HW 4 Solutions

18.314

October 12, 2013

P1. This is equal to the number of permutations of six whose cycle decomposition is given by the product of cycles of length at most 2 . Hence, we have the case of three transpositions, two transpositions, one transposision and zero transpositions. Respectively, this gives $\frac{1}{3!}\binom{6}{2,2,2}+\frac{1}{2!}\binom{6}{2,2,2}+\binom{6}{2}+1=$ $15+45+15+1=76$.

P2. Since there can only be one cycle of length 11 , then we can simply pick the underlying set of the cycle, then pick the order for the cycle, and then notice that the remaining part of the permutation is a permutation of nine, so the answer is $\binom{20}{11} \cdot \frac{11!}{11} \cdot 9!=\frac{20!}{11}$.

P3. For this one note that we can have two cycles of length n. Using the same reasoning as above, but subtracting the overcounting caused by this new possibility, we obtain $\binom{2 n}{n} \cdot \frac{n!}{n} \cdot n!-\frac{1}{2!}\binom{2 n}{n} \frac{n!n!}{n \cdot n}=\frac{(2 n)!}{n}-\frac{1}{2} \frac{(2 n)!}{n^{2}}=\frac{(2 n)!(2 n-1)}{2 n^{2}}$.

P4. These are permutations that be decomposed as products of cycles of length 1 and 3 . We have cases $3+3,3+1+1+1$ and $1+1+1+1+1+1$. Hence and respectively, the answer is $\frac{1}{2!}\binom{6}{3} \frac{3!3!}{3 \cdot 3}+\binom{6}{3} \frac{3!}{3}+1=40+40+1=81$.

P5. Suppose $n>2$. Then, for any permutation of $[n]$, the number n belongs to a cycle. If the cycle has length 1 , then these are counted by $a(n-$ $1, k-1$) after removing n. If the cycle has length >1, then these are counted by $(n-1) a(n-1, k)$ (the $n-1$ coming from the number right before n in the cycle notation of our permutation) after removing n. Hence, $a(n, k)=$ $a(n-1, k-1)+(n-1) a(n-1, k)$.

Now, $a(2,2)=0$ and $a(2,1)=1$. Hence, for $n=2$ the polynomial becomes x, agreeing with the proposed result. But for $n>2$, we also have that $x^{2}(x+$ 2) $\cdots(x+n-2)+(n-1) \cdot x(x+2) \cdots(x+n-2)=x(x+2) \cdots(x+n-2)(x+n-1)$, so the same recurrence is satisfied by our polynomials on both sides of the equality, and by induction on n the equality will hold for all $n \geq 2$.

P6. Call these permutations good and consider a good permutation of $[n]$. In its cycle decomposition, the number n can be in a cycle of length 1,2 or 4. These are all disjoint cases. For the first case, the remaining part is a good permutation of $[n-1]$. For the second case, it is a good permutation of $[n-1] \backslash\{i\}$ where i is the other element in the cycle with n. For the third case, it is a good permutation of $[n-1] \backslash\{i, j, k\}$ where i, j, k occur in the same cycle as n. Hence, a recurrence may be given by $u(n)=u(n-1)+\binom{n-1}{1} \cdot u(n-2)+\binom{n-1}{3} \cdot 3!\cdot u(n-4)$.

