PSET 9 Solutions

18.314

November 30, 2013

P1. a) True. Run Kruskal's algorithm with that edge being the unique minimal-weight edge.
b) True. Run Kruskal's algorithm with the two edges (and only these two edges) having the smallest weights.
c) False. If the three edges form a triangle.
d) True. Run Kruskal's algorithm with the edges in F (and only these edges) having the smallest weights.

P2. a) The eigenvalues of the adjacency matrix are ± 1, so the those of the Laplacian are 0 and 2. The number of spanning trees is then $\frac{1}{2} 2=1$, by Matrix-Tree.
b) The (list of) eigenvalues of the adjacency matrix are $-2,0,0,2$, so those of the Laplacian are $0,2,2,4$. By Matrix-Tree, $\frac{1}{4} \cdot 2 \cdot 2 \cdot 4=4$ is the number of spannig trees.
c) The (list of) eigenvalues of the adjacency matrix are $-3,-1,-1,-1,1,1,1,3$, so those of the Laplacian are $0,2,2,2,4,4,4,6$. By Matrix-Tree, $\frac{1}{8} \cdot 2^{3} \cdot 4^{3} \cdot 6=$ $4^{3} \cdot 6=384$ is the number of spanning trees.
d) As numbers, the eigenvalues of the adajcency matrix are $-n,-n+2,-n+$ $4, \ldots, n-4, n-2, n$, where the multiplicity of $n-2 k$ is $\binom{n}{k}$. Hence, those of the Laplacian are $0,2,4,6, \ldots, 2 n$, where the multiplicity of $2 k$ is $\binom{n}{k}$. Hence, the number of spanning trees is $\frac{\prod_{k=1}^{n}(2 k)^{\binom{n}{k}}}{2^{n}}$.

A1. a) By inspection we check that $\mathcal{L}-r I$ has s identical rows, so it has rank at most $r+1$. But then, the multiplicity of the 0 eigenvalue is at least $s-1$, so the multiplicity of the eigenvalue r in \mathcal{L} is at least $s-1$.
b) Analogous to a), the multiplicity of eigenvalue s in \mathcal{L} is at least $r-1$.
c) \mathcal{L} has two more eigenvalues, one of which is 0 . The remaining one can be quickly found by computing the trace, which is $2 r s$, and subtracting the known eigenvalues to obtain $r+s$.
d) Form the previous points this is $\frac{r^{s-1} s^{r-1}(r+s)}{r+s}=r^{s-1} s^{r-1}$.

A2. a) The number of vertices is the number of given eigenvalues, so 9 . The degree of each vertex is equal to the largest eigenvalue, so 4 . Hence, the number of edges is $\frac{1}{2} \cdot 9 \cdot 4=18$.
b) The eigenvalues of the Laplacian are $6,6,6,6,3,3,3,3,0$, so by MatrixTree, the number of spanning trees is $\frac{1}{9} \cdot 6^{4} \cdot 3^{4}=11664$.

