HW 6, Solutions

18.314

November 1, 2013

P1. The line notation of a n-permutation is a concatenation of idecomposable permutations, each on a block of a partition of $[n]$. Hence, $G(x)=\frac{1}{1-F(x)}$, so $F(x)=1-\frac{1}{G(x)}$.

P2. Let $A(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$. Then, we can check that $A(x)=1+x+$ $x(A(x)-1)+x^{2} A(x)$, so $A(x)=\frac{1}{1-x-x^{2}}$. Let $F(x)=\sum_{n \geq 0} F_{n} x^{n}$ be the ordinary generating function found in Exercise 4 . We see that $F(x)=A(x)$, but the solution gives the recurrence $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with $F_{0}=F_{1}=1$, which is precisely the recurrence for Fibonacci numbers, i.e. F_{n} is equal to the n-th Fibonacci number. As a consequence, $a_{n}=n!F_{n}$.

P3. We can check that $\sum_{n \geq 1} \frac{x^{n}}{n}=-\log (1-x)$. Then, by the product formula for exponential generating functions we see that $G(x)=\frac{(-1)^{k} \log (1-x)^{k}}{k!}$, once we note that the order of the cycles does not matter and accordingly correct dividing by k !.

P4. The 2 possibilities for 1×1 rectangles are represented by $2 x$, and the 3 possibilities for 1×2 rectangles are represented by $3 x^{2}$. We see that we are actually looking for the compositional formula to create the tiling of the $1 \times n$ rectangle, so $H(x)=\frac{1}{1-2 x-3 x^{2}}$.

P5. Any concatenation of $A B$'s and B 's gives rise to one such word, and also any concatenation of them plus a final A in the last position works. Also, any such word can be uniquely decomposed as concatenations of the kind described. Hence, $H(x)=\frac{1+x}{1-x-x^{2}}$.

P6. Mainly, we can check that $\prod_{n>1} \frac{1}{1+x^{n}}=\prod_{n>0}\left(1-x^{2 n+1}\right)$ as formal power series, using the identity $\left(1-x^{n}\right)\left(1+x^{n}\right)=\left(1+x^{2 n}\right)$. Now, the LHS is precisely $\sum_{n>0}\left(p_{\text {even }}(n)-p_{\text {odd }}(n)\right) x^{n}$, and the RHS is precisely $\sum_{n \geq 0}(-1)^{n} p_{\text {distict odd }}(n) x^{n}$.
$\overline{\mathrm{A}} 1$. (Long solution) The problem is equivalent to proving the identity of formal power series

$$
\prod_{i \geq 1}\left(\frac{1}{1-q^{i}}-q^{i}\right)=\prod_{\substack{i \geq 1 \\ i \neq 1,5 \\(\bmod 6)}} \frac{1}{1-q^{i}}
$$

Now, $\frac{1}{1-q^{i}}-q^{i}=\frac{1-q^{i}+q^{2 i}}{1-q^{i}}=\frac{1+q^{3 i}}{\left(1-q^{i}\right)\left(1+q^{i}\right)}$. Multiplying both sides of the identity by $\prod_{i \geq 1}\left(1-q^{i}\right)$ we obtain

$$
\prod_{i \geq 1} \frac{1+q^{3 i}}{1+q^{i}}=\prod_{i \equiv 1,5(\bmod 6)}\left(1-q^{i}\right)
$$

This is equivalent to having

$$
\prod_{\substack{i \geq 1 \\ i \equiv 1,5 \\(\bmod 6)}}\left(1-q^{i}\right) \prod_{\substack{k \geq 1 \\ k \equiv 1,2(\bmod 3)}}\left(1+q^{k}\right)=1 .
$$

Every $k \equiv r(\bmod 3)$ with $r \in\{1,-1\}$ can be written uniquely as $k=2^{a} b$ with b odd, a and b nonnegative integers. We have $b \equiv(-1)^{a} r(\bmod 3)$ and hence, $b \equiv(-1)^{a} r(\bmod 6)$. We can then write

$$
\prod_{\substack{k \geq 1 \\ k \equiv 1,2}}\left(1+q^{k}\right)=\prod_{\substack{k \geq 1 \\ j \geq 1 \\ k \equiv 1,5 \\(\bmod 3)}}\left(1+q^{2^{j} k}\right) .
$$

However,

$$
\begin{aligned}
& \prod_{\substack{i \geq 1 \\
i \equiv 1,5(\bmod 6)}}\left(1-q^{i}\right) \prod_{\substack{k \geq 1 \\
j \geq 1 \\
k \equiv 1,5(\bmod 6)}}\left(1+q^{2^{j} k}\right) \\
&=\prod_{\substack{i \geq 1 \\
i \equiv 1,5}}\left(1-q^{i}\right) \prod_{j \geq 1}\left(1+q^{2^{j} i}\right)=\prod_{\substack{i \geq 1 \\
i \equiv 1,5 \\
(\bmod 6)}} 1=1 .
\end{aligned}
$$

A2. (Short solution, due to M. Zimet) Let f_{n} be the number of partitions of n in which no part appears more than twice, and set $F(x)=1+\sum_{n \geq 1} f_{n} x^{n}$. Let g_{n} be the number of partitions of n for which no part is divisible by 3 , and set $G(x)=1+\sum_{n \geq 1} g_{n} x^{n}$. Then, we can check that,

$$
F(x)=\prod_{n \geq 1}\left(1+x^{n}+x^{2 n}\right)=\prod_{n \geq 1} \frac{1-x^{3 n}}{1-x^{n}}=\prod_{\substack{n \geq 1 \\ 3 \text { doesn't divide } n}} \frac{1}{1-x^{n}}
$$

On the other hand,

$$
G(x)=\prod_{\substack{n \geq 1 \\ 3 \text { doesn't divide } n}}\left(1+x^{n}+x^{2 n}+\ldots\right)=\prod_{\substack{n \geq 1 \\ 3 \text { doesn't divide } n}} \frac{1}{1-x^{n}},
$$

as required.

