
Notes for 18.117

Elliptic operators

1 Differential operators on Rn

Let U be an open subset of Rn and let Dk be the differential operator,

1√
−1

∂

∂xk

.

For every multi-index, α = α1, . . . , αn, we define

Dα = Dα1

1 · · ·Dαn

n .

A differential operator of order r:

P : C∞(U) → C∞(U) ,

is an operator of the form

Pu =
∑

|α|≤r

aαDαu , aα ∈ C∞(U) .

Here |α| = α1 + · · ·αn.
The symbol of P is roughly speaking its “rth order part”. More explicitly it is the

function on U × Rn defined by

(x, ξ) →
∑

|α|=r

aα(x)ξα =: p(x, ξ) .

The following property of symbols will be used to define the notion of “symbol” for
differential operators on manifolds. Let f : U → R be a C∞ function.

Theorem 1.1. The operator

u ∈ C∞(U) → e−itfPeitfu

is a sum

(1.1)
r

∑

i=0

tr−iPiu

Pi being a differential operator of order i which doesn’t depend on t. Moreover, P0 is
multiplication by the function

p0(x) =: p(x, ξ)

with ξi = ∂f
∂xi

, i = 1, . . . n.
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Proof. It suffices to check this for the operators Dα. Consider first Dk:

e−itfDke
itfu = Dku + t

∂f

∂xk

.

Next consider Dα

e−itfDαeitfu = e−itf (Dα1

1 · · ·Dαn

n )eitfu

= (e−itfD1e
itf )α1 · · · (e−itfDneitf )αnu

which is by the above

(

D1 + t
∂f

∂x1

)α1 · · ·
(

Dn + t
∂f

∂xn

)αn

and is clearly of the form (1.1). Moreover the tr term of this operator is just multi-
plication by

(1.2)
( ∂

∂x1
f
)α1 · · ·

( ∂f

∂xn

)αn

.

Corollary 1.2. If P and Q are differential operators and p(x, ξ) and q(x, ξ) their
symbols, the symbol of PQ is p(x, ξ) q(x, ξ).

Proof. Suppose P is of the order r and Q of the order s. Then

e−itfPQeitfu =
(

e−itfPeitf
)(

e−itfQeitf
)

u

=
(

p(x, df)tr + · · ·
)(

q(x, df)ts + · · ·
)

u

=
(

p(x, df)q(x, df)tr+s + · · ·
)

u .

Given a differential operator

P =
∑

|α|≤r

aαDα

we define its transpose to be the operator

u ∈ C∞(U) →
∑

|α|≤r

Dαaαu =: P tu .

Theorem 1.3. For u, v ∈ C∞
0 (U)

〈Pu, v〉 =:

∫

Puv dx = 〈u, P tv〉 .
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Proof. By integration by parts

〈Dku, v〉 =

∫

Dkuv dx =
1√
−1

∫

∂

∂xk

uv dk

= − 1√
−1

∫

u
∂

∂xk
v dx =

∫

uDkv dx

= 〈u, Dkv〉 .

Thus

〈Dαu, v〉 = 〈u, Dαv〉
and

〈aαDαu, v〉 = 〈Dαu, aαv〉 = 〈u, Dαaαv〉, .

Exercises.

If p(x, ξ) is the symbol of P , p(x, ξ) is the symbol of P t.

Ellipticity.

P is elliptic if p(x, ξ) 6= 0 for all x ∈ U and ξ ∈ Rn − 0.

2 Differential operators on manifolds.

Let U and V be open subsets of Rn and ϕ : U → V a diffeomorphism.
Claim. If P is a differential operator of order m on U the operator

u ∈ C∞(V ) → (ϕ−1)∗Pϕ∗u

is a differential operator of order m on V .

Proof. (ϕ−1)∗Dαϕ∗ =
(

(ϕ−1)∗D1ϕ
∗
)α1 · · ·

(

(ϕ−1)∗Dnϕ∗
)αn

so it suffices to check this
for Dk and for Dk this follows from the chain rule

Dkϕ
∗f =

∑ ∂ϕi

∂xk

ϕ∗Dif .

This invariance under coordinate changes means we can define differential opera-
tors on manifolds.
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Definition 2.1. Let X = Xn be a real C∞ manifold. An operator, P : C∞(X) →
C∞(X), is an mth order differential operator if, for every coordinate patch, (U, x1, . . . , xn)
the restriction map

u ∈ C∞(X) → Pu � U

is given by an mth order differential operator, i.e., restricted to U ,

Pu =
∑

|α|≤m

aαDαu , aα ∈ C∞(U) .

Remark. Note that this is a non-vacuous definition. More explicitly let (U, x1, . . . , xn)
and (U ′, x′

1, . . . , x
′
n) be coordinate patches. Then the map

u → Pu � U ∩ U ′

is a differential operator of order m in the x-coordinates if and only if it’s a differential
operator in the x′-coordinates.

The symbol of a differential operator

Theorem 2.2. Let f : X → R be C∞ function. Then the operator

u ∈ C∞(X) → e−itfPe−itfu

can be written as a sum
m

∑

i=0

tm−iPi

Pi being a differential operator of order i which doesn’t depend on t.

Proof. We have to check that for every coordinate patch (U, x1, . . . , xn) the operator

u ∈ C∞(X) → e−itfPeitf � U

has this property. This, however, follows from Theorem 1.1.

In particular, the operator, P0, is a zeroth order operator, i.e., multiplication by a
C∞ function, p0.

Theorem 2.3. There exists C∞ function

σ(P ) : T ∗X → C

not depending on f such that

(2.1) p0(x) = σ(P )(x, ξ)

with ξ = dfx.
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Proof. It’s clear that the function, σ(P ), is uniquely determined at the points, ξ ∈ T ∗
x

by the property (2.1), so it suffices to prove the local existence of such a function on
a neighborhood of x. Let (U, x1, . . . , xn) be a coordinate patch centered at x and let
ξ1, . . . , ξn be the cotangent coordinates on T ∗U defined by

ξ → ξ1 dx1 + · · ·+ ξn dkn .

Then if
P =

∑

aαDα

on U the function, σ(P ), is given in these coordinates by p(x, ξ) =
∑

aα(x)ξα. (See
(1.2).)

Composition and transposes

If P and Q are differential operators of degree r and s, PQ is a differential
operator of degree r + s, and σ(PQ) = σ(P )σ(Q).

Let FX be the sigma field of Borel subsets of X. A measure, dx, on X is a
measure on this sigma field. A measure, dx, is smooth if for every coordinate
patch

(U, x1, . . . , xn) .

The restriction of dx to U is of the form

(2.2) ϕ dx1 . . . dxn

ϕ being a non-negative C∞ function and dx1 . . . dxn being Lebesgue measure on
U . dx is non-vanishing if the ϕ in (2.2) is strictly positive.

Assume dx is such a measure. Given u and v ∈ C∞
0 (X) one defines the L2 inner

product
〈u, v〉

of u and v to be the integral

〈u, v〉 =

∫

uv dx .

Theorem 2.4. If P : C∞(X) → C∞(X) is an mth order differential operator there is
a unique mth order differential operator, P t, having the property

〈Pu, v〉 = 〈u, P tv〉

for all u, v ∈ C∞
0 (X).
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Proof. Let’s assume that the support of u is contained in a coordinate patch, (U, x1, . . . , xn).
Suppose that on U

P =
∑

aαDα

and

dx = ϕdx1 . . . dxn .

Then

〈Pu, v〉 =
∑

α

∫

aαDαuvϕdx1 . . . dxn

=
∑

α

∫

aαϕDαuvdx1 . . . dxn

=
∑

∫

uDαaαϕvdx1 . . . dxn

=
∑

∫

u
1

ϕ
Dαāαϕvϕdx1 . . . dxn

= 〈u, P tv〉
where

P tv =
1

ϕ

∑

Dαaαϕv .

This proves the local existence and local uniqueness of P t (and hence the global
existence of P t!).

Exercise.

σ(P t)(x, ξ) = σ(P )(x, ξ).

Ellipticity.

P is elliptic if σ(P )(x, ξ) 6= 0 for all x ∈ X and ξ ∈ T ∗
x − 0.

The main goal of these notes will be to prove:

Theorem 2.5 (Fredholm theorem for elliptic operators.). If X is compact and

P : C∞(X) → C∞(X)

is an elliptic differential operator, the kernel of P is finite dimensional and u ∈ C∞(X)
is in the range of P if and only if

〈u, v〉 = 0
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for all v in the kernel of P t.

Remark. Since P t is also elliptic its kernel is finite dimensional.

3 Smoothing operators

Let X be an n-dimensional manifold equipped with a smooth non-vanishing measure,
dx. Given K ∈ C∞(X × X), one can define an operator

TK : C∞(X) → C∞(X)

by setting

(3.1) TKf(x) =

∫

K(x, y)f(y) dy .

Operators of this type are called smoothing operators. The definition (3.1) involves
the choice of the measure, dx, however, it’s easy to see that the notion of “smoothing
operator” doesn’t depend on this choice. Any other smooth measure will be of the
form, ϕ(x) dx, where ϕ is an everywhere-positive C∞ function, and if we replace dy by
ϕ(y) dy in (3.1) we get the smoothing operator, TK1

, where K1(x, y) = K(x, y) ϕ(y).
A couple of elementary remarks about smoothing operators:

1. Let L(x, y) = K(y, x). Then TL is the transpose of TK . For f and g in
C∞

0 (X),

〈TKf, g〉 =

∫

g(x)

(
∫

K(x, y)f(y) dy

)

dx

=

∫

f(y)(TLg)(y)dy = 〈f, TLg〉 .

2. If X is compact, the composition of two smoothing operators is a smoothing
operator. Explicitly:

TK1
TK2

= TK3

where

K3(x, y) =

∫

K1(x, z)K2(z, y) dz .

We will now give a rough outline of how our proof of Theorem 2.5 will go. Let
I : C∞(X) → C∞(X) be the identity operator. We will prove in the next few sections
the following two results.

Theorem 3.1. The elliptic operator, P is right-invertible modulo smoothing opera-
tors, i.e., there exists an operator, Q : C∞(X) → C∞(X) and a smoothing operator,
TK , such that

(3.2) PQ = I − TK
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and

Theorem 3.2. The Fredholm theorem is true for the operator, I−TK , i.e., the kernel
of this operator is finite dimensional, and f ∈ C∞(X) is in the image of this operator
if and only if it is orthogonal to kernel of the operator, I−TL, where L(x, y) = K(y, x).

Remark. In particular since TK is the transpose of TL, the kernel of I − TL is finite
dimensional.

The proof of Theorem 3.2 is very easy, and in fact we’ll leave it as a series of
exercises. (See §8.) The proof of Theorem 3.1, however, is a lot harder and will
involve the theory of pseudodifferential operators on the n-torus, T n.

We will conclude this section by showing how to deduce Theorem 2.5 from The-
orems 3.1 and 3.2. Let V be the kernel of I − TL. By Theorem 3.2, V is a finite
dimensional space, so every element, f , of C∞(X) can be written uniquely as a sum

(3.3) f = g + h

where g is in V and h is orthogonal to V . Indeed, if f1, . . . , fm is an orthonormal
basis of V with respect to the L2 norm

g =
∑

〈f, fi〉fi

and h = f − g. Now let U be the orthocomplement of V ∩ Image P in V .

Proposition 3.3. Every f ∈ C∞(M) can be written uniquely as a sum

(3.4) f = f1 + f2

where f1 ∈ U , f2 ∈ Image P and f1 is orthogonal to f2.

Proof. By Theorem 3.1

(3.5) Image P ⊃ Image (I − TK) .

Let g and h be the “g” and “h” in (3.3). Then since h is orthogonal to V , it is in
Image (I − TK) by Theorem 3.2 and hence in Image P by (3.5). Now let g = f1 + g2

where f1 is in U and g2 is in the orthocomplement of U in V (i.e., in V ∩ Image P ).
Then

f = f1 + f2

where f2 = g2 + h is in Image P . Since f1 is orthogonal to g2 and h it is orthogonal
to f2.

Next we’ll show that

(3.6) U = Ker P t .

Indeed f ∈ U ⇔ f ⊥ Image P ⇔ 〈f, Pu〉 = 0 for all u ⇔ 〈P tf, u〉 = 0 for all
u ↔ P tf = 0.

This proves that all the assertions of Theorem 3.2 are true except for the finite
dimensionality of Ker P . However, (3.6) tells us that Ker P t is finite dimensional and
so, with P and P t interchanged, Ker P is finite dimensional.
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4 Fourier analysis on the n-torus

In these notes the “n-torus” will be, by definition, the manifold: T n = R
n/2πZ

n. A
C∞ function, f , on T n can be viewed as a C∞ function on Rn which is periodic of
period 2π: For all k ∈ Zn

(4.1) f(x + 2πk) = f(x) .

Basic examples of such functions are the functions

eikx , k ∈ Z
n , kx = k1x1 + · · · knxn .

Let P = C∞(T n) = C∞ functions on Rn satisfying (4.1), and let Q ⊆ Rn be the open
cube

0 < xi < 2π . i = 1, . . . , n .

Given f ∈ P we’ll define

∫

T n

f dx =

(

1

2π

)n ∫

Q

f dx

and given f, g ∈ P we’ll define their L2 inner product by

〈f, g〉 =

∫

T n

fg dx .

I’ll leave you to check that
〈eikx , ei`x〉

is zero if k 6= ` and 1 if k = `. Given f ∈ P we’ll define the kth Fourier coefficient of
f to be the L2 inner product

ck = ck(f) = 〈f, eikx〉 =

∫

T n

fe−ikx dx .

The Fourier series of f is the formal sum

(4.2)
∑

cke
ikx , k ∈ Z

n .

In this section I’ll review (very quickly) standard facts about Fourier series.
It’s clear that f ∈ P ⇒ Dαf ∈ P for all multi-indices, α.

Proposition 4.1. If g = Dαf

ck(g) = kαck(f) .
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Proof.
∫

T n

Dαfe−ikx dx =

∫

T n

fDαeikx dx .

Now check
Dαeikx = kαeikx .

Corollary 4.2. For every integer r > 0 there exists a constant Cr such that

(4.3) |ck(f)| ≤ Cr(1 + |k|2)−r/2 .

Proof. Clearly

|ck(f)| ≤ 1

(2π)n

∫

Q

|f | dx = C0 .

Moreover, by the result above, with g = Dαf

|kαck(f)| = |ck(g)| ≤ Cα

and from this it’s easy to deduce an estimate of the form (4.3).

Proposition 4.3. The Fourier series (4.2) converges and this sum is a C∞ function.

To prove this we’ll need

Lemma 4.4. If m > n the sum

(4.4)
∑

(

1

1 + |k|2
)m/2

, k ∈ Z
n ,

converges.

Proof. By the “integral test” it suffices to show that the integral

∫

Rn

(

1

1 + |x|2
)m/2

dx

converges. However in polar coordinates this integral is equal to

γn−1

∫ ∞

0

(

1

1 + |r|2
)m/2

rn−1 dr

(γn−1 being the volume of the unit n − 1 sphere) and this converges if m > n.
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Combining this lemma with the estimate (4.3) one sees that (4.2) converges ab-
solutely, i.e.,

∑

|ck(f)|
converges, and hence (4.2) converges uniformly to a continuous limit. Moreover if we
differentiate (4.2) term by term we get

Dα
∑

cke
ikx =

∑

kαcke
ikx

and by the estimate (4.3) this converges absolutely and uniformly. Thus the sum (4.2)
exists, and so do its derivatives of all orders.

Let’s now prove the fundamental theorem in this subject, the identity

(4.5)
∑

ck(f)eikx = f(x) .

Proof. Let A ⊆ P be the algebra of trigonometric polynomials:

f ∈ A ⇔ f(x) =
∑

|k|≤m

ake
ikx

for some m.

Claim. This is an algebra of continuous functions on T n having the Stone–Weierstrass
properties

1) Reality: If f ∈ A, f ∈ A.

2) 1 ∈ A.

3) If x and y are points on T n with x 6= y, there exists an f ∈ A with
f(x) 6= f(y).

Proof. Item 2 is obvious and item 1 follows from the fact that eikx = e−ikx. Finally
to verify item 3 we note that the finite set, {eix1, . . . , eixn}, already separates points.
Indeed, the map

T n → (S1)n

mapping x to eix1 , . . . , eixn is bijective.
Therefore by the Stone–Weierstrass theorem A is dense in C0(T n). Now let f ∈ P

and let g be the Fourier series (4.2). Is f equal to g? Let h = f − g. Then

〈h, eikx〉 = 〈f, eikx〉 − 〈g, eikx〉
= ck(f) − ck(f) = 0

so 〈h, eikx〉 = 0 for all eikx, hence 〈h, ϕ〉 = 0 for all ϕ ∈ A. Therefore since A is dense
in P, 〈h, ϕ〉 = 0 for all ϕ ∈ P. In particular, 〈h, h〉 = 0, so h = 0 .
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I’ll conclude this review of the Fourier analysis on the n-torus by making a few
comments about the L2 theory.

The space, A, is dense in the space of continuous functions on T n and this space
is dense in the space of L2 functions on T n. Hence if h ∈ L2(T n) and 〈h, eikx〉 = 0 for
all k the same argument as that I sketched above shows that h = 0. Thus

{eikx , k ∈ Z
n}

is an orthonormal basis of L2(T n). In particular, for every f ∈ L2(T n) let

ck(f) = 〈f, eikx〉 .

Then the Fourier series of f
∑

ck(f)eikx

converges in the L2 sense to f and one has the Plancherel formula

〈f, f〉 =
∑

|ck(f)|2 , k ∈ Z
n .

5 Pseudodifferential operators on T n

In this section we will prove Theorem 2.5 for elliptic operators on T n. Here’s a road
map to help you navigate this section. §5.1 is a succinct summary of the material in
§4. Sections 5.2, 5.3 and 5.4 are a brief account of the theory of pseudodifferential
operators on T n and the symbolic calculus that’s involved in this theory. In §5.5 and
5.6 we prove that an elliptic operator on T n is right invertible modulo smoothing
operators (and that its inverse is a pseudodifferential operator). Finally, in §5.7, we
prove that pseudodifferential operators have a property called “pseudolocality” which
makes them behave in some ways like differential operators (and which will enable us
to extend the results of this section from T n to arbitrary compact manifolds).

Some notation which will be useful below: for a ∈ Rn let

〈a〉 = (|a|2 + 1)
1

2 .

Thus
|a| ≤ 〈a〉

and for |a| ≥ 1
〈a〉 ≤ 2|a| .
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5.1 The Fourier inversion formula

Given f ∈ C∞(T n), let ck(f) = 〈f, eikx〉. Then:

1) ck(D
αf) = kαck(f).

2) |ck(f)| ≤ Cr〈k〉−r for all r.

3)
∑

ck(f)eikx = f .

Let S be the space of functions,

g : Z
n → C

satisfying
|g(k)| ≤ Cr〈k〉−r

for all r. Then the map

F : C∞(T n) → S , Ff(k) = ck(f)

is bijective and its inverse is the map,

g ∈ S →
∑

g(k)eikx .

5.2 Symbols

A function a : T n × Rn → C is in Sm if, for all multi-indices, α and β,

(5.2.1) |Dα
xDβ

ξ a| ≤ Cα,β〈ξ〉m−|β| .

Examples

1) a(x, ξ) =
∑

|α|≤m aα(x)ξα, aα ∈ C∞(T n).

2) 〈ξ〉m.

3) a ∈ S` and b ∈ Sm ⇒ ab ∈ S`+m.

4) a ∈ Sm ⇒ Dα
xDβ

ξ a ∈ Sm−|β|.
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The asymptotic summation theorem

Given bi ∈ Sm−i, i = 0, 1, . . . , there exists a b ∈ Sm such that

(5.2.2) b −
∑

j<i

bj ∈ Sm−i.

Proof. Step 1. Let ` = m + ε, ε > 0. Then

|bi(x, ξ)| < Ci〈ξ〉m−i =
Ci〈ξ〉`−i

〈ξ〉ε .

Thus, for some λi,

|bi(x, ξ)| <
1

2i
〈ξ〉`−i

for |ξ| > λi. We can assume that λi → +∞ as i → +∞. Let ρ ∈ C∞(R) be bounded
between 0 and 1 and satisfy ρ(t) = 0 for t < 1 and ρ(t) = 1 for t > 2. Let

(5.2.3) b =
∑

ρ

( |ξ|
λi

)

bi(x, ξ) .

Then b is in C∞(T n × Rn) since, on any compact subset, only a finite number of
summands are non-zero. Moreover, b −

∑

j<i bj is equal to:

∑

j<i

(

ρ

( |ξ|
λj

)

− 1

)

bj + bi +
∑

j>i

ρ

( |ξ|
λj

)

bj .

The first summand is compactly supported, the second summand is in Sm−1 and the
third summand is bounded from above by

∑

k>i

1

2k
〈ξ〉`−k

which is less than 〈ξ〉`−(i+1) and hence, for ε < 1, less than 〈ξ〉m−i.

Step 2. For |α| + |β| ≤ N choose λi so that

|Dα
xDβ

ξ bi(x, ξ)| ≤ 1

2i
〈ξ〉`−i−|β|

for λi < |ξ|. Then the same argument as above implies that

(5.2.4) Dα
xDβ

ξ (b −
∑

j,i

bj) ≤ CN〈ξ〉m−i−|β|

for |α| + |β| ≤ N .
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Step 3. The sequence of λi’s in step 2 depends on N . To indicate this dependence
let’s denote this sequence by λi,N , i = 0, 1, . . .. We can, by induction, assume that
for all i, λi,N ≤ λi,N+1. Now apply the Cantor diagonal process to this collection of
sequences, i.e., let λi = λi,i . Then b has the property (5.2.4) for all N .

We will denote the fact that b has the property (5.2.2) by writing

(5.2.5) b ∼
∑

bi .

The symbol, b, is not unique, however, if b ∼
∑

bi and b′ ∼
∑

bi, b − b′ is in the
intersection,

⋂

S`, −∞ < ` < ∞.

5.3 Pseudodifferential operators

Given a ∈ Sm let
T 0

a : S → C∞(T n)

be the operator

T 0
a g =

∑

a(x, k)g(k)eikx .

Since
|Dαa(x, k)eikx| ≤ Cα〈k〉m+〈α〉

and
|g(k)| ≤ Cα〈k〉−(m+n+|α|+1)

this operator is well-defined, i.e., the right hand side is in C∞(T n). Composing T 0
a

with F we get an operator

Ta : C∞(T n) → C∞(T n) .

We call Ta the pseudodifferential operator with symbol a.

Note that
Tae

ikx = a(x, k)eikx .

Also note that if

P =
∑

|α|≤m

aα(x)Dα(5.3.1)

and

p(x, ξ) =
∑

|α|≤m

aα(x)ξα .(5.3.2)

Then
P = Tp .
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5.4 The composition formula

Let P be the differential operator (5.3.1). If a is in Sr we will show that PTa is a
pseudodifferential operator of order m + r. In fact we will show that

PTa = Tp◦a(5.4.1)

where

p ◦ a(x, ξ) =
∑

|β|≤m

1

β!
∂β

ξ p(x, ξ)Dβ
xa(x, ξ)(5.4.2)

and p(x, ξ) is the function (5.3.2).

Proof. By definition

PTae
ikx = Pa(x, k)eikx

= eikx(e−ikxPeikx)a(x, k) .

Thus PTa is the pseudodifferential operator with symbol

(5.4.3) e−ixξPeixξa(x, ξ) .

However, by (5.3.1):

e−ixξPeixξu(x) =
∑

aα(x)e−ixξDαeixξu(x)

=
∑

aα(x)(D + ξ)αu(x)

= p(x, D + ξ)u(x) .

Moreover,

p(x, η + ξ) =
∑ 1

β!

∂

∂ξβ
p(x, ξ)ηβ ,

so

p(x, D + ξ)u(x) =
∑ 1

β!

∂

∂ξβ
p(x, ξ)Dβu(x)

and if we plug in a(x, ξ) for u(x) we get, by (5.4.3), the formula (5.4.2) for the symbol
of PTa.

5.5 The inversion formula

Suppose now that the operator (5.3.1) is elliptic. We will prove below the following
inversion theorem.
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Theorem 5.1. There exists an a ∈ S−m and an r ∈
⋂

S`, −∞ < ` < ∞, such that

PTa = I − Tr .

Proof. Let

pm(x, ξ) =
∑

|α|=m

aα(x)ξα .

By ellipticity pm(x, ξ) 6= 0 for ξ 6∈ 0. Let ρ ∈ C∞(R) be a function satisfying ρ(t) = 0
for t < 1 and ρ(t) = 1 for t > 2. Then the function

(5.5.1) a0(x, ξ) = ρ(|ξ|) 1

pm(x, ξ)

is well-defined and belongs to S−m. To prove the theorem we must prove that there
exist symbols a ∈ S−m and r ∈ ⋂S`, −∞ < ` < ∞, such that

p ◦ q = 1 − r .

We will deduce this from the following two lemmas.

Lemma 5.2. If b ∈ Si then
b − p ◦ a0b

is in Si−1.

Proof. Let q = p − pm. Then q ∈ Sm−1 so q ◦ a0b is in Si−1 and by (5.4.2)

p ◦ a0b = pm ◦ a0b + q ◦ a0b

= pma0b + · · · = b + · · ·

where the dots are terms of order i − 1.

Lemma 5.3. There exists a sequence of symbols ai ∈ S−m−i, i = 0, 1, . . ., and a
sequence of symbols ri ∈ S−i, i = 0, . . . , such that a0 is the symbol (5.5.1), r0 = 1
and

p ◦ ai = ri − ri+1

for all i.

Proof. Given a0, . . . , ai−1 and r0, . . . ri, let ai = ria0 and ri+1 = ri − p ◦ ai. By
Lemma 5.2, ri+1 ∈ S−i−1.
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Now let a ∈ S−m be the “asymptotic sum” of the ai’s

a ∼
∑

ai .

Then

p ◦ a ∼
∑

p ◦ ai =

∞
∑

i=0

ri − ri+1 = r0 = 1 ,

so 1 − p ◦ a ∼ 0, i.e., r = 1 − p ◦ q is in
⋂

S`, −∞ < ` < ∞.

5.6 Smoothing properties of ΨDO’s

Let a ∈ S`, ` < −m − n. We will prove in this section that the sum

(5.6.1) Ka(x, y) =
∑

a(x, k)eik(x−y)

is in Cm(T n × T n) and that Ta is the integral operator associated with Ka, i.e.,

Tau(x) =

∫

Ka(x, y)u(y) dy .

Proof. For |α| + |β| ≤ m
Dα

xDβ
y a(x, k)eik(x−y)

is bounded by 〈k〉`+|α|+|β| and hence by 〈k〉`+m. But ` + m < −n, so the sum

∑

Dα
xDβ

y a(x, k)eik(x−y)

converges absolutely. Now notice that

∫

Ka(x, y)eiky dy = a(x, k)eikx = Tαeikx .

Hence Ta is the integral operators defined by Ka. Let

(5.6.2) S−∞ =
⋂

S` , −∞ < ` < ∞ .

If a is in S−∞, then by (5.6.1), Ta is a smoothing operator.

18



5.7 Pseudolocality

We will prove in this section that if f and g are C∞ functions on T n with non-
overlapping supports and a is in Sm, then the operator

(5.7.1) u ∈ C∞(T n) → fTagu

is a smoothing operator. (This property of pseudodifferential operators is called
pseudolocality.) We will first prove:

Lemma 5.4. If a(x, ξ) is in Sm and w ∈ R
n, the function,

(5.7.2) aw(x, ξ) = a(x, ξ + w) − a(x, ξ)

is in Sm−1.

Proof. Recall that a ∈ Sm if and only if

|Dα
xDβ

ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β| .

From this estimate is is clear that if a is in Sm, a(x, ξ + w) is in Sm and ∂a
∂ξi

(x, ξ) is

in Sm−1, and hence that the integral

aw(x, ξ) =

∫ 1

0

∑

i

∂a

∂ξi
(x, ξ + tw) dt

in Sm−1.
Now let ` be a large positive integer and let a be in Sm, m < −n − `. Then

Ka(x, y) =
∑

a(x, k)eik(x−y)

is in C`(T n ×T n), and Ta is the integral operator defined by Ka. Now notice that for
w ∈ Zn

(5.7.3) (e−i(x−y)w − 1)Ka(x, y) =
∑

aw(x, k)eik(x−y) ,

so by the lemma the left hand side of (5.7.3) is in C`+1(T n × T n). More generally,

(5.7.4) (e−i(x−y)w − 1)NKa(x, y)

is in C`+N(T n × T n). In particular, if x 6= y, then for some 1 ≤ i ≤ n, xi − yi 6≡ 0
mod 2πZ, so if

w = (0, 0, . . . , 1, 0, . . . , 0) ,

(a “1” in the ith-slot), ei(x−y)w 6= 1 and, by (5.7.4), Ka(x, y) is C`+N in a neighborhood
of (x, y). Since N can be arbitrarily large we conclude
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Lemma 5.5. Ka(x, y) is a C∞ function on the complement of the diagonal in T n×T n.

Thus if f and g are C∞ functions with non-overlapping support, fTag is the
smoothing operator, TK , where

(5.7.5) K(x, y) = f(x)Ka(x, y)g(y) .

We have proved that Ta is pseudolocal if a ∈ Sm, m < −n − `, ` a large positive
integer. To get rid of this assumption let 〈D〉N be the operator with symbol 〈ξ〉N . If
N is an even positive integer

〈D〉N = (
∑

D2
i + I)

N

2

is a differential operator and hence is a local operator: if f and g have non-overlapping
supports, f〈D〉Ng is identically zero. Now let aN(x, ξ) = a(x, ξ)〈ξ〉−N . Since aN ∈
Sm−N , TaN

is pseudolocal for N large. But Ta = TaN
〈D〉N , so Ta is the composition

of an operator which is pseudolocal with an operator which is local, and therefore Ta

itself is pseudolocal.

6 Elliptic operators on open subsets of T n

Let U be an open subset of T n. We will denote by ιU : U → T n the inclusion map
and by ι∗U : C∞(T n) → C∞(U) the restriction map: let V be an open subset of T n

containing U and

P =
∑

|α|≤m

aα(x)Dα , aα(x) ∈ C∞(V )

an elliptic mth order differential operator. Let

P t =
∑

|α|≤m

Dαaα(x)

be the transpose operator and

pm(x, ξ) =
∑

|α|=m

aα(x)ξα

the symbol of P . We will prove below the following localized version of the inversion
formula of § 5.5.

Theorem 6.1. There exist symbols, a ∈ S−m and r ∈ S−∞ such that

(6.1) Pι∗UTa = ι∗U(I − Tr) .
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Proof. Let γ ∈ C∞
0 (V ) be a function which is bounded between 0 and 1 and is

identically 1 in a neighborhood of U . Let

Q = PP tγ + (1 − γ)(
∑

D2
i )

n .

This is a globally defined 2mth order differential operator in T n with symbol,

(6.2) γ(x)|pm(x, ξ)|2 + (1 − γ(x))|ξ|2m

and since (6.2) is non-vanishing on T n × (Rn − 0), this operator is elliptic. Hence, by
Theorem 5.1, there exist symbols b ∈ S−2m and r ∈ S−∞ such that

QTb = I − Tr .

Let Ta = P tγTb. Then since γ ≡ 1 on a neighborhood of U ,

ι∗U(I − Tr) = ι∗UQTb

= ι∗U(PP tγTb + (1 − γ)
∑

D2
i Tb)

= ι∗UPP tγTb

= Pι∗UP tγTb = Pι∗UTa .

7 Elliptic operators on compact manifolds

Let X be a compact n dimensional manifold and

P : C∞(X) → C∞(X)

an elliptic mth order differential operator. We will show in this section how to con-
struct a parametrix for P : an operator

Q : C∞(X) → C∞(X)

such that I − PQ is smoothing.
Let Vi, i = 1, . . . , N be a covering of X by coordinate patches and let Ui, i =

1, . . . , N , U i ⊂ Vi be an open covering which refines this covering. We can, without
loss of generality, assume that Vi is an open subset of the hypercube

{x ∈ R
n 0 < xi < 2π i = 1, . . . , n}

and hence an open subset of T n. Let

{ρi ∈ C∞
0 (Ui) , i = 1, . . . , N}
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be a partition of unity and let γi ∈ C∞
0 (Ui) be a function which is identically one on

a neighborhood of the support of ρi. By Theorem 6.1, there exist symbols ai ∈ S−m

and ri ∈ S−∞ such that on T n:

(7.1) Pι∗Ui
Tai

= ι∗Ui
(I − Tri

) .

Moreover, by pseudolocality (1 − γi)Tai
ρi is smoothing, so

γiTai
ρi − ι∗Ui

Tai
ρi

and
PγiTai

ρi − Pι∗Ui
Tai

ρi

are smoothing. But by (7.1)
Pι∗Ui

Tai
ρi − ρiI

is smoothing. Hence

(7.2) PγiTai
ρi − ρiI

is smoothing as an operator on T n. However, PγiTai
ρi and ρiI are globally defined

as operators on X and hence (7.2) is a globally defined smoothing operator. Now let
Q =

∑

γiTai
ρi and note that by (7.2)

PQ − I

is a smoothing operator.

This concludes the proof of Theorem 3.1, and hence, modulo proving Theorem 3.2.
This concludes the proof of our main result: Theorem 2.5. The proof of Theorem 3.2
will be outlined, as a series of exercises, in the next section.

8 The Fredholm theorem for smoothing operators

Let X be a compact n-dimensional manifold equipped with a smooth non-vanishing
measure, dx. Given K ∈ C∞(X × X) let

TK : C∞(X) → C∞(X)

be the smoothing operator (3.1).

Exercise 1. Let V be the volume of X (i.e., the integral of the constant function, 1,
over X). Show that if

max |K(x, y)| <
ε

V
, 0 < ε < 1
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then I − TK is invertible and its inverse is of the form, I − TL, L ∈ C∞(X × X).
Hint 1. Let Ki = K ◦ · · · ◦ K (i products). Show that sup |Ki(x, y)| < Cεi and
conclude that the series

(8.1)
∑

Ki(x, y)

converges uniformly.
Hint 2. Let U and V be coordinate patches on X. Show that on U × V

Dα
xDβ

y Ki(x, y) = Kα ◦ Ki−2 ◦ Kβ(x, y)

where Kα(x, z) = Dα
xK(x, z) and Kβ(z, y) = Dβ

y K(z, y). Conclude that not only does
(8.1) converge on U × V but so do its partial derivatives of all orders with respect to
x and y.

Exercise 2. (finite rank operators.) TK is a finite rank smoothing operator if K
is of the form:

(8.2) K(x, y) =

N
∑

i=1

fi(x)gi(y) .

(a) Show that if TK is a finite rank smoothing operator and TL is any smoothing
operator, TKTL and TLTK are finite rank smoothing operators.

(b) Show that if TK is a finite rank smoothing operator, the operator, I − TK , has
finite dimensional kernel and co-kernel.

Hint. Show that if f is in the kernel of this operator, it is in the linear span of the
fi’s and that f is in the image of this operator if

∫

f(y)gi(y) dy = 0 , i = 1, . . . , N .

Exercise 3. Show that for every K ∈ C∞(X × X) and every ε > 0 there exists a
function, K1 ∈ C∞(X × X) of the form (8.2) such that

sup |K − K1|(x, y) < ε .

Hint. Let A be the set of all functions of the form (8.2). Show that A is a subalgebra
of C(X × X) and that this subalgebra separates points. Now apply the Stone–
Weierstrass theorem to conclude that A is dense in C(X × X).
Exercise 4. Prove that if TK is a smoothing operator the operator

I − TK : C∞(X) → C∞(X)
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has finite dimensional kernel and co-kernel.
Hint. Show that K = K1 + K2 where K1 is of the form (8.2) and K2 satisfies the
hypotheses of exercise 1. Let I−TL be the inverse of I−TK2

. Show that the operators

(I − TK) ◦ (I − TL)

(I − TL) ◦ (I − TK)

are both of the form: identity minus a finite rank smoothing operator. Conclude that
I − TK has finite dimensional kernel and co-kernel.

Exercise 5. Prove Theorem 3.2.
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