Homework Assignment 2 for 18.965

1. (a) Let A be an $n \times n$ matrix. Show that the infinite series

(*)
$$\exp tA = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

converges uniformly on compact subintervals of the t-axis.

(b) Show that $\exp tA$ is differentiable as a function of t and that

$$\frac{d}{dt}\exp tA = (\exp tA)A = A(\exp tA).$$

Hint: First show that if one differentiates the series above term by term one gets a series which is uniformly convergent on compact intervals.

- (c) Conclude from b) that $\exp tA$ is smooth in t.
- 2. Let $A = (a_{ij})$ be an $n \times n$ matrix and let v_A be the vector field on \mathbb{R}^n :

$$v_A = \Sigma(a_{ij}x_j) \frac{\partial}{\partial x_i}$$
.

Show that v_A generates a global one-parameter group of diffeomorphisms of \mathbb{R}^n .

Hint: Let x_0 be an arbitrary point of \mathbb{R}^n .

Show that the curve

$$t \to (\exp tA)(x_0), -\infty < t < \infty$$

is the (unique) integral curve of v_A passing through the point x_0 .

- 3. From exercise 2 deduce that $(\exp sA)(\exp tA) = \exp(s+t)A$.
- 4. Let GL(n) be the group of invertible $n \times n$ matrices and let $\phi : \mathbb{R} \to GL(n)$ be a homomorphism of the additive group of real numbers into GL(n). Assuming ϕ is smooth, prove that there exists a $n \times n$ matrix, A, such that $\phi(t) = \exp tA$ for all t.

- 5. Let A and B be $n \times n$ matrices. Prove that the following properties are equivalent:
 - (i) A and B commute (as matrices).
 - (ii) $\exp tA$ and $\exp sB$ commute for all s and t.
 - (iii) The Lie bracket of v_A and v_B is zero.
- 6. Let A be an $n \times n$ matrix. Prove that the following properties are equivalent:
 - (i) The transpose of A is -A.
 - (ii) $\exp tA$ is in O(n) for all $t \in \mathbb{R}$.

Hint: Let x_0 be an arbitrary point of \mathbb{R}^n .

To prove i. implies ii. Compute

$$\frac{d}{dt}\|(\exp tA)(x_0)\|^2$$

and show that it's identically zero.