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P1. A transitive tournament on n vertices is the same as a ranking of the
vertices. Hence, there are n! of them.

P2. There are n vertices, and each can have at most degree n − 1, so each
can have degree 1, 2, . . . , n−2 or n−1. By the pigeonhole principle, there must
exist at least two vertices with the same degree.

P3. If each player has played at most two games so far, then the total

number of games played is ≤ 2·(number of players)
2 = number of players = 10.

P4. There is 1 with no edges and 1 with 6 edges. There is 1 with 1 edge
and 1 with 5 edges. There are 2 with 2 edges and 2 with 4 edges. Finally, on 3
edges, there is 1 with a degree 3 vertex, 1 with a triangle, and 1 with exactly 2
degree 2 vertices. The total number is 1 + 1 + 1 + 1 + 2 + 2 + 3 = 11.

P5. By induction we can suppose that the result holds for dimension less
than n, and try to prove the case of n. One can start from the origin, find a
hamiltonian cycle on the (n−1)-dim. cube given by fixing the last coordinate to
0, and then finish the walk prior to returning to the origin at (1, 0, 0, . . . , 0, 0).
From there, one can walk to (1, 0, 0, . . . , 0, 1) and use induction and symmetry
of the cube to find a hamiltonian cycle on the (n − 1)-dim. cube given by
fixing the last coordinate to 1, and whose final vertex prior to completing the
cycle is precisely is (0, 0, 0, . . . , 0, 1). From there, one goes back to the origin,
completeing the proof.

P6. It is not connected, one of the connected components must have at most
3 vertices. Hence, any vertex in that connected component cannot have degree
at least 3.

A1. All vertices have degree
(
5
3

)
= 10, which is even, so a classic theorem

from the book shows that the graph does have an Eulerian trail.
A2. No, the two degre 8 vertices connect to all other vertices, so there cannot

be a vertex of degree 1.
A3. No, for example a path on 4 vertices ◦ − ◦ − ◦ − ◦.
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