18.314: PROBLEM SET 9 ADDITIONAL PROBLEMS

Problem Set 9: 10.39, 10.45 and the two problems below; due Tuesday Nov 26
(A1) The complete bipartite graph $K_{r s}$ has vertex set $A \cup B$, where $|A|=r,|B|=s$ and $A \cap B=\emptyset$. There is an edge between every vertex of A and every vertex of B, so rs edges in all. Let $\mathcal{L}=\mathcal{L}\left(K_{r s}\right)$ be the Laplacian matrix of $K_{r s}$.
(a) Find a simple upper bound on $\operatorname{rank}(\mathcal{L}-r I)$. Deduce a lower bound on the number of eigenvalues of \mathcal{L} equal to r.
(b) Assume $r \neq s$, and do the same as (a) for s instead of r.
(c) Find the remaining eigenvalues of \mathcal{L}.
(d) Use the previous parts to compute $\kappa\left(K_{r s}\right)$.
(e) (optional) Give a combinatorial proof of the formula for $\kappa\left(K_{r s}\right)$.
(A2) Let G be a regular graph. Suppose the eigenvalues of the adjacency matrix of G are $-2,-2,-2,-2$, 1, 1, 1, 1, 4 .
(a) Find the number of vertices, the number of edges, and the degrees of the graph G.
(b) Find the number of spanning trees of G.

