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Pázmány Péter sétány 1/c, Budapest, 1117, Hungary9
kungabor@cs.elte.hu

VERA VÉRTESI11
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1. Introduction25

Computability of algebraic properties has become more popular since the first com-
puter was built. Our major interest in this article is the finite algebra membership27

problem in varieties: for any variety of algebras V we want to decide whether a given
algebra B belongs to the variety. In the sequel V is assumed to be generated by a29

single finite algebra A. Varieties are equational classes. Thus the membership prob-
lem can be decided by equation testing. To get a decision we may test some or all31

of the equations of the variety in the input algebra. The question arises naturally:
what can be the complexity of such an equation testing. A complexity measure33

can be established for finite algebras via the notion of equational bound, defined
by McNulty. The β-function is a map from the positive integers into the natural35

numbers. The value of β(n) is less than or equal to k if for the decision whether
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an algebra of size less than n belongs to the variety it is enough to check the equa-1

tions of length less than k. Székely [7] has shown an algebra of at least sublinear
β-function. Kozik’s dissertation [4] provides a construction of a finite algebra with3

PSPACE-hard membership problem and at least doubly exponential β-function. In
this paper for arbitrary d ≥ 2 we construct a finite flat hypergraph algebra, A, such5

that for the corresponding β-function the following holds. There is a polynomial
of degree d dominating βA. Moreover there exists another polynomial of the same7

degree dominated by βA for infinitely many values of n.

2. Basic Definitions9

An algebra A = 〈A, F 〉 is a nonempty set equipped with a system of finitary
fundamental operations, F = 〈fi : i ∈ I〉. A system of fundamental operation11

symbols F such that a nonnegative integer is assigned to each member of F is the
signature of the algebra. An algebra is finite, if the underlying set is finite (i.e.13

|A| < ∞). A is of finite signature, if the system of fundamental operations is finite
(i.e. |F | < ∞).15

Let u be a term of some signature. The length of this term, l(u), can be
defined recursively. The length of a variable is 1. Suppose that the lengths of17

u1, u2, . . . , un are defined, and f is an n-ary fundamental operation symbol. Then
l(f(u1, u2, . . . , un)) = 1 +

∑n
i=1 l(ui). The length of an equation l(u ≈ v) =19

l(u) + l(v). The rank of an equation is the number of different variables occur-
ring on the two sides.21

We denote by A |= u ≈ v that the algebra satisfies the equation u ≈ v. If
Σ is a set of equations, then A |= Σ denotes that every equation in Σ holds in23

A. Let Σl denote the equations of length less than l in Σ, and ΣA the set of all
equations satisfied in A. A variety V is a class of algebras axiomatized by some set25

of equations ΣV , i.e. A ∈ V ⇔ A |= ΣV . A variety generated by an algebra A is the
variety axiomatized by ΣA. By Birkhoff’s famous theorem [1] V = HSP (V), and27

V(A) = HSP (A), where H, S and P denote the operations forming homomorphic
images, subalgebras and direct products, respectively. A variety is said to be locally29

finite, if every finitely generated algebra in the variety is finite.
We say, that a nontrivial equation (u ≈ v) follows from a set of equations Σ,31

if all algebras satisfying all equations in Σ satisfy u ≈ v as well. An algebra is
said to be finitely based, if ΣA is a consequence of some finite set of its equations,33

that is called the equational basis for A. A variety is finitely based, if it can be
axiomatized by a finite set of its equations. Clearly, A is finitely based, if and only35

if V(A) is finitely based. An algebra, or a variety is nonfinitely based, if it is not
finitely based. A variety is inherently nonfinitely based, if it is locally finite, but37

contained in no locally finite finitely based variety. A congruence of an algebra is
an equivalence relation which is compatible with the fundamental operations (i.e. if39

a1, a2, . . . , an, b1, b2, . . . , bn ∈ A, (a1, b1) ∈ Θ, (a2, b2) ∈ Θ, . . . , (an, bn) ∈ Θ, and f
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is a fundamental operation then (f(a1, a2, . . . , an), f(b1, b2, . . . , bn)) ∈ Θ. An alge-1

bra is subdirectly irreducible, if it has a unique minimal, nontrivial congruence. An
algebra is a subdirect product of the family {Ai : i ∈ I}, if there is an embedding3

ι : A → ∏
i∈I Ai, such that the image of ι(A) for every projection πi is Ai (i ∈ I).

As it is stated in [1] every algebra can be built up from subdirectly irreducible ones,5

i.e. every algebra is a subdirect product of subdirectly irreducible algebras.

3. The Membership Problem7

The membership problem for a given variety asks whether a finite algebra B belongs
to the variety. In the sequel we will assume, that the variety is generated by a finite9

algebra A of finite signature. By definition B ∈ V(A) if and only if B |= ΣA. So
the membership problem can be answered by equation testing. Sometimes to decide11

whether B ∈ V(A) it is enough to check if a part of ΣA holds in B. For example,
if A is finitely based, then we only have to check the equational basis of A. Or if13

|B| = n, then we only have to check the equations of rank at most n in ΣA. So the
rank of those equations we must check is bounded by |B| = n. Similar questions15

arise for the maximal length of the necessary equations.
The β-function or equational bound is a function β : N → N such that βA(n) =17

β(n) is the maximal length of those equations that are necessary to decide whether
an algebra of size less than n belongs to the variety. Precisely,19

β(n) = min
{
l : ∀ |B| < n ,B ∈ V(A) ⇔ B |= Σl

A

}
.

Or in another way,21

β(n) = max
{
l : ∃ |B| < n ,B /∈ V(A) but B |= Σl

A

}
+ 1.

Clearly, these definitions give us the same function. By the second formula one23

can see that the β-function exists and it is uniquely determined for any variety
V = V(A), where A is a finite algebra of finite signature and it is recursive (it can25

be algorithmically computed).
A variety is said to be constantly bounded, if the β-function can be bounded by a27

constant: β(n) ≤ C (n ∈ N). An algebra is constantly bounded, if the corresponding
variety is constantly bounded. Clearly, if an algebra is finitely based, then it is29

constantly bounded as well. As far as the converse statement is concerned only a
weaker version is proved by Székely [7]. A similar result was proved by Cacioppo31

[2] for pseudovarieties of semigroups.

Proposition 1 (Székely). Let A be a finite, constantly bounded algebra of finite33

signature. Then A is either finitely based or inherently nonfinitely based.

However, the existence of an inherently nonfinitely based algebra which is constantly35

bounded is still an open problem. This question was firstly posed by Schützenberger
and Eilenberg [5] in the context of pseudovarieties.37

In what follows we investigate the β-function for some class of algebras called
hypergraph algebras.39
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4. Hypergraph Algebras and Flat Hypergraph Algebras1

Let R = 〈R, α〉 be a relational structure with one m-ary symmetric relation:
α ⊆ Rm such that (r1, r2, . . . , rm) ∈ α ⇔ (rπ(1), rπ(2), . . . , rπ(m)) ∈ α for every per-3

mutation π. These relational structures are some kind of hypergraphs, referred to
as m-uniform hypergraphs. The elements of R are called vertices and the members5

of α are edges. A hypergraph is said to be connected if for any two vertices r, s ∈ R

there exists a sequence of edges E1, E2, . . . , El such that r ∈ E1, Ei ∩ Ei+1 �= ∅7

(1 ≤ i < l) and s ∈ El. A connected component of a hypergraph is a maximal
connected sub-hypergraph. The connected components give a partition of the ver-9

tex set R. A path in a hypergraph is a sequence of edges E1, E2, . . . , El such that
Ei∩Ei+1 �= ∅ (1 ≤ i < l). A cycle or a closed path is a path such that E1 = El. Note11

that in a connected hypergraph there always exists a walk of size O(|α|) containing
every edge of the hypergraph:13

Remark 2. If R = 〈R, α〉 is an m-uniform hypergraph, then there exists a cycle
of size at most 2|α|, containing every edge of R15

Proof. We introduce a graph on the edges G = 〈α, ε〉. For E, F ∈ α let (E, F ) ∈
ε ⇔ E ∩ F �= ∅. Observe that a cycle in G containing all of the vertices defines a17

required path in R. It is well known that such a path in G of length at most 2|α|
exists.19

The m-hypergraph algebra belonging to R is AR = 〈AR, f, 0〉 with one m-ary
operation f and AR = R ∪ {0}, where 0 /∈ R is an absorbing element, i.e., if21

0 ∈ {x1, x2, . . . , xm} then f(x1, x2, . . . , xm) = 0, and for x1, x2, . . . , xm ∈ R

f(x1, x2, . . . , xm) =

{
x1, if (x1, x2, . . . , xm) ∈ α;

0, otherwise.23

Note that for m = 2 we get a graph algebra introduced by Shallon [6]. A flat m-
hypergraph algebra FR = 〈FR,∧, f, 0〉 of R is defined as follows: FR = R ∪ {0}25

where 0 /∈ R is an absorbing element, and for x1, x2, . . . , xm ∈ R

f(x1, x2, . . . , xm) =

{
x1, if (x1, x2, . . . , xm) ∈ α;

0, otherwise.27

For x, y ∈ R

x ∧ y =

{
x, if x = y;

0, otherwise.29

Thus 〈FR,∧, 0〉 is a semilattice of height 1. These semilattices are called flat. Also,
〈FR, f, 0〉 is the m-hypergraph algebra of R.31

The algebras we present are flat hypergraph algebras. Willard in [10] gave a
description of subdirectly irreducible algebras of flat algebras with absorbing ele-33

ment in general. We use his results in the context of flat hypergraph algebras to
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describe the subdirectly irreducible algebras in a variety generated by a single finite1

flat m-hypergraph algebra.

Theorem 3. Let FR = 〈FR,∧, f, 0〉 be a finite flat m-hypergraph algebra and let3

D ∈ V(FR) be any finite algebra. Then the following are equivalent:

(1) D is subdirectly irreducible.5

(2) D is a finite flat m-hypergraph algebrabelonging to a connected m-uniform
hypergraph S such that S ≤ Rt, an induced sub-hypergraph of the direct power7

Rt for some t > 0.
(3) D is simple.9

Thanks to this description, we only have to deal with hypergraphs in the sequel.

5. The Hypergraph r-Coloring Problem11

A (proper) r-coloring of a hypergraph R = 〈R, α〉 is a mapping c : R → {1, . . . , r}
such that for every edge (x1, x2, . . . , xm) ∈ α the size of the set |{c(x1), . . . ,13

c(xm)}| > 1 (i.e. the edges of R are not monochromatic). R is said to be r-colorable
if there exists such an r-coloring of R.15

An m-uniform hypergraph R = 〈R, α〉 is called r-critical if R is not r-colorable,
but removing any of the edges of R results in an r-colorable m-uniform hypergraph17

(i.e. R′ := 〈R, α \ {(a1, a2, . . . , am)}〉 is r-colorable for any (a1, a2, . . . , am) ∈ α).
Let Mm

r (n) denote the maximal number of edges possible in an r-critical m-19

uniform hypergraph having n vertices. Let Mm
r (n) = 〈Vn, γm

r 〉 denote an r-critical
m-uniform hypergraph, with maximal number of edges. Toft [9] obtained some21

bounds on M r
m(n). Among other things he proved the following.

Theorem 4 (Toft). For all r ≥ 4 and all m ≥ 2 there exists a positive constant23

cm
r such that for infinitely many values of n the inequalities cm

r nm ≤ Mm
r (n) hold.

In the sequel we will construct an m-uniform hypergraph Rr
m = 〈Rr

m, αr
m〉 such25

that any finite m-uniform hypergraph S = 〈S, γ〉 is r-colorable if and only if S
is an induced sub-hypergraph of (Rr

m)t for some finite t > 0. The vertex set of27

Rr
m is Rr

m = {a1, a2, . . . , ar, b1, b2, . . . , br} and the relation is defined as follows.
(x1, x2, . . . , xm) ∈ α if and only if none of the following relations hold:29

(1) {x1, x2, . . . , xm} ⊆ {b1, b2, . . . , br},
(2) {x1, x2, . . . , xm} ⊆ {ai, bi} for any 1 ≤ i ≤ r.31

Note that for m = 2 this construction is the same as the one described by Székely
in [8]. Clearly Rr

m is r-colorable, and Rr
m is a universally r-colorable m-hypergraph33

in the following sense.
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Theorem 5. Let S = 〈S, γ〉 denote a finite m-uniform hypergraph. Then the fol-1

lowing are equivalent:

(1) S is r-colorable.3

(2) S ≤ (Rr
m)t for a finite t > 0.

Proof. A power of an r-colorable hypergraph is r-colorable (a product of hyper-5

graphs is r-colorable if one of the factors is r-colorable). Obviously, an induced
sub-hypergraph of any r-colorable hypergraph is r-colorable, as well.7

For the converse, let S = 〈S, γ〉 be an r-colorable m-uniform hypergraph and
let c : S → {1, . . . , r} be a proper r-coloring of S. For any (unordered) m-tuple9

(x1, x2, . . . , xm) ⊆ Sm and any pair in an arbitrary order (x, y) (x �= y, x, y ∈ S)
we define a coordinate. Thus, we have t =

„|S|
m

«
+

„|S|
2

«
. We will inject S into11

(Rr
m)t by ι : S ↪→ (Rr

m)t. The coordinates of ι are denoted by ιj : S → Rr
m for

1 ≤ j ≤ „|S|
m

«
+

„|S|
2

«
. Let (x1, x2, . . . , xm) ∈ Sm be the jth tuple, then for s ∈ S we13

define

ιj(s) =

{
ac(s), if (x1, x2, . . . , xm) ∈ γ or s /∈ {x1, x2, . . . , xn};
bc(s), otherwise.15

For the jth pair, (x, y) we define

ι„|S|
m

«
+j

(s) =

{
bc(s), if s = x;

ac(s), otherwise.17

We claim that the image of ι : s �→ (ι1(s), . . . , ιt(s)), ι(S) ⊆ (Rr
m)t is an induced

sub-hypergraph of (Rr
m)t. Indeed, as S is r-colorable, if (s1, s2, . . . , sm) ∈ γ then19

for every 1 ≤ j ≤ t we have (ιj(s1), . . . , ιj(sm)) ∈ α, and if (s1, s2, . . . , sm) /∈ γ,
then for the coordinate j = (s1, s2, . . . , sm) the tuple (ιj(s1), . . . , ιj(sm)) /∈ α. The21

map ι is injective: for every element x, y ∈ S, x �= y the images ι(x) and ι(y) differ
in the coordinate corresponding to the pair (x, y).23

6. Bounds on the β-Function

In general it is enough to check a bound on the β-function for subdirect irreducible25

algebras. The lower bound obviously follows from the second formula for the equa-
tional bound. And for the upper bound, it is because an algebra belongs to the27

variety if and only if its subdirectly irreducible factors are in V , and the size of the
subdirectly irreducible factors do not exceed the size of the original algebra.29

From Theorems 3 and 5 we get an exact description of the subdirect irreducibles
in the variety generated by FRr

m
.31

Theorem 6. The finite subdirectly irreducible algebras of V(FRr
m

) are exactly those
flat m-hypergraph algebras which belong to some connected r-colorable m-uniform33

hypergraph.
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6.1. Lower bound1

From Theorems 4 and 6 we can give lower bounds on β-function.

Theorem 7. Let βr
m(n) = βFRr

m
(n). Then for all r ≥ 4 and all m ≥ 2 there exists3

a positive constant cm
r such that cm

r (n−2)m < βr
m(n) for infinitely many values of n.

Proof. For the sake of simplicity let A = FRr
m

and B = FMm
r (n−2). Note that5

|B| = n − 1. As Mm
r (n − 2) is not r-colorable B /∈ V(A). So, there exists an equa-

tion p ≈ q such that A |= p ≈ q, but B �|= p ≈ q. We will prove that l(p ≈ q) ≥7

Mm
r (n−2). Since B �|= p ≈ q, there is an evaluation e from the variable set of p ≈ q

to B such that e(p) �= e(q). Suppose that there is an edge (a1, a2, . . . , am) ∈ γm
r of9

Mm
r (n − 2) for which the term f(a1, a2, . . . , am) does not occur while evaluating

e(p) and e(q). If such a thing happens, then the evaluation would be the same over11

B̂ = FcMm
r (n−2)

, where M̂m
r (n − 2) = 〈Vn−2, γ

m
r \ (a1, a2, . . . , am)〉. So B̂ �|= p ≈ q.

But M̂m
r (n−2) is r-colorable, so B̂ ∈ V(A), thus B̂ |= p ≈ q, which is impossible. So13

in the computation of f(a1, a2, . . . , am), for every edge (a1, a2, . . . , am) must come
up in the evaluation of either p or q. This means that the operation f must occur at15

least Mm
r (n− 2) times in the terms p and q. Therefore l(p ≈ q) ≥ Mm

r (n− 2). And
for Mm

r (n − 2) we have the desired lower bound for infinitely many values of n.17

As a straightforward consequence of the above theorem we have:19

Corollary 8. There is no polynomial upper bound on the βA for all choices of the
finite algebra A.21

6.2. Upper bound

A natural way to get an upper bound on the β-function is to bound the length of23

representation of its terms. What is more, as is proved by Székely [7], this bound
need only be valid in the algebra that generates the variety.25

Lemma 9. Let n be an integer and A = 〈A, F 〉 of maximal arity a. Suppose, that
for every polynomial p of rank n there exists an other polynomial p̃ of length at27

most b(= b(A, n)) such that A |= p ≈ p̃.
Consider an algebra B = 〈B, F 〉 of the same signature generated by n elements,29

where B /∈ V(A). Then there exists an equation p ≈ q of length at most (a+1)b+1
such that A |= p ≈ q and B �|= p ≈ q31

Corollary 10. βA(n) ≤ (a + 1)b + 1

Székely deduced his result from Birkhoff’s [1] paper. For this reason Székely33

refers to such upper bounds on β-function as Birkhoff’s bounds.
To get upper bounds on the representations of the terms we will give a sufficient35

condition for the equivalence of two terms. The following lemmas and definitions
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are very technical. Let FS be an arbitrary flat hypergraph algebra belonging to1

S = 〈S, γ〉, and let p be a term of this signature. Let X denote the variable set of p.
We can get the value of e(p) at e : X → FS by iteration. We would like to describe3

those subterms which appear while evaluating.

Definition 11. The reductions of p are those terms that can be obtained from p5

by applying the following operations finitely many times.

(1) Writing u1 instead of f(u1, u2, . . . , um), where f(u1, u2, . . . , um) is a subterm7

of some reduction of p.
(2) Writing u or v instead of u∧v, where u∧v is a subterm of some reduction of p.9

Let Rp denote the set of reductions of p. A reduction which is only a variable is
the beginning of p. The set of the beginnings is denoted by Xp.11

As the length of a reduction is less then the length of p, there are finitely many
reductions of p. A reduction of a reduction of p is a reduction of p as well. Note,13

that if e(p) �= 0 than e(x) = e(y) for any x, y ∈ Xp, and thus e(p) = e(x) for any
x ∈ Xp. Now we define an equivalence relation θp on the set of variables. In essence15

two variables shall be equivalent if they agree at every nonzero evaluation of p.

Definition 12. xθ̃py ⇔ x ∧ y is a subterm of a reduction of p. θp is the transitive17

closure of θ̃p.

The equivalence class of x is denoted by [x]19

Observe that Xp is contained in a single equivalence class of θp. Thus one of the
equivalence classes of θp contains Xp. Let us denote this equivalence class by Cp. In21

the sequel we only deal with the equivalence classes: X/θp. To determine whether
e(p) �= 0 we need the following definition as well.23

Definition 13. The m-uniform hypergraph belonging to p is Sp = 〈Sp, γp〉, where
Sp = X/θp, and for the equivalence classes (C1, C2, . . . , Cm) ∈ γp if and only if there25

exists xi ∈ Ci (1 ≤ i ≤ m) and a permutation such that f(xπ(1), xπ(2), . . . , xπ(m))
is a reduction of p.27

Note that Sp is connected. One can get the above definitions by induction on
the formula p. For this we introduce some new notations: Let A1, A2, . . . , Al be sets29

of terms, then (A1, A2, . . . , Al) = {(a1, a2, . . . , al) : ai ∈ Ai (1 ≤ i ≤ l)} and if
g is an l-ary operation symbol, then g(A1, A2, . . . , Al) = {g(a1, a2, . . . , al) : ai ∈31

Ai (1 ≤ i ≤ l)}.

Definition 14.33

(1) If p = x is a variable, then

(a) Rp = {x};35

(b) Xp = {x};
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(c) θp = 0;1

(d) Sp = 〈Sp, γp〉 is defined by Sp = {[x]} and γp = ∅ ⊆ Sm
p .

(2) Let p = f(p1, p2, . . . , pm) and suppose that everything is defined for3

p1, p2, . . . , pm. Then

(a) Rp = Rp1 ∪ f(Rp1 , Rp2 , . . . , Rpm);5

(b) Xp = Xp1 ;
(c) θp = θp1 ∨ θp2 ∨ . . . ∨ θpm ;7

(d) Sp = 〈Sp, γp〉 is defined by Sp = Sp1 ∪ Sp2 ∪ . . .∪ Spm and γp = γp1 ∪ γp2 ∪
. . . ∪ γpm ∪ (Xp1 , Xp2 , . . . , Xpm).9

(3) Let p = p1 ∧ p2 and suppose that everything is defined for p1, p2. Then

(a) Rp = Rp1 ∪ Rp2 ∪ (Rp1 ∧ Rp2);11

(b) Xp = Xp1 ∪ Xp2 ;
(c) θp = θp1 ∨ θp2 ∨ (Xp1 , Xp2);13

(d) Sp = 〈Sp, γp〉 is defined by Sp = Sp1 ∪ Sp2 and γp = γp1 ∪ γp2 .

Now, we are able to state:15

Lemma 15. Let e : X → FS be an evaluation of p.

(1) Suppose that e is constant on the equivalence classes of θp, then it naturally17

defines a map ẽ : Sp → S.
(2) Then e(p) �= 0 if and only if it is constant on the equivalence classes, and19

ẽ : Sp → S is a hypergraph homomorphism.
(3) If e(p) �= 0 then e(p) = e(x), for any x ∈ Cp, which is well defined by the21

definition of Cp.

So θp, Cp and Sp determine the value of p. Thus if θp = θq, Cp = Cq and Sp = Sq23

then p ≈ q over every flat hypergraph algebra.
Thanks to the above lemma we can define a short representation of a term of25

rank at most n.

Lemma 16. For any term p of rank at most n there is another term p̃, for which27

θp = θep, Cp = Cep, Sp = Sep and l(p̃) ≤ (3m)·nm. Thus p has a short representation.

Proof. First we will construct a term p′ such that the variable set of p′ is X/θp,29

{Cp} = Xp′ , θp′ = 0, and Sp = Sp′ . Let E1, E2, . . . , El be a path of length at most
2|γ|, containing every edge of Sp. Suppose that Cp ∈ E1. We define p′ by recursion.31

If E1 = (C1
1 , C1

2 , . . . , C1
m) where Cp = C1

1 , then p′1 = f(C1
1 , C1

2 , . . . , C1
m). Suppose

we have defined p′i. Ei+1 = (Ci+1
1 , Ci+1

2 , . . . , Ci+1
m ) and for example Ci

j = Ci+1
1 ∈33

Ei ∩Ei+1, then we get p′i+1 from p′i, by replacing Ci
j with f(Ci+1

1 , Ci+1
2 , . . . , Ci+1

m ).
Then p′ = p′l will be as required. Now we construct p̃ just by replacing one C with35

∧C, and the other C’s by any variable x ∈ C for every equivalence class C of θp.
Obviously p̃ satisfies the conditions, and l(p̃) ≤ m · 2|γ| + n ≤ 3m · nm.37
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From Lemmas 9 and 16 we can state:1

Theorem 17. For any m-hypergraph algebra

βFS(n) ≤ 3m(m + 1) · nm + 1.3

Finally we have:

Theorem 18. Let βr
m(n) = βFRr

m
(n), and let cm

r defined as in Theorem 4. Then5

we have:

(1) For all m, n and r7

βr
m(n) ≤ 3m(m + 1) · (n + 1)m + 1.

(2) For all r ≥ 4 and all m ≥ 2 there exists a positive constant cm
r such that for9

infinitely many values of n

cm
r nm ≤ βr

m(n).11

7. Concluding Remarks

In [3] the first author and Kozik proved the analog of Theorem 6 for (di)graph13

algebras, without a flat-structure. Also a characterization of subdirectly irreducibles
in the variety generated by graph algebras can be found here. Using these techniques15

similar results can be obtained for hypergraph algebras as well. But we postpone
this for another occasion.17
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