18.314: PROBLEM SET 7 OPTIONAL PROBLEMS

(O1) Let G be the graph whose vertices are all of the 3 -element subsets of $\{1,2, \ldots, 8\}$ (so G has a total of $\binom{8}{3}=56$ vertices), and whose edges connect two vertices S, T if (and only if) $S \cap T=\emptyset$. For instance, there is an edge between 245 and 137, but no edge between 245 and 147. Does G contain a (closed) Eulerian trail?
(O2) Can a 9 -vertex simple graph have the degrees of its vertices equal to $8,8,6,5,5,4,4,3,1$? Why or why not?
(O3) Let G be a simple graph with $|V|=2 m$, and $\operatorname{deg}(v) \geq m-1$ for all $v \in V$. Is it true that G must have a Hamiltonian cycle? (Compare with the theorem of Dirac done in class.)

