18.314: PROBLEM SET 9 ADDITIONAL PROBLEMS

Problem Set 9: 10.39, 10.45 and the two problems below; due Tuesday Nov 26

(A1) The complete bipartite graph K_{rs} has vertex set $A \cup B$, where |A| = r, |B| = s and $A \cap B = \emptyset$. There is an edge between every vertex of A and every vertex of B, so rs edges in all. Let $\mathcal{L} = \mathcal{L}(K_{rs})$ be the Laplacian matrix of K_{rs} .

(a) Find a simple upper bound on rank $(\mathcal{L} - rI)$. Deduce a lower bound on the number of eigenvalues of \mathcal{L} equal to r.

(b) Assume $r \neq s$, and do the same as (a) for s instead of r.

(c) Find the remaining eigenvalues of \mathcal{L} .

(d) Use the previous parts to compute $\kappa(K_{rs})$.

(e) (optional) Give a combinatorial proof of the formula for $\kappa(K_{rs})$.

(a) Find the number of vertices, the number of edges, and the degrees of the graph G.

(b) Find the number of spanning trees of G.