′, s) = L(s, η)

∏
v

Orb(0+, φ
′
v, s), (12.16)

where the local orbital integral for the regular nilpotent 0+ is defined as (the analytic continuation
of)

Orb(0+, φ
′
v, s) : =

∫
F×0,v

φ′v(g, 0)|g|svηv(g) dg

L(s, ηv)
. (12.17)

Note that the local Tate integral (12.17) is absolutely convergent when Re(s) > 0, extends to
an entire function of s (a polynomial in q±sv when v is non-archimedean) and equal to one for
unramified data. Here L(s, η) is the complete L-function of the Hecke character η. Similarly for
0−, we have

Orb(0−, φ
′, s) = L(−s, η)

∏
v

Orb(0−, φ
′
v,−s), (12.18)

where

Orb(0−, φ
′
v,−s) =

∫
F×0,v

φ′v(0, g)|g|−sv ηv(g) dg

L(−s, ηv)
.

To summarize, we define (12.11) as the sum of (12.12), (12.14), and (12.15) (or rather, their
analytic continuation to s ∈ C).

Define the analytic generating function on H(A0) (for H = SL2 over F0),

J(h, φ′, s) = J(ω(h)φ′, s), h ∈ H(A0).

Remark 12.9. The function J(·, φ′, s) may be viewed the generating function of the above
relative orbital integrals (12.13), (12.14), and (12.15), parameterized by ξ ∈ F0. This is the
analytic counterpart of the modular generating function of special divisors in §8.

Theorem 12.10. The function J(h, φ′, s) is entire for s ∈ C. As a function in h ∈ H(A0), it is
left invariant under H(F0).

Proof. The entireness follows from the same property for each of (12.12), (12.14), and (12.15).
To show the H(F0)-invariance, we first note that the invariance under the upper triangular
elements follow from the definition of Weil representation and that of the function J(h, φ′, s). It

remains to show the invariance under w =

(
1

−1

)
, i.e., the functional equation

J(h, φ′, s) = J(h, φ̂′, s). (12.19)

By Poisson summation formula (note that the group G′-action commutes with Weil represen-
tation) ∑

u′∈V ′
φ′(g−1 · u′) =

∑
u′∈V ′

φ̂′(g−1 · u′), g′ ∈ G′(A),

or equivalently,∑
u′∈V ′,ξ 6=0

φ′(g−1 · u′)−
∑

u′∈V ′,ξ 6=0

φ̂′(g−1 · u′) (12.20)

= −
∑

u′∈V ′ξ=0

φ′(g−1 · u′) +
∑

u′∈V ′ξ=0

φ̂′(g−1 · u′), g′ ∈ G′(A).

Denote [G′]1 = G′(F0)\G′(A0)1, where

G′(A0)1 := ker(G′(A0) −→ R+), g 7−→ | det(g)|.

We embed R+ into G′(A0) = A×0 by sending t ∈ R+ to (tv) where

tv =

{
t1/[F0:Q], v | ∞,
1, v -∞.
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Then we have a direct product

G′(A0)
∼ // G′(A0)1 × R+

g
� // (g1, t)

(12.21)

Since the quotient [G′]1 is compact, we may integrate (12.20) over [G′]1 first, and this kills the
zero orbits (due to the non-triviality of η|[G′]1). Then we integrate over R+, this is where the
Tate integrals are needed to define the regular nilpotent orbit integrals (12.14) and (12.15).

We introduce a partial Fourier transform φ′ 7→ Fi(φ′) for each of the two variables6, e.g.,

F1(φ′)(u1, u2) =

∫
A
φ′(u2, w2)ψ(−u1w2) dw2.

Then Tate’s global functional equation gives (noting that η−1 = η)

Orb(0+,F1(φ′), 1− s) = Orb(0−, φ
′, s),

Orb(0−,F1(φ′), s) = Orb(0+,F1(φ′), s),

and similarly for F2

Orb(0+,F2(φ′), s) = Orb(0−,F2(φ′), s),

Orb(0−,F2(φ′), 1− s) = Orb(0+, φ
′, s).

It follows that the full Fourier transform satisfies

Orb(0+, φ̂
′, s) = Orb(0+,F1(F2φ

′), s)

= Orb(0−,F2(φ′), 1− s) = Orb(0+, φ
′, s).

Similarly we have

Orb(0−, φ̂
′, s) = Orb(0−, φ

′, s).

This completes the proof of (12.19).
�

Remark 12.11. The integral (12.11) can be viewed as the theta lifting for the pair

(SO(V ′, q), SL2),

from the automorphic representation η|·|s of SO(V ′) ' GL1 to SL2. Therefore, the representation
space spanned by h 7→ J(h, φ′, s) is the space of degenerate Eisenstein series for the induced

representation Ind
H(A0)
B(A0)(η| · |s) (B the Borel subgroup of upper triangular matrices). In this way,

the two nilpotent orbital integrals become the constant terms of the associated Eisenstein series.

Lemma 12.12. Let v | ∞, and φ′v the Gaussian test function (12.5). Then the local nilpotent
orbital integral (12.17) is equal to

Orb(0+, φ
′
v, s) = 2

s
2−1.

The action of the group SL2(R) is given as follows, for h ∈ SL2(R) in the form (1.9),

Orb(0+, ω(h)φ′, s) = χ1(κθ)a
(−s+1)/22

s
2−1.

Proof. By (12.5), we obtain φ′v(x, 0) = 2−3/2xe−
1
2πx

2

. Then Orb(0+, φ
′
v, s) is the Tate’s local

zeta integral at an archimedean place:

2

∫
R+

e−
1
2πx

2

|x|s+1 dx

x
=

∫
R+

e−
1
2πx|x|(s+1)/2 dx

x

= (π/2)−(s+1)/2Γ((s+ 1)/2).

Note the local L-factor in (12.17) is by definition

L(s, η) = π−(s+1)/2Γ

(
s+ 1

2

)
.

6 F1 partial Fourier transform is the composition of the full one with F2 (up to changing the sign of the

variable, which is harmless in the global setting).



WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 59

We obtain

Orb(0+, φ
′
v, s) = 2

s
2−1.

The action of SL2(R) is determined in the way similar to Lemma 12.6.
�

12.6. Modular analytic generating functions for general n. We now return to the setting
of §11.4 for general n.

Definition 12.13. An element x0 ∈ Sn(F0) (resp., sn(F0)) is compact, if locally at all places
v | ∞, it lies in the compact Cartan subspace Tn(F0,v) (resp., tn(F0,v)).

From now on, let X ′n = Sn or sn, and we fix the following data.

(a) Let x′0 ∈ X ′n(F0) be a regular elliptic compact element. Hence, F ′ = F [x′0] is a quadratic
field extension of F ′0 such that T ′0 ' ResF ′0/F0

Gm, cf. §11.4. Denote by

η′ = ηF ′/F ′0 : A×F ′0 −→ {±1}

the quadratic character associated to F ′/F ′0.

(b) For every v | ∞, we fix the archimedean Φ′v ∈ S((X ′n×V ′n)(F0,v)) to be the partial Gaussian
test function constructed in §12.4 (relative to a fixed compact neighborhood of x′0). Let φ′v be
the function associated to Φ′v (cf. (12.10)).

Under the condition (a) above, there are two regular nilpotent orbits for the T ′0-action on
V ′(F0), denoted by 0± in (11.17). We now define the constant term J(h,Φ′, s)0 in (11.19) as
the sum of the two regular x′0-nilpotent orbital integrals Orb((x′0, 0±),Φ′, s) in a similar way to
(12.14). More precisely, we define

Orb((x′0, 0+),Φ′, s) := L(s, η′)
∏
v

Orb((x′0, 0+),Φ′v, s), (12.22)

where the local orbital integral is defined as

Orb((x′0, 0+),Φ′v, s) =

∫
G′(F0,v)

Φ′v(g
−1 · (x′0, 0+)) |det(g)|svη(g) dg

L(s, η′v)
. (12.23)

Here the denominator is defined as

L(s, η′v) =
∏
v′|v

L(s, η′v′)

where v′ runs over all places of F ′0 above v. Note that L(s, η′) = L(s, IndF0

F ′0
η′). We define

Orb((x′0, 0−),Φ′, s) similarly. Here we normalize the measure onG′(F0,v) such that vol(G′(OF0,v )) =
1 for all but finitely non-archimedean places v.

Lemma 12.14. The integral (12.23) is absolutely convergent when Re(s) > 0, extends to an
entire function of s (a polynomial of q±sv for non-archimedean v).

Moreover, for a fixed x′0 and a pure tensor Φ = ⊗vΦv where Φ′v = 1(X′×V ′)(OF0,v
) for all but

finitely many v, the integral (12.23) is equal to one for all but finitely many places v (depending
on x′0 and Φ).

Proof. When v | ∞, by Lemma 12.7, the desired claim follows from (the product of n copies of)
the same claim for n = 1.

Now let v be non-archimedean, and Φ′v as in §12.4. We fix a large compact subset Ωv of
G′(F0,v) such that Φ′v(g

−1 · x′0, u′) = 0 unless g ∈ Ωv · T ′0(F0,v). We introduce a Schwartz
function (with a parameter s ∈ C) on V ′(F0,v)

φ′v,s(u
′) :=

∫
Ωv

Φ′v(g
−1 · (x′0, u′)) |det(g)|svηv(g) dg. (12.24)

It is easy to see that it is of the form

φ′v,s =
∑

1≤i≤m

ai λ
s
i φi, (12.25)
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where

ai ∈ Q, λi ∈ Q×+, φi ∈ S(V ′(F0,v)).

Then, for a suitable choice of measure dg on Ωv in the integral (12.24)

Orb((x′0, 0+),Φ′v0
, s) = Orb(0+, φ

′
v0,s, s). (12.26)

Here we view V0 as a one-dimensional F ′0-vector space, and V ∗0 as its F ′0-dual vector space, and
the right hand side is (12.18) relative to the quadratic extension F ′v/F

′
0,v at v (i.e., F ′v is the

product of F ′v′ = F ′ ⊗F ′0 F
′
0,v′ over all places v′ of F ′0 over v). This shows that the local orbital

integral for 0+ is a polynomial of q±sv′ , v
′|v, particularly, an entire function in s.

Finally, let’s assume that v is unramified in F ′ and Φ′v = 1(X′×V ′)(OF0,v
) (here we implicitly

identified V0 = Fn0 and endow it with the natural integral structure). For all but finitely many
places v, the element x0 belongs to X ′n(OF0,v) and generates the maximal order OF ′v in F ′v. Then
it is easy to see that φ′v,s = 1V ′(OF0,v

), and hence the integral is equal to one by the standard
computation of Tate’s local zeta integral for unramified data.

�

Lemma 12.15. The function (h, s) ∈ H(A0) × C 7→ J(h,Φ′, s) is entire in s ∈ C, and left
invariant under H(F0).

Proof. By the proof of Lemma 12.14, (12.25) and (12.26), we see that

J(h,Φ′, s) =
∑

1≤i≤m

ai λ
s
i J(h, φ′i, s).

The desired claims follow now from Theorem 12.10 for n = 1, applied to the new quadratic
extension F ′/F ′0. �

For simplicity, we combine the two nilpotent orbital integrals into one

Orb((x′0, 0±),Φ′, s) : = Orb((x′0, 0+),Φ′, s) + Orb((x′0, 0−,Φ
′, s). (12.27)

Now we obtain an expansion as a sum of orbital integrals

J(h,Φ′, s) = Orb((x′0, 0±), ω(h)Φ′, s) (12.28)

+
∑

u′∈V ′(F0)/T ′0(F0),q(u′)6=0

Orb((x′0, u
′), ω(h)Φ′, s).

Moreover, for ξ ∈ F×0 , the ξ-th Fourier coefficient of J(·,Φ′, s) is equal to∑
u′∈V ′(F0)/T ′0(F0),q(u′)=ξ

Orb((x′0, u
′), ω(h)Φ′, s). (12.29)

This is the analog of (11.8) on the unitary side. Analogous to (11.10), we may rewrite (12.29)
as ∑

ξ′∈F ′0, trF ′0/F0
ξ′=ξ

Orb((x′0, u
′),Φ′, s), (12.30)

where for a fixed ξ′, u′ ∈ V ′(F0)/T ′0(F0) is the unique orbit such that q′(u′) = ξ′.

12.7. The decomposition of the special value at s = 0. We set

J(h,Φ′) := J(h,Φ′, 0). (12.31)

Then the decomposition (12.28) specializes to

J(h,Φ′) =
∑

u′∈V ′(F0)/T ′0(F0)

Orb((x′0, u
′), ω(h)Φ′), (12.32)

where

Orb((x′0, u
′), ω(h)Φ′) := Orb((x′0, u

′), ω(h)Φ′, 0).
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We set

∂J(h,Φ′) :=
d

ds

∣∣∣
s=0

J(h,Φ′, s),

∂Orb((x′0, u
′),Φ′v) :=

d

ds

∣∣∣
s=0

Orb((x′0, u
′),Φ′v, s).

(12.33)

Now we introduce

∂Jv(h,Φ′) := ∂Jv(ω(h)Φ′), and

∂Jv(Φ′) :=
∑

u′∈V ′(F0)/T ′0(F0),u′ 6=0

∂Orb((x′0, u
′),Φ′v) ·Orb((x′0, u

′),Φ
′v). (12.34)

Then by Leibniz’s rule, we have a decomposition, with an extra term from the nilpotent orbital
integrals (12.22)

∂J(h,Φ′) = ∂Orb(0±, ω(h)Φ′) +
∑
v

∂Jv(ω(h)Φ′), (12.35)

where we define

∂Orb(0±, ω(h)Φ′) =
d

ds

∣∣∣
s=0

Orb((x′0, 0±), ω(h)Φ′, s). (12.36)

We call it the nilpotent term; it is part of the constant term (i.e., the 0-th Fourier coefficient).

Part 3. Proof of the main theorems

13. The proof of FL

13.1. Smooth transfer: the global situation. In §2.3, we have defined the local transfer
factor, cf. (2.15). The definition depends on a choice of an extension η̃ of the quadratic character
η attached to local quadratic extension. In the global case, we fix an extension of the quadratic
character ηF/F0

of F×0 \A
×
0 to a character η̃ of F×\A× (not necessarily of order 2). The transfer

factor for a global element then satisfies a product formula, and transforms according to the
desired rule, cf. [40, §7.3].

We are now in the setting of §12.6. For simplicity we only consider Sn, though it will be clear
how to extend the result to sn. Let Φ′ = ⊗vΦ′v ∈ S((Sn × V ′n)(A0)) be a pure tensor such that

• for every v | ∞, Φ′v is the partial Gaussian test function, cf. 12.6, and

• for every non-archimedean v, Φ′v is pure in the sense of [47, Def. 3.5], i.e., Φ′v transfers to a non-
zero function on (U(Vv)× Vv)(F0,v) for (at most) one hermitian space Vv (cf. Definition 2.2,
where there are at most two isometric classes of hermitian spaces at every non-archimedean
place).

We define a weaker notion of smooth transfer.

Definition 13.1. For fixed g0 ∈ U(Vv)(F0,v) and x′0 ∈ Sn(F0,v) with the same characteristic
polynomial, we say that Φ′v partially (w.r.t. g0 and x′0) transfers to Φv ∈ S(U(Vv) × Vv)(F0,v),
if we only require the equality (2.16) in Definition 2.2 to hold for regular semisimple orbits of
the form (x′0, u

′) ∈ (Sn × V ′n)(F0,v)rs and (g0, u) ∈ (U(Vv)× Vv)(F0,v)rs.

For such Φ′∞ = ⊗v-∞Φ′v ∈ S((Sn × V ′n)(A0,f )), we say that it partially transfers to (or
matches) Φ∞ = ⊗v-∞Φv ∈ S((U(V ) × V )(A0,f )) if Φ′v partially transfers to Φv for every non-
archimedean place v.

Remark 13.2. At those places of F0 split in F , we will further demand Φv and Φ′v to match in
an elementary way analogous to [48].

13.2. Comparison. In this subsection, we compare J(h,Φ′) with J(h,Φ) in the “coherent case”,
i.e., Φ = ⊗vΦv ∈ S((U(V )×V )(A0)) for an n-dimensional F/F0-hermitian space V . We further
assume that V is totally positively definite and Φv is the Gaussian test function for every v | ∞,
cf. (12.2) in §12.1.
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Proposition 13.3. The function

h ∈ SL2(A0) 7−→ J(h,Φ′), respectively J(h,Φ),

lies in Ahol(SL2(A0),K(N), n), where K(N) is a compact open subgroup of SL2(A0,f ) that acts
trivially on both Φ and Φ′.

Proof. The K(N)-invariance follows immediately from the definition of J(h,Φ′) and J(h,Φ).
By Lemma 12.15 (resp., Lemma 11.1) the functions J(·,Φ′) (resp., J(·,Φ)) are invariant under

SL2(F0). The weight n-condition follows from the action under SO(2,R), by (12.3) for Φ, and
by Lemma 12.6 for Φ′.

Finally we need to show the holomorphy on the complex upper half plane H and at all cusps.
Equivalently, for any hf ∈ SL2(A0,f ), the function

b+ ai ∈ H 7−→ |a|−n/2J((h∞, hf ),Φ′), respectively |a|−n/2J((h∞, hf ),Φ),

where h∞ =

(
1 b

1

)(
a1/2

a−1/2

)
, is holomorphic, and holomorphic at the cusp i∞.

By (12.32), Lemma 12.4, and Lemma 12.7, the ξ-th Fourier coefficient vanishes unless ξ ∈ F0

and ξ ≥ 0 (i.e., totally semi-positive), and hence the Fourier expansion takes the form∑
ξ∈F0, ξ≥0

Aξ q
ξ, Aξ ∈ C,

where Aξ = 0 unless ξ lies in a (fractional) ideal of F0 depending on Φ′f and hf . This shows

that J(·,Φ′) ∈ Ahol(SL2(A0),K(N), n). The assertion for Φ is proved similarly. �

For the rest of this section, we assume that F0 = Q. Now let’s fix a regular elliptic compact
element x′0 ∈ Sn(F0) (cf. §12.6), and fix g0 ∈ U(V )(F0) with the same characteristic polynomial
as x′0.

Let S be a finite set of non-archimedean places of F0 such that

• S contains all places with residue characteristics 2,

• for all v ∈ S, Φ′v partially (w.r.t. g0 and x′0) transfers to Φv ∈ S(U(Vv)× Vv)(F0,v),
7 and

• for every non-archimedean v /∈ S, the hermitian space Vv is split, Φv = 1(U(V )×V )(OF0,v
) (w.r.t.

to a self-dual lattice in Vv), and Φ′v = 1(Sn×V ′)(OF0,v
).

Then in Proposition 13.3, we can assume that the compact open subgroup K(N) ⊂ SL2(A0,f )
is a principle congruence subgroup of level N for some integer N whose prime factors are all
contained in S.

We consider the difference

E (h) = J(h,Φ′)− J(h,Φ), h ∈ SL2(A0).

By Proposition 13.3, we obtain a classical holomorphic modular form E [ ∈ Ahol(Γ(N), n), with
its Fourier expansion (at the cusp ∞)

E [(τ) =
∑

ξ≥0, ξ∈N−1Z

Aξ q
ξ, q = e2πiτ , τ ∈ H.

Here, we refer to §1.2 (1.7) for the association E 7→ E [.

Theorem 13.4. Assume that Conjecture 2.4 part (a) holds for all p-adic fields Qp with p /∈ S
and for Sn. Then E [ = 0. (Note that we are in the case dimV = n.)

Proof. Let B (for “bad”) be the (finite) set of non-archimedean places v /∈ S of F0 where OF,v[g0]
is not a maximal order in Fv[g0].

By the vanishing criterion Lemma 13.6 below, it suffices to show that the Fourier coefficient

Aξ = 0

whenever (ξ,B) = 1 (here ξ ∈ N−1Z).

7 Transfers exist by the result of [48]. Here we only need the weaker result of the existence of partial transfers

for fixed x′0 and g0, which can be deduced easily from the n = 1 case.
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Now let ξ be coprime to B, in particular, ξ 6= 0. By (12.29), the ξ-th Fourier coefficient of
J[(τ,Φ′) is ∑

u′∈V ′(F0)/T ′0(F0),q(u′)=ξ

Orb((x′0, u
′),Φ

′∞).

Similarly, by (11.8), the ξ-th Fourier coefficient of J[(τ,Φ) is∑
u∈V (F0)/T0(F0), q(u)=ξ

Orb((g0, u),Φ∞).

We now claim that the equality

Orb((x′0, u
′),Φ′v) = Orb((g0, u),Φv), (13.1)

holds for every place v and every u′ with q(u) = ξ. From the claim it follows that Aξ = 0
whenever (ξ,B) = 1.

To show the claim, first let v ∈ B. Since (ξ,B) = 1, ξ is a unit at v. Therefore by Proposition
2.7 (ii), Conjecture 2.4 part (a) implies (13.1).

If v /∈ S ∪B, then OF,v[g0] is a maximal order in Fv[g0], and (13.1) follows from Proposition
2.6.

If v ∈ S, by our assumption on Φ′v and Φv, they partially match (w.r.t. the fixed g0, x0), and
hence (13.1) holds.

If v is archimedean, then (13.1) follows from our choices of partial Gaussian test functions.
This proves the claim, and therefore completes the proof.

�

Corollary 13.5. Under the assumption of Theorem 13.4, we have for all ξ ∈ F×0 ,∑
ξ′∈F ′0,+, trF ′0/F0

ξ′=ξ

Orb((x′0, u
′),Φ′) =

∑
ξ′∈F ′0,+, trF ′0/F0

ξ′=ξ

Orb((g0, u),Φ),

where for each ξ′, on the left (resp., right) hand side, u′ ∈ V ′(F0)/T ′0(F0) (resp., u ∈ V (F )/T (F ))
is the unique orbit with the refined invariant q′(u′) = ξ′ (resp., q′(u) = ξ′).

Proof. This follows from Theorem 13.4, the alternative expression of the ξ-th Fourier coefficient
in terms of the refined invariants ξ′, cf. (11.10) and (12.30), and the vanishing of archimedean
local orbital integrals unless ξ′ is totally positive by Lemma 12.4. �

13.3. A lemma on Fourier coefficients of modular forms. Let f ∈ Ahol(Γ(N), k) be a
holomorphic modular form of level Γ(N) and weight k ∈ Z>0. It has a Fourier expansion (at
the cusp ∞):

f(τ) =
∑

n≥0, n∈N−1Z

an(f)qn, q = e2πiτ , τ ∈ H.

Similarly, f ∈ Ahol(Γ1(N), k) has a Fourier expansion (at the cusp ∞):

f(τ) =
∑

n≥0, n∈Z
an(f)qn.

We have the following vanishing criterion.

Lemma 13.6. (a) Let f ∈ Ahol(Γ(N), k). Let B ∈ N be a positive integer coprime to N . If
an(f) = 0 for all n ∈ N−1Z such that (n,B) = 1 (i.e., (nN,B) = 1), then f = 0.

(b) Let f ∈ Ahol(Γ1(N), k). Let B ∈ N be a positive integer coprime to N . If an(f) = 0 for all
n ∈ Z such that (n,B) = 1, then f = 0.

Proof. This is essentially a part of the newform theory. For reader’s convenience we will give a
proof.

Note

Γ(N) ' Γ1(N) ∩ Γ0(N2) ⊃ Γ1(N2).
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We have an injective linear map

ιN : Ahol(Γ(N), k) // Ahol(Γ1(N2), k)

f
� // diag(N, 1)f(τ) : = f(Nτ).

Under the map ιN (f) has a Fourier expansion (at the cusp ∞):

ιNf(τ) =
∑

n≥0, n∈N−1Z

an(f)qnN .

Therefore part (b) implies part (a).
To prove part (b), now let Γ = Γ1(N). We first consider the special case B = p where p - N

is a prime. Recall that “Ihara’s lemma” over C (this can be proved directly) asserts that the
“level-raising” map

LRp : Ahol(Γ, k)⊕2 // Ahol(Γ ∩ Γ0(p), k)

(f1, f2)
� // f1 + ιp(f2),

is injective, where ιp(f2) is given by diag(p, 1)f2(τ) = f2(pτ). Now let f ∈ Ahol(Γ, k). Then
g(τ) := f(τ/p) is an element in Γ∩Γ0(p) where Γ0(p) is the transpose of Γ0(p). If an(f) = 0 for all

n ∈ Z such that p - N , then g is invariant under τ 7→ τ+1. Since Γ∩Γ0(p) and

(
1 1
0 1

)
generate

Γ, the function g(τ) = f(τ/p) lies in Ahol(Γ, k). Now we check LRp(−f, g) = −f + ιp(g) = 0. It
follows that f = 0 by the injectivity of the map LRp.

In general, we may assume that B = pB′ is square-free with a prime factor p. Consider the
map sending f =

∑
n≥0, n∈Z an(f)qn ∈ Ahol(Γ1(N), k) to the

f̃ :=
∑

n≥0, n∈Z,(n,B′)=1

an(f)qn.

Then f̃ ∈ Ahol(Γ1(NB′2), k). Now apply the special case above to conclude that f̃ = 0. By
induction on the number of prime factors of B, we complete the proof.

�

13.4. A refinement of Corollary 13.5. We denote by B the common categorical quotient (cf.
[48] for the analogous case U(V ])//U(V ) ' Sn+1//GLn)

B : = (U(V )× V )//U(V ) ' (Sn × V ′n)//GLn .

This is an affine variety over F0.

Lemma 13.7. Fix b0 ∈ B(F0). Fix a non-archimedean place v1 of F0, split in F . For every
place v 6= v1 of F0, we fix a compact neighborhood Ωv ⊂ B(F0,v) of b0, such that, for all but
finitely many non-archimedean places v, Ωv is the image of (Sn × V ′n)(OFv ). Then there exists
a neighborhood Ωv1

⊂ B(F0,v1
) of b0 such that

B(F0) ∩
∏
v

Ωv = {b0},

where the intersection is taken inside B(A0).

Proof. Embed B as a closed sub-variety of some affine space Y = Am over F0. By the compact-

ness of Ωv for v 6= v1, we may choose compact subset Ω̃v ⊂ Y (F0,v) such that Ωv = Ω̃v∩B(F0,v).

Then by the product formula, there must be a small neighborhood Ω̃v1 ⊂ Y (F0,v1) such that

Y (F0) ∩
∏
v

Ω̃v = {b0}.

Set Ωv1
= Ω̃v1

∩ B(F0,v1
) to complete the proof.

�

We are now ready to refine the result of Corollary 13.5.
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Proposition 13.8. Under the assumption of Theorem 13.4, we have, for all (g0, u) ∈ (U(V )×
V )(F0)rs matching (x′0, u

′) ∈ (Sn × V ′n)(F0)rs such that ξ = q(u) 6= 0,

Orb((x′0, u
′),Φ′) = Orb((g0, u),Φ).

Proof. Let b0 ∈ B(F0) be the (common) image of (g0, u) and (x′0, u
′). Fix a non-archimedean

place v1 of F0, split in F . Decompose

Orb((g0, u),Φ) = Orb((g0, u),Φv1) Orb((g0, u),Φv1
),

and

Orb((x′0, u
′),Φ′) = Orb((x′0, u

′),Φ
′v1) Orb((x′0, u

′),Φ′v1
),

where the local orbital integral Orb((g0, u),Φv1
) = Orb((x′0, u

′),Φ′v1
). We may assume that the

local orbital integrals at v1 are nonzero (otherwise both sides vanish). It remains to show

Orb((g0, u),Φv1) = Orb((x′0, u
′),Φ

′v1). (13.2)

For every non-archimedean v 6= v1, we define a compact set Ωv ⊂ B(F0,v) to be the union of
the image of the support of Φv and Φ′v.

Now let v | ∞ (only one such v since we are assuming F0 = Q). Let Ag0,ξ;+ be the set
of (g0, ũ) ∈ (U(V ) × V )(F0,v) (for the fixed g0) such that q′(ũ) = ξ′ is totally positive and
trF ′0/F0

(ξ′) = ξ. Here ξ = q(u) is fixed.
We claim that Ag0,ξ;+ is contained in a compact set. To show the claim, since g0 is fixed, it

suffices to show that the refined invariant ξ′ lies in a bounded subset of F ′0 ⊗F0,v R ' Rn. By
the totally positivity of ξ′ ∈ F ′0, we have∑

v′|v

|ξ′|v′ = trF ′0/F0
(ξ′) = ξ,

and hence ξ′ is bounded. This proves the claim.
It follows that we can choose a compact Ωv ⊂ B(F0,v) such that Ωv contains the image of the

set Ag0,ξ;+.
Now apply Lemma 13.7 to choose a small neighborhood Ωv1 ⊂ B(F0,v1) of b0 such that

B(F0)∩
∏
v Ωv = {b0}. Then we choose a point-wise non-negative function Φv1 with non-empty

support whose image in B(F0,v1
) is contained in Ωv1

. Choose Φ′v1
to match Φv1

in the elementary
way (cf. Remark 13.2). Now apply Corollary 13.5, where the sum in each side has only one term
left, namely the one with invariant b0 ∈ B(F0). By the point-wise positivity of Φv1

, the local
orbital integral at the place v1 does not vanish. We hence deduce the desired equality (13.2).
This completes the proof. �

13.5. The proof of FL conjecture. Now we return to the set up of Conjecture 2.4 in §2.4.

Theorem 13.9. Conjecture 2.4 holds when F0 = Qp and p ≥ n.

Proof. By Proposition 2.7, it suffices to prove Conjecture 2.4 part (c). We will do so by induction
on dimV0.

The case dimV0 = 1 is trivial. Assume now that Conjecture 2.4 part (c) holds when dimV0 =
n−1. Then by Proposition 2.7 part (i), Conjecture 2.4 part (a) holds for Sn, and Qp with p ≥ n.

We now want to apply Proposition 13.8. We start with the following local data

• a place v0 of F0 = Q, and an unramified (local) quadratic extension Fw0
/F0,v0

,

• the split Fw0/F0,v0-hermitian space Vv0 of dimension n,

• an element (gv0 , uv0) ∈ (U(Vv0) × Vv0)(F0,v0)srs, we further assume that the characteristic
polynomial of gv0 has integral coefficients (in OFw0

), det(1− gv0) is a unit, and 〈uv0 , uv0〉 6= 0,

• an element (x′v0
, u′v0

) ∈ (Sn × V ′n)(F0,v0
)srs matching (gv0

, uv0
).

To globalize the data, we first use Cayley transform, cf. (4.1). Let xv0 = c−1(gv0) =
1+gv0
1−gv0

,

an element in the Lie algebra u(Vv0) ⊂ EndFw0
(Vv0).

We now choose an imaginary quadratic field F = F0[
√
ε], ε ∈ F×0 such that F ⊗F0

F0,v0
' Fw0

.
Consider x\v0

=
xv0√
ε

. Then the characteristic polynomial of x\v0
has coefficients in the base field

Fv0
.
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Next we choose a totally real field F ′0 and an element x\ ∈ F ′0 such that, when setting
F ′ = F ′0[

√
ε] and

x =
√
ε x\, g = c(x) = −1− x

1 + x
,

we have OFw0
[g] = OFw0

[gv0
] as subrings of F ′⊗F Fw0

. To achieve this, it suffices to approximate

the characteristic polynomial of x\v0
by a polynomial with coefficient in F0 = Q, and we may

prescribe its local behavior at finitely many places by weak approximation. (Here the regular
semi-simplicity allows us to determines the isomorphism class of the local field F [gv0

] by the
characteristic polynomial of gv0 .)

With such a choice, we have g ∈ F ′1. For the CM extension F ′/F ′0, there exists a one-
dimensional F ′/F ′0-hermitian spaceW such thatW is totally positive definite, and V = ResF ′/F W ,
as an n-dimensional F/F0-hermitian space, is locally at v0 isometric to Vv0 . Such hermitian space
W exists because we are only imposing local conditions at finitely many places.

Now we choose u ∈ V (and possibly replacing g by an element v0-adically closer to gv0
) such

that the pair (g, u) is v0-adically close to (gv0
, uv0

) and such that

Orb((g, u),1(U(Vv0 )×Vv0 )(OF0,v0
)) = Orb((gv0

, uv0
),1(U(Vv0 )×Vv0 )(OF0,v0

)). (13.3)

This is possible due to the local constancy of orbital integrals near a regular semisimple element.
Let (x′0, u

′) ∈ (Sn × V ′n)(F0) be a regular semisimple element matching (g, u). Again by local
constancy of orbital integrals we may assume that, possibly replacing (g, u) by an element in
(U(V )× V )(F0)srs that is v0-adically closer to (gv0 , uv0),

Orb((x′0, u
′),1(Sn×V ′n)(OF0,v0

)) = Orb((x′v0
, u′v0

),1(Sn×V ′n)(OF0,v0
)). (13.4)

Next, we let S be a finite set of of non-archimedean places of F0, such that

• v0 /∈ S,

• S contains all places with residue characteristic p < n,

• for every non-archimedean v /∈ S ∪ {v0}, the order OF [g] is locally maximal at v, and Vv is a
split hermitian space.

Choose functions Φ = ⊗vΦv and Φ′ = ⊗vΦ′v satisfying the following conditions:

• for every archimedean v, Φv and Φ′v are the (partial) Gaussian test functions (relative to a
small neighborhood of x′0 in Sn(F0,v));

• for every non-archimedean v ∈ S, Φ′v partially (w.r.t. g and x′0) transfers to Φv ∈ S(U(Vv)×
Vv)(F0,v) and the local orbital integrals do not vanish at (g, u) and (x′0, u

′), cf. Definition 13.1;

• for every non-archimedean v /∈ S (in particular at v0), noting that the hermitian space
Vv is split, choose Φv = 1(U(V )×V )(OF0,v

) (w.r.t. to a self-dual lattice in Vv), and Φ′v =

1(Sn×V ′)(OF0,v
). By enlarging S suitably (while v0 /∈ S), we may further assume that, for ev-

ery v /∈ S, the image of (g, u) in B(F0) lies in the image of the support of (U(V )× V )(OF0,v).

By the last condition, for every non-archimedean v /∈ S the local orbital integral of Φv does not
vanish at (g, u) (since the function Φv is point-wisely positive on its support). It follows from
the special case Proposition 2.6 that the same non-vanishing for Φ′v for every place v /∈ S ∪ {v0}
.

Now we are ready to apply Proposition 13.8 to conclude

Orb((x′0, u
′),Φ′) = Orb((g0, u),Φ).

By our choices, Orb((x′0, u
′),Φ′v) = Orb((g0, u),Φv) for all v 6= v0, and they do not vanish. It

follows that

Orb((x′0, u
′),Φ′v0

) = Orb((g0, u),Φv0
).

By (13.3) and (13.4), we have

Orb((x′v0
, u′v0

),1(Sn×V ′n)(OF0,v0
)) = Orb((gv0

, uv0
),1(U(Vv0 )×Vv0 )(OF0,v0

)).

We have assumed that gv0 ∈ U(Vv0) is regular semisimple with det(1 − gv0) ∈ O×Fw0
and

〈uv0
, uv0
〉 6= 0. We now remove these assumptions. The condition det(1 − gv0

) ∈ O×Fw0
is

harmless since we may multiply gv0 by a suitable element in F 1
w0

(cf. the proof of Prop. 4.12).
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The set of elements (gv0
, uv0

) ∈ (U(Vv0
)×Vv0

)srs with 〈uv0
, uv0
〉 6= 0 is dense in (U(Vv0

)×Vv0
)rs.

By local constancy of orbital integrals at regular semisimple elements, Conjecture 2.4 part (c)
holds when dimV0 = n (over Qp with p ≥ n). This completes the induction. �

14. The comparison for arithmetic intersections

As a preparation for the proof of AFL conjecture, in this section, we compare ∂J(h,Φ′) with
the arithmetic intersection number Int(τ,Φ) (cf. (9.5) in §9).

Let V be the n-dimensional F/F0-hermitian space that we use to define the Shimura variety

ShKG̃
(
G̃, {hG̃}

)
in §6.1.1. Let Φ = ⊗v<∞Φv ∈ S((U(V ) × V )(A0,f )) be a pure tensor. Let

Φ′ = ⊗vΦ′v ∈ S((Sn × V ′n)(A0)) be a pure tensor such that

• for every v | ∞, Φ′v is the partial Gaussian test function, cf. 12.6, and

• for every non-archimedean v, Φ′v transfers to Φv (and the zero function on the other isometric
class of hermitian space at v, cf. Definition 2.2).

Remark 14.1. Due to the signature of such V at the archimedean places, there does not exist

any global F/F0-hermitian space Ṽ such that Φ′ transfer to a function in S((U(Ṽ ) × Ṽ )(A0)),
cf. [47, §3.2].

Fix a regular elliptic compact element x′0 ∈ Sn(F0) (cf. §12.6), and fix g0 ∈ U(V )(F0) with
the same characteristic polynomial as x′0.

Lemma 14.2. Let v be a place of F0 split in F (necessarily non-archimedean). Then ∂Jv(h,Φ′) =
0 (cf. (12.34)).

Proof. This follows from the same argument in [47, Prop. 3.6] (also cf. [40, §7.2]). �

If v is non-split (including the archimedean places), let V (v) be the “nearby” F/F0-hermitian
space at v, cf. Theorem 9.4 (resp., Theorem 10.1) for non-archimedean (resp., archimedean)
places (the hermitian space V ′ there). Then the term ∂Jv(h,Φ′) (cf. (12.34)) is a sum over
nonzero u′ ∈ V ′(F0)/T ′0(F0) such that (x′0, u

′) transfers to (g0, u) ∈ U(V (v))× V (v). Moreover,
we have a Fourier expansion (cf. (11.9))

∂Jv(h,Φ′) =
∑
ξ∈F0

∂Jv(h, ξ,Φ′), (14.1)

where ∂Jv(h, ξ,Φ′) is the sub-sum over terms with q(u′) = ξ,

∂Jv(h, ξ,Φ′) =
∑

u′∈V ′(F0)ξ/T ′0(F0),u′ 6=0

∂Orb((x′0, u
′), ω(hv)Φ

′
v) ·Orb((x′0, u

′), ω(hv)Φ
′v). (14.2)

14.1. The archimedean places. Let v | ∞. Recall that V ′ = V0 × V ∗0 for V0 = Fn0 carries the
tautological quadratic form (11.14)

q : V0 × V ∗0 // F0 ,

and an induced quadratic form (11.16)

q′ : V0 × V ∗0 // F ′0 ,

such that for all u′ ∈ V ′, q′(u′) = trF ′0/F0
q′(u′). Set

F ′0,v := F ′0 ⊗F0,v R '
∏

v′∈Hom(F ′0,R),v′|v

R.

Lemma 14.3. Let ξ′ ∈ F ′0,v be an invertible element, and u′ ∈ V ′(F0,v) with q′(u′) = ξ′.

(a)

Orb((x′0, u
′),Φ′v) =

{
e
−π trF ′0,v/F0,v

(ξ′)
, when ξ′ ∈ F ′0,v is totally positive,

0, otherwise.
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(b) Now assume that ξ′ is not totally positive. Then ∂Orb((x′0, u
′),Φ′v) = 0, unless ξ′ is negative

at exactly one place above v, say at v′0, in which case

∂Orb((x′0, u
′),Φ′v) =

1

2
e
−π trF ′0,v/F0,v

(ξ′)
Ei(−2π|ξ′|v′0).

Proof. This follows from Lemma 12.4, and Lemma 12.7. �

Lemma 14.4. Let ξ ∈ F×0 . Then

IntKv (ξ,Φ) = −2∂Jv(ξ,Φ′).

Proof. It follows from the previous Lemma 14.3 that

∂Jv(ξ,Φ′) =
1

2

∑
Ei(−2π|ξ′|v′0) ·Orb ((x′0, u

′),Φ′) ,

where (x′0, u
′) is the unique orbit with the refined invariant q′(u′) = ξ′ ∈ F ′0, and the sum runs

over all ξ′ ∈ F ′0 such that

• trF ′0/F0
(ξ′) = ξ, and

• there exists exactly one archimedean place v′0 of F ′0 where ξ′ is negative, and this place v′0 is
above v0.

Here Orb ((x′0, u
′),Φ′) depends only on the refined invariant 〈u′, u′〉F ′0 = ξ′.

Now the assertion follows from Corollary 10.2, and the fact that Φ∞ and Φ′∞ are transfers
of each other.

�

For the rest of this section, we assume that F0 = Q. Recall that the difference IntK−B(h,Φ)
between the two Green functions is given by (10.9) and (10.10) (note that this makes sense for
any Schwartz function Φ∞). The following result plays the role of “holomorphic projection” of
modular generating function on the analytic side.

Proposition 14.5. Let F0 = Q. The sum

∂Jhol(h) := 2∂J(h,Φ′) + IntK−B(h,Φ), h ∈ SL2(A0),

lies in Ahol(SL2(A0),K, n), where K is the compact open subgroup of SL2(A0,f ) that acts trivially
on both Φ and Φ′.

Proof. First of all the function h ∈ SL2(A0) 7→ 2∂J(h,Φ′) belongs to Aexp(SL2(A0),K, n). One
way to see this is to use the Fourier expansion directly. Another way is to identify it with a
linear combination to SL2(AF0) of the restriction of (the first derivative at s = 0 of) a degenerate
Siegel–Eisenstein series of parallel weight one on SL2(AF ′0), cf. Remark 12.11.

By Corollary 10.3, the second summand IntK−B(·,Φ) also belongs to Aexp(SL2(A0),K, n).
Therefore to complete the proof, it suffices to show the holomorphy of the sum ∂Jhol(h) on the
complex upper half plane H and at all cusps. Equivalently, for any hf ∈ SL2(A0,f ), the function

∂J[hol,hf
(associated to ∂Jhol via (1.7)8) is holomorphic, and holomorphic at the cusp i∞. Since

we can vary Φ∞ and Φ
′∞, and by Theorem A.1 the Weil representation commutes with smooth

transfer, it suffices to consider the case hf = 1 (but allow all matching Φ∞ and Φ
′∞).

We claim that the Fourier expansion of ∂J[hol takes the form∑
ξ∈F0,ξ≥0

Aξ q
ξ, Aξ ∈ C, (14.3)

where Aξ = 0 unless ξ lies in a (fractional) ideal of F0 (depending on Φ′,Φ). In other words, the
non-holomorphic terms all cancel out. The desired holomorphy follows from the claim.

To show the claim, we use the decomposition (12.35) as a sum over places v of F0. By Lemma
14.2, ∂Jv(h,Φ′) = 0 if v is a split place.

8In (1.7) the requirement for φ to be an automorphic form is not necessary to make the definition of φ 7→ φ[.
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Now let v be a non-archimedean non-split place. By (14.1), (14.2), and the fact that Φ′∞ is a
(partial) Gaussian test function, we obtain

∂J[v(τ,Φ′) =
∑
ξ∈F0

∂Jv(ξ,Φ′)qξ, (14.4)

where

∂Jv(ξ,Φ′) =
∑

u′∈V ′(F0)ξ/T ′0(F0),u′ 6=0

∂Orb((x′0, u
′), ω(hv)Φ

′
v) ·Orb((x′0, u

′), ω(hv)Φ
′∞∪{v}).

(14.5)

Since v is non-archimedean, the hermitian space V (v) is totally positive definite. Since in the
sum u′ is such that (x′0, u

′) transfers to (g0, u) ∈ U(V (v))×V (v), ∂Jv(ξ,Φ′) = 0 unless ξ is totally
positive. It follows that 2∂Jv(h,Φ′) has the desired form of Fourier expansion as in (14.3).

Finally let v | ∞. We observe that by Lemma 14.4, modulo the constant terms, the sum

2∂Jv(h,Φ′)+IntK−Bv (h,Φ) is equal to − IntBv (h,Φ), which has the desired form of Fourier expan-
sion. Note that Lemma 14.3 also applies to all u′ ∈ V ′ with refined invariant q′(u′) = ξ′ ∈ F ′×0 .
Similarly Theorem 10.1 also applies to all u ∈ V (v) with refined invariant q′(u) = ξ′ ∈ F ′×0 (i.e.,
u 6= 0). Therefore, by the proof of Lemma 14.4, the contribution from null-norm non-zero vectors
u ∈ V (v) cancels that from u′ ∈ V ′ with q′(u′) = ξ′ 6= 0 ∈ F ′0. It follows that the constant

term of 2∂Jv(h,Φ′) + IntK−Bv (h,Φ) is the sum of the nilpotent term 2 ∂Orb(0±, ω(h)Φ′) (from
2∂J(h,Φ′), cf. (12.36)), and the only term that has not been cancelled in (10.9), which is by
(8.12)

−Orb((g0, 0),Φ) log |a|v.
By Lemma 12.12 and Lemma 12.7, the nilpotent term is

2 ∂Orb(0±,Φ
′) = 2 Orb((x′0, 0+),Φ′) log |a|v + C

for some constant C (depending on x′0,Φ
′). Since Φ match Φ′, we claim

Orb((x′0, 0+),Φ′) = −Orb((x′0, 0−),Φ′) =
1

2
Orb((g0, 0),Φ).

In fact, this follows from the argument in [22, (10.4)]. In loc. cit., Jacquet proves the analogous
identity in the “coherent” case (here “coherent” is in the sense of Kudla for one-dimensional
hermitian spaces). Since the proof verbatim applies to the current setting, we omit the detail.

Therefore the two terms with log |a|v cancel, and the sum is a constant independent of a.

This shows that 2∂Jv(h,Φ′)+ IntK−Bv (h,Φ) also has the desired form of Fourier expansion when
v | ∞.

This completes the proof.
�

14.2. The comparison. Now let M =MKG̃
(G̃) be the moduli stack introduced in Definition

6.3. Let S be a finite set of non-archimedean places of F0 such that

• S contains all places v | d, and

• for every non-archimedean v /∈ S, the hermitian space Vv is split, Φv = 1(U(V )×V )(OF0,v
) (w.r.t.

to a self-dual lattice in Vv), and Φ′v = 1(Sn×V ′n)(OF0,v
).

Now we have the FL for all places v /∈ S by Theorem 13.9, hence Φv and Φ′v match for every place.
Then in Proposition 14.5, we can assume that the compact open subgroup K ⊂ SL2(A0,f ) is a
principle congruence subgroup K(N) of level N , where the prime factors of N are all contained
in S.

We have been assuming that the function Φ ∈ S((U(V ) × V )(A0,f )) is valued in Q. By

Proposition 14.5, ∂J[hol(·,Φ′) lies in Ahol(Γ(N), n)Q ⊗Q R (the Green’s function takes values in
R). By passing to the quotient R → RS (cf. (9.2)), we obtain an element, still denoted by
∂J[hol(·,Φ′), in Ahol(Γ(N), n)Q ⊗Q RS .

By Theorem 8.5 (cf. (9.7)), Int(·,Φ) also belongs to Ahol(Γ(N), n)Q⊗QRS , hence so does the
sum

E [(τ) = ∂J[hol(τ,Φ
′) + Int(τ,Φ), τ ∈ H.
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Write the Fourier expansion (at the cusp ∞) as

E [(τ) =
∑

ξ≥0, ξ∈N−1Z

Aξ q
ξ, Aξ ∈ RS .

Theorem 14.6. Assume that Conjecture 3.8 part (a) holds for all p-adic field Qp with p /∈ S
and for Sn. Then

(a) E [ = 0.

(b) For every non-archimedean place v /∈ S, and ξ ∈ F×0 , we have

−2∂Jv(ξ,Φ′) = Intv(ξ,Φ).

Here ∂Jv(ξ,Φ′) is defined by (14.5).

Proof. The proof of part (a) is analogous to that of Theorem 13.4. Recall from (9.15) and (9.16)
that we have a decomposition of of the generating function Int(τ,Φ). We have the following
equalities, as formal power series in RS [[q1/N ]]:

E[(τ)− Int(0,Φ) =(2∂J[(τ,Φ′) + IntK−B(τ,Φ)) + (Int(τ,Φ)− Int(0,Φ))

=
∑
v|∞

(
2∂J[v(τ,Φ′) + IntK−Bv (τ,Φ) + Intv(τ,Φ)

)
+
∑
v<∞

(
2∂J[v(τ,Φ′) + Intv(τ,Φ)

)
=
∑
v|∞

(
2∂J[v(τ,Φ′) + IntKv (τ,Φ)

)
+
∑
v<∞

(
2∂J[v(τ,Φ′) + Intv(τ,Φ)

)
=

∑
v<∞, v /∈S

(
2∂J[v(τ,Φ′) + Intv(τ,Φ)

)
,

where the last equality follows from Lemma 14.4. Here the sum 2∂J[v(τ,Φ′) + IntK−Bv (τ,Φ)

(resp., 2∂J[v(τ,Φ′) + IntKv (τ,Φ)) both belong to RS [[q1/N ]], even though each summand does not
due to the presence of “non-holomorphic” terms.

Let B be the (finite) set of non-archimedean inert places v /∈ S of F0 where Rv : = OF,v[g0]

is not a maximal order in Fv[g0] = F ′v. By the vanishing criterion Lemma 13.6, to show E[ = 0,
it remains to show the vanishing of the ξ-th Fourier coefficients when (ξ,B) = 1.

If v /∈ S is split in F , the intersection number Intv(τ,Φ) = 0 vanishes by Corollary 9.3, and
2∂J[v(τ,Φ′) = 0 by Lemma 14.2.

If v /∈ S is inert, then by Theorem 9.4 and (9.16) we obtain the q-expansion of Intv(τ,Φ).
Similarly, (14.4) and (14.5) give the q-expansion of 2∂J[v(τ,Φ′).

If v /∈ S ∪ B, then Rv is an maximal order and we apply Proposition 3.10 at v to conclude
that the v-th summand 2∂J[v(τ,Φ′) + Intv(τ,Φ) is zero (note that now Φ(v) and Φ

′(v) match).
Finally, let v ∈ B. Then the v-th term 2∂J[v(τ,Φ′) + Intv(τ,Φ) is a formal power series in

q1/N with coefficients in Q log qv (or its image in RS). By Proposition 4.12 , our assumption on
Conjecture 3.8 part (a) (for all p-adic field Qp with p /∈ S and for Sn) implies that

− ∂Orb
(
(x′0, u

′),1(Sn×V ′n)(OF0,v
)

)
= Intv(g0, u) · log qv,

whenever q(u, u) = q(u′) = ξ is a unit at v. In other words, the ξ-th Fourier coefficient of
2∂J[v(τ,Φ′) + Intv(τ,Φ) vanishes if ξ is a unit v, which holds if (ξ,B) = 1.

Therefore, whenever (ξ,B) = 1, the ξ-th Fourier coefficient of E[− Int(0,Φ) (equivalently E[)
vanishes, and this completes the proof of part (a).

Now we turn to part (b). For ξ 6= 0, the ξ-th Fourier coefficients of E [ lie in the Q-span of
log p for p in the finite set B. By q-expansion principle, the constant term must also lie in the
same span. By the Q-linear independence of log p for p ∈ S ∪ B, we may write the constant
term uniquely in the form

∑
pi∈B ai log pi, ai ∈ Q. We assign the summands as the constant

term of
(
2∂J[v(τ,Φ′) + Intv(τ,Φ)

)
according to the residue characteristics of v ∈ B. Since the

sum belongs to Ahol(Γ(N), n,RS), it follows from the Q-linear independence (inside RS) of
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{log p | p ∈ B} that, for every v, the v-th term itself (with the constant term just assigned) also
vanishes. Taking the ξ-th Fourier coefficient implies part (b).

�

Remark 14.7. A byproduct of Theorem 14.6 is that the constant term of E[ vanishes. This
amounts to an equality relating a certain part of the nilpotent term (12.36) to the arithmetic
degree of the restriction of the metrized line bundle ω̂ to the derived CM cycle. This may be of
some independent interest.

Corollary 14.8. Let v /∈ S and assume that Conjecture 3.8 part (a) holds for all p-adic field
Qp with p /∈ S and for Sn. Let (g0, u) ∈ (U(V (v)) × V (v))(F0)srs be an element matching
(x′0, u

′) ∈ (Sn × V ′)(F0)srs. If q(u) 6= 0, then

− ∂Orb
(
(x′0, u

′),1(Sn×V ′n)(OF0,v
)

)
= Intv(g0, u) · log qv.

Proof. We run the same argument as in the proof of Proposition 13.8, where we note that the
compactness (modulo U(Vn)(F0,v)) of the support of the function Intv(·, ·) holds by Theorem
5.5. We then obtain a refinement of the equality in part (ii) of Theorem 14.6

− ∂Orb((x′0, u
′),Φ′v) ·Orb

(
(x′0, u

′),Φ
′(v)
)

= Intv(g0, u) ·Orb
(

(g0, u),Φ(v)
)
.

Here we note that Intv(ξ,Φ) in part (ii) of Theorem 14.6 is given by (9.18). Now the away from
v factors on the two sides are equal and can be chosen to be non-zero (e.g., the function Φ(v)

can be chosen point-wise non-negative with non-empty support containing (g0, u)).
�

15. The proof of AFL

Now we return to the set up of Conjecture 3.8 in §3.

Theorem 15.1. Conjecture 3.8 holds when F0 = Qp and p ≥ n.

Proof. The proof is parallel to that of Theorem 13.9. We prove Conjecture 3.8 part (b) by
induction on dimVn. The case n = 1 is known [47]. Assume now that Conjecture 3.8 part (b)
holds for Vn−1. Then by Proposition 4.12 part (i), Conjecture 3.8 part (a) holds for Sn. We
now want to globalize the situation in order to apply Corollary 14.8.

We start with the following local data

• a place v0 of F0 = Q, and an unramified (local) quadratic extension Fw0
/F0,v0

,

• the non-split Fv0
/F0,v0

-hermitian space Vn of dimension n,

• (gv0 , uv0) ∈ (U(Vn)× Vn)srs, we further assume that the characteristic polynomial of gv0 has
integral coefficients (in OFw0

) and det(1− gv0
) is a unit, and 〈uv0

, uv0
〉 6= 0,

• (x′v0
, u′v0

) ∈ (Sn × V ′)(F0,v0)srs matching (gv0 , uv0).

By the proof of Theorem 13.9, there exist the following global data

• an imaginary quadratic field F/F0 such that F ⊗F0 F0,v0 ' Fw0 .

• a totally real number field F ′0, and its quadratic extension F ′ = F ′0 ⊗F0
F ,

• an element g ∈ F ′1 such that OFw0
[g] = OFw0

[gv0
] as subrings of F ′ ⊗F Fw0

,

• a totally positive definite n-dimensional F/F0-hermitian space V (v0) that is locally at v0

isometric to Vn,

• u ∈ V (v0) such that the pair (g, u) is v0-adically close to (gv0
, uv0

) (in particular 〈u, u〉 6= 0).

Now we define the Shimura variety and integral modelsM for the nearby hermitian space V
of V (v0) at v0 (that is, non-split at v0, with signature (n − 1, 1) at v | ∞, and isomorphic to
V (v0) elsewhere). Let d be a finite set of places as in §6.2.2 such that v0 - d. Let S the set of
non-archimedean places such that

• v0 /∈ S,

• S contains all places dividing d,

• for every non-archimedean v /∈ S ∪ {v0}, the ring OF [g] is locally at v a maximal order.
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Then we proceed as the proof of Theorem 13.9 to choose (x′0, u
′) ∈ (Sn × V ′n)(F0) in the

unique regular semisimple orbit matching (g, u), and choose (partial) Gaussian test functions Φ
and Φ′.

Now we apply Corollary 14.8 to obtain

− ∂Orb((x′0, u
′),Φ′v0

) = Intv0
(g, u) log qv0

.

Therefore Conjecture 3.8 part (b) holds when (g, u) ∈ (U(Vn)× Vn)srs. By the local constancy
of the orbital integral, and of the intersection numbers by Theorem 5.5, near a strongly regular
semisimple (g, u), we conclude that Conjecture 3.8 part (b) holds when (gv0 , uv0) ∈ (U(Vn) ×
Vn)srs. This complete the induction.

�

Appendix A. Weil representation commutes with smooth transfer

We retain the notation in §2. Let F/F0 be a quadratic extension of local fields (the case
E = F × F could also be allowed but in that case the result below is trivial). Recall that
Vn = Fn0 × (Fn0 )∗. We have a bijection of regular semisimple orbits, cf. §2.3,∐

V

[
(U(V )× V )(F0)

]
rs

∼ // [Sn(F0)× V ′n]rs ,

where the disjoint union runs over the set of isometric classes of F/F0-hermitian spaces V of
dimension n. The notion of smooth transfer is as in Definition 2.2 (w.r.t. the transfer factor
there). Here let us focus on one hermitian space V at a time.

The Weil representation (for even dimensional quadratic space) is defined in §11. Here we
apply the formula (11.1) to the second variable in the functions in S(Sn×V ′n) and S(U(V )×V )
respectively. To fix the set up, we recall that the structure of F0-bilinear symmetric pairing on
V ′n is the tautological pairing

〈u′, u′〉 = 2u2(u1), u′ = (u1, u2) ∈ Fn0 × (Fn0 )∗.

and on V the quadratic form is the induced one, i.e.,

〈u, u〉F0
= trF/F0

〈u, u〉F , u ∈ V

where 〈·, ·〉F : V × V → F is the hermitian pairing (F -linear on the first factor and conjugate
F -linear on the second one).

We now deduce the following result from [48] when F is non-archimedean, and [44] when F
is archimedean.

Theorem A.1 (Weil representation commutes with smooth transfer). If Φ′ ∈ S(Sn × V ′n)
matches a function Φ ∈ S(U(V )× V ), then ω(h)Φ′ also matches ω(h)Φ for any h ∈ SL2(F ).

Remark A.2. Similar results hold for the partial Fourier transforms on the Lie algebra sn×V ′n
and u(V ) × V . A similar result for the endoscopic transfer can be deduced from a theorem of
Waldspurger.

Proof. We need to check the assertion for h of the form

(
a

a−1

)
,

(
1 b

1

)
and

(
1

−1

)
, as

in (11.1).

The assertion for h =

(
1 b

1

)
, b ∈ F is trivial.

Now let ha =

(
a

a−1

)
. Then

Orb((g, u), ω(ha)Φ) = χV (a)|a|n Orb((g, au),Φ)

for all (g, u) ∈ (U(V )× V )rs. Here

χV (a) = (a, (−1)dimF V det(V )),

where det(V ) is the discriminant of V as a quadratic space. We claim

χV (a) = η(a)dimF V . (A.1)
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Since det(V1⊕V2) = det(V1) det(V2) (in F×0 /(F
×
0 )2) for orthogonal direct sum V1⊕V2, it suffices

to prove the claim when dimF V = 1. Then there are only two isometric classes and one can
check the claim directly.

On the other hand

Orb((γ, u′), ω(ha)Φ′, s) = χV ′n(a)|a|n Orb((γ, au′),Φ′, s).

Now χV ′n is the trivial character since V ′n is an orthogonal direct sum of n-copies of the hyperbolic
2-space. We now note that the transfer factor (2.15) obeys

ω(γ, au′) = η(a)nω(γ, u′).

This proves the assertion for ω(ha), a ∈ F×.

Finally, let h =

(
1

−1

)
. Then

Orb((g, u), ω(h)Φ) = γV Orb((g, u), Φ̂)

where γV is the Weil constant. We claim, for our V induced from a hermitian form

γV = η(det(V )F/F0
) ε(η, 1/2, ψ)dimF V

where det(V )F/F0
∈ F×0 /NmF× is the hermitian discriminant of V (as an F/F0-hermitian

space). First note that the right hand side is multiplicative with respect to orthogonal direct
sum V1 ⊕ V2

det(V1 ⊕ V2)F/F0
= det(V1)F/F0

det(V2)F/F0
.

Note that, by definition, the Weil constant γV satisfies

ψ̂ ◦ q = γV ψ ◦ (−q),

where ψ ◦ q : V → F0 → C (resp., ψ ◦ (−q)) is the function precomposing ψ with q (resp., −q).
Here the Fourier transform is understood as applied to distributions. It follows that it is also
multiplicative with respect to orthogonal direct sum V1 ⊕ V2:

γV1⊕V2 = γV1 · γV2 .

Therefore it suffices to show the claim when dimF V = 1. Then one can check the claim
directly. In fact it is easy to see that we have γVa = η(a)dimF V γV where Va denotes the new
hermitian space by multiplying the hermitian form by a ∈ F×0 . Hence we may just check the
case det(V )F/F0

∈ NmF×, which is done in [20, Lemma 1.2] (where the constant λF/F0
(ψ) in

loc. cit. is the same as ε(η, 1/2, ψ)).
On the other hand, the Weil constant γV ′n = 1 since V ′n is an orthogonal direct sum of n-copies

of the hyperbolic 2-space. Hence

Orb((γ, u′), ω(h)Φ′, s) = Orb((γ, u′), Φ̂′, s).

Now the desired assertion follows from [48, Theorem 4.17] 9 when F is non-archimedean, and
the proof of [44, Theorem 9.1] when F is archimedean. Note that in [44], ε(η, 1/2, ψ) =

√
−1 for

his choice of the additive character ψ(x) = e2π
√
−1x, x ∈ R. �

Appendix B. Grothendieck groups for formal schemes

We collect some facts regarding formal schemes and the Grothendieck group of coherent
sheaves, largely following the work by Gillet–Soulé [12]. No result here is new.

9Note that in [48], the factor η(det(V )F/F0
) is missing.



74 W. ZHANG

B.1. Grothendieck groups. Let (X,OX) be a noetherian formal scheme [16, §10]. Let Y be
a closed formal subscheme of X (i.e., closed subscheme of a formal scheme in the terminology
in loc. cit.). Let J be the sheaf of ideals defining Y . A coherent sheaf F of OX–module is said
to be formally supported on Y if it is annihilated by J n for some n ≥ 1. We make this explicit
when (X,OX) is an affine formal scheme, say, the formal completion of SpecA at SpecA/I for
an ideal I of A, where A = lim←−nA/I

n is I-adically complete. Then we may assume that Y

is defined by an ideal J of A (i.e., J = J∆, cf. [16, §10.10]). Then a coherent sheaf F of
OX–module is formally supported on Y if M = Γ(X,F) as an A-module (equivalently the sheaf

J̃ of OSpecA–module) has support contained in the closed subset Spec(A/J) of SpecA.
Then the definitions in [12, §1] for noetherian schemes carry over to the setting of noetherian

formal schemes. Let K ′0(X) denote the Grothendieck group of coherent sheaves of OX -modules.
LetKY

0 (X) denote the Grothendieck group of finite complex of coherent locally freeOX -modules,
acyclic outside Y (i.e., the homology sheaves are supported on Y ), cf. [12, §1.2]. Let K0(X) =
KX

0 (X). The tensor product of (complex of) locally free sheaves induces the cup product

∪ : KY
0 (X)×KZ

0 (X) // KY ∩Z
0 (X)

by [F·] ∪ [G·] = [F· ⊗ G·], cf. [12, §1.4].
There is a descending filtration on KY

0 (X) by the subgroups

F iKY
0 (X) = ∪Z⊂Y,codimXZ≥i Im(KZ

0 (X) −→ KY
0 (X)). (B.1)

The associated graded groups are

GriKY
0 (X) = F iKY

0 (X)/F i+1KY
0 (X). (B.2)

Similarly, there is an ascending filtration FiK
′
0(X) on K ′0(X)

FiK
′
0(X) = ∪Z⊂X,dimZ≤i Im(K ′0(Z) −→ K ′0(X)).

From now on we assume that X is regular of pure dimension d. Then we have a natural
isomorphism

KY
0 (X)

∼ // K ′0(Y ) ,

and

F d−iKY
0 (X)

∼ // FiK
′
0(Y ) .

The construction of the Adam operations ψk, k ∈ Z≥1 in [12] still work for KY
0 (X) and induce

a decomposition

KY
0 (X)Q =

⊕
i≥0

KY
0 (X)iQ,

where ψk acts on (the “weight-i” part) KY
0 (X)iQ by the scalar ki. Moreover, by [12, Prop. 5.3]

F jKY
0 (X)Q =

⊕
i≥j

KY
0 (X)iQ,

and for j1, j2 ≥ 0, by [12, Prop. 5.5], the cup product has image

F j1KY
0 (X)Q · F j2KZ

0 (X)Q ⊂ F j1+j2KY ∩Z
0 (X)Q.

This last inclusion is a result we used in the proof of Proposition 5.3.
Finally, we relax the noetherian hypothesis. For our purpose, we only consider locally noe-

therian formal schemes (X,OX) that can be written as an increasing union

(X,OX) = ∪i∈Z≥0
(Xi,OXi)

of open noetherian formal schemes (the openness means that the transition maps fi : Xi → Xi+1

are open immersions of formal schemes). We then define

K0(X) = lim←−
i

K0(Xi), K ′0(X) = lim←−
i

K ′0(Xi).
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If Y is a closed formal subscheme of X, setting Yi = Y ×X Xi to write Y as the union of Yi’s,
we define

KY
0 (X) = lim←−

i

KYi
0 (Xi).

Similarly, we have the filtration F iKY
0 (X), and FiK

′
0(X), and they have the same properties as

in the noetherian case.
Now let π : W → S = Spf A be a morphism of formal schemes, where A is a complete discrete

valuation ring. When π is proper [17, III, 3.4.1] and W is a scheme (not only a formal scheme),
we have a “degree” map

K ′0(W ) // Z

[E ] � //
∑
i∈Z(−1)i lengthOS Riπ∗E .

The assumption on π and W implies that all Riπ∗E are torsion coherent sheaves and hence have
finite lengths. It is easy to see that this is independent of the choice of E in its equivalence class.
Now let X be regular with two closed formal subscheme Y and Z. If π : W = Y ∩Z → S = Spf A
is proper and W is a scheme, we obtain a homomorphism

KY
0 (X)×KZ

0 (X) // Z

([F ], [G]) � // χ(X,F ⊗L G)

where the Euler–Poincaré characteristic is defined by

χ(X,F ⊗L G) : =
∑
i,j∈Z

(−1)i+j lengthOS Riπ∗(TorOXj (F ,G)). (B.3)

We also denote

Y ∩L Z : = OY ⊗L
OX OZ ∈ K

′
0(Y ∩ Z) ' KY ∩Z

0 (X). (B.4)

B.2. A few lemmas. For convenience we record the following results.

Lemma B.1. Let X be a locally noetherian formal schemes of the above type. Let X = X1∪X2

be a union of two closed formal subschemes. Then there is a natural isomorphism 10

K′0(X)
K′0(X1∩X2)

∼ // K′0(X1)
K′0(X1∩X2)

⊕ K′0(X2)
K′0(X1∩X2)

[E ] � // ([E ⊗OX OX1
], [E ⊗OX OX2

]) .

Proof. We immediately reduce the question to the case when X is noetherian, which we assume
now. Let I and J be the sheaf of ideals of OX defining X1 and X2 respectively. Consider two
exact sequences of OX -modules

0 // OX/I ∩ J // OX/I ⊕ OX/J // OX/(I + J ) // 0 ,

and

0 // I ∩ J // OX // OX/I ∩ J // 0 .

Tensoring E , we obtain two exact sequences

TorOX1 (E ,OX1∩X2) // E ⊗ OX/I ∩ J // E ⊗ OX1 ⊕ E ⊗OX2
// E ⊗ OX1∩X2

// 0 ,

and

E ⊗ (I ∩ J ) // E // E ⊗ OX/(I ∩ J ) // 0 .

Since both TorOX1 (E ,OX1∩X2
) and E ⊗ OX1∩X2

lie in K ′0(X1 ∩X2), we have

[E ⊗ OX1 ] + [E ⊗ OX2 ] ≡ [E ⊗ OX/(I ∩ J )] ∈ K ′0(X)

K ′0(X1 ∩X2)
.

10Here K′
0(X1 ∩X2)→ K′

0(X1) is not necessarily injective, so the quotient simply denotes the cokernel.
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Since X = X1 ∪ X2, we have IJ = 0, and hence (I + J ) · (I ∩ J ) = 0. It follows that
OE ⊗ I ∩ J ∈ K ′0(X1 ∩X2), and hence

[E ] ≡ [E ⊗ OX/(I ∩ J )] ∈ K ′0(X)

K ′0(X1 ∩X2)
.

This completes the proof. �

In the case of “proper intersection”, the derived tensor product can be simplified:

Lemma B.2. Let X be a (locally noetherian) pure dimensional formal scheme of the above
type, and Z1, Z2 two pure dimensional closed formal subschemes on X. Assume that the closed
immersion Z1 → X is a regular immersion (e.g., if both X and Z1 are regular), and Z2 is
Cohen–Macaulay.

Z1 ∩ Z2
//

��
�

Z2

��

Z1
// X.

(i) If Z1 ∩ Z2 has the expected dimension (i.e., codimXY = codimXZ1 + codimXZ2 at every
point of Z1 ∩ Z2), then the higher Tor sheaves vanish, i.e.,

TorOXi (OZ1 ,OZ2) = 0, i > 0.

In particular, as elements in K ′0(Z1 ∩ Z2),

OZ1
⊗L OZ2

= OZ1
⊗OZ2

.

(ii) Let Z1 ∩ Z2 = Y ∪ Y ′ such that Y has the expected dimension. Then

TorOXi (OZ1
,OZ2

)|Y ≡ 0, i > 0,

as an element in K ′0(Y )/K ′0(Y ∩ Y ′).

Proof. This follows from the same argument in the proof of [38, Prop. 8.10] regarding the
vanishing of higher Tor terms. We prove the first part; the second part is proved similarly by
combining Lemma B.1.

Let x be a point on Z1 ∩ Z2. We need to show that (OZ1
⊗L OZ2

)x is represented by
OZ1∩Z2,x. Let R be the local ring of x on X. Since the closed immersion Z1 → X is a regular
immersion, by definition Z1 is defined at x by a regular sequence f1, · · · , fm of R. Then the
Koszul complex K(f1, · · · , fm) is a free resolution of the R-module OZ1,x. It follows that the
complex K(f1, · · · , fm)⊗R OZ2,x represents (OZ1 ⊗L OZ2)x.

Now, since Z2 is Cohen–Macaulay, the dimension hypothesis implies that the images f1, · · · , fm
of f1, · · · , fm in OZ2,x again form a regular sequence which generates the ideal defining Z1 ∩Z2

at x in Z2. Hence K(f1, · · · , fm) is a free resolution of the OZ2,x-module OZ1∩Z2,x. On the
other hand, we have

K(f1, · · · , fm)⊗R OZ2,x = K(f1, · · · , fm).

It follows that (OZ1
⊗L OZ2

)x is represented by K(f1, · · · , fm), or equivalently by OZ1∩Z2,x.
This completes the proof.

�
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[11] H. Gillet, Arithmetic intersection theory on Deligne–Mumford stacks. In Motives and algebraic cycles, Fields

Inst. Commun., vol. 56, Amer. Math. Soc., Providence, RI, 2009, pp. 93–109. 41
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