TORSION POINTS ON CURVES OF THE FORM $y^n = x^d + 1$

VISHAL ARUL

Abstract. In this paper we study torsion points on curves of the form $y^n = x^d + 1$. When n and d are coprime and neither is a power of 2, we show that the only torsion points on this curve are: (i) those whose x-coordinate is zero, (ii) those whose y-coordinate is zero, (iii) the point at infinity.

1. Introduction

Fix coprime integers $n, d \geq 1$, and assume neither is a power of 2. Let C be the smooth projective model of the curve given by the equation

$$y^n = x^d + 1$$

in \mathbb{A}^2_C. Then C has a unique point at infinity, denoted by ∞. The genus of C is

$$g = \frac{1}{2}(n - 1)(d - 1).$$

Let J be the Jacobian of C. Then C naturally embeds into J via the map $P \mapsto P - \infty$; that is, the point P of C goes to the divisor $P - \infty$.

A point P of C is called a torsion point if there exists an integer $k \geq 1$ such that

$$kP \sim k\infty.$$

We seek to classify the torsion points on C.

Let $\zeta_n, \zeta_{2d} \in K$ be primitive nth and $2d$th roots of unity, respectively. For odd $0 \leq i \leq 2d - 1$ and any $0 \leq j \leq n - 1$, we have

$$\text{div}(x - \zeta_{2d}^i) = n(\zeta_{2d}^i, 0) - n\infty$$

$$\text{div}(y - \zeta_n^j) = d(0, \zeta_n^j) - d\infty,$$

from which it follows that the points $(\zeta_{2d}^i, 0)$ and $(0, \zeta_n^j)$ are all torsion points of C. Of course, there is also the point ∞ of C, which also counts as a torsion point. We seek to show that these are the only torsion points on C. Indeed, this will be our main result as Corollary 4.15. We restate it here as Theorem 1.1.

Theorem 1.1. Suppose n, d are coprime integers, neither of which is a power of 2. The only torsion points on the curve $y^n = x^d + 1$ are those whose x-coordinate or y-coordinate is zero, and also the point at ∞.

First we reduce to the case when n, d are both primes. If p, q are primes satisfying $p|n$ and $q|d$ and C' is the projective normalization of the curve cut out by $y^p = x^q + 1$ in the affine plane, then there is a dominant map $C \to C'$ acting on points as $(x, y) \mapsto (x^{n/p}, x^{d/q})$ which must send torsion points to torsion points (as it also induces a map on their Jacobians).

This research was supported in part by Simons Foundation grant #550033.
So if we can show that the torsion points on C' are precisely either (i) those whose x- or y-coordinates is zero or (ii) ∞, it follows that the same must be true for C.

So instead we now consider the curve C which is the projective normalization of the affine plane K-curve $y^p = x^q + 1$, for distinct odd primes $p,q \geq 3$.

Similar results are proven for the Fermat curve F_m given by the equation $X^n + Y^n + Z^n = 0$ in \cite{Col86}. A cusp is a point of $F_m(K)$ such that one of its coordinates is zero. In this paper, Coleman shows that whenever P and Q are points of $F_m(K)$ such that $P - Q$ is torsion and P is a cusp, then Q is also necessarily a cusp. Since our curve $y^m = x^q + 1$ is a quotient of the Fermat curve F_{nd}, we obtain a slightly stronger version of this result when m is of the form nd.

In \cite{Jęd14} and \cite{Jęd16}, Jędrzejak considers a slightly more general variant given by $y^a = x^b + a$. Jędrzejak studies the rational torsion of the Jacobian. Letting the Jacobian of this curve be $J_{q,p,a}$, Jędrzejak shows that the group $J_{q,p,a}(Q)_{\text{tors}} \simeq (\mathbb{Z}/2\mathbb{Z})^{e_2} \times (\mathbb{Z}/p\mathbb{Z})^{e_p} \times (\mathbb{Z}/q\mathbb{Z})^{e_q}$ where $e_2, e_p, e_q \in \{0, 1\}$. Jędrzejak also shows that when a is odd, that $e_2 = 0$. It follows easily that $J_{q,p,1}(Q)_{\text{tors}} \simeq (\mathbb{Z}/p\mathbb{Z}) \times (\mathbb{Z}/q\mathbb{Z})$, generated by the points $(-1, 0)$ and $(0, 1)$. Moreover in the case $a = 1$ we work out explicitly the torsion fields $Q(J_{q,p,1}[p], \mu_{pq})$ and $Q(J_{q,p,1}[q], \mu_{pq})$ in Theorem 3.6 The key ingredient is an understanding of the p-adic and q-adic valuation of certain Jacobi sums; this analysis is performed in \cite{Aru19}.

2. THE STRUCTURE OF $T_{\ell}J$ AS A Z-REPRESENTATION

Let J be the Jacobian of C. For any prime ℓ, let $T_{\ell}J$ be the ℓ-adic Tate module of J.

Now define Z to be the subgroup of $\text{Aut}(C)$ generated by the automorphism sending $(x, y) \mapsto (\zeta x, \zeta y)$. Note that Z is naturally isomorphic to μ_{pq}. We will seek to understand $T_{\ell}J$ as a representation of Z.

For every positive integer m, define $H_{\infty,m}$ to be the following Galois group.

$$H_{\infty,m} := \text{Gal}(Q(\mu_{pq}, J[m^\infty])/Q(\mu_{pq})).$$

Proposition 2.1. Suppose K_ℓ is any extension of Q_ℓ containing a primitive pq-th root of unity. Let $O_\ell = O_{K_\ell}$. Let J_ℓ be the group of characters (group homomorphisms) $\chi: Z \to O_\ell^\times$ and $T_\chi \subseteq T_{\ell}J \otimes_{\mathbb{Z}_\ell} O_\ell$ be the eigenspace corresponding to χ.

1. We have that

$$T_{\chi} \simeq \begin{cases} O_\ell & \text{if } \chi \text{ is injective}, \\ 0 & \text{otherwise}. \end{cases}$$

2. We have a decomposition

$$T_{\ell}J \otimes_{\mathbb{Z}_\ell} O_\ell \simeq \bigoplus_{\chi \in J_\ell} T_{\chi},$$

that respects the $H_{\infty,\ell}$ action; in particular, we get characters for $H_{\infty,\ell}$ indexed by J_ℓ. For injective χ, define

$$\xi_\chi: H_{\infty,\ell} \to \text{Aut}T_{\chi} \simeq O_\ell^\times$$

to be the action of $H_{\infty,\ell}$ on T_{χ}.

3. The Weil pairing extends to a nondegenerate symplectic pairing on $T_{\ell}J \otimes_{\mathbb{Z}_\ell} O_\ell$ taking values in $T_{\ell}J \otimes_{\mathbb{Z}_\ell} O_\ell \simeq \mathbb{Z}_\ell(1) \otimes_{\mathbb{Z}_\ell} O_\ell$. Furthermore, for the Weil pairing we have $\langle T_{\chi}, T_{\psi} \rangle = 0$ whenever $\psi \neq \chi^{-1}$.

2
Proof.

(1) (a) (Case 1: χ is not injective)

Either $\chi^p = 1$ or $\chi^q = 1$. The two cases are similar so we handle the former. Then Z^p must act trivially on $T \chi \subseteq T_\ell J \otimes_{\mathcal{O}_\ell} \mathcal{O}_\ell$, so in fact we must have the containment

$$T \chi \subseteq (T_\ell J \otimes_{\mathcal{O}_\ell} \mathcal{O}_\ell)^{Z^p} = (T_\ell J)^{Z^p} \otimes_{\mathcal{O}_\ell} \mathcal{O}_\ell.$$

Now note that under the quotient map $C \to C/Z^p$ we get an induced map $J \to \text{Jac}(C/Z^p)$ which induces $T_\ell J \to (T_\ell \text{Jac}(C/Z^p))$ and allows us to identify $T_\ell \text{Jac}(C/Z^p)$ with $(T_\ell J)^{Z^p}$. However C/Z^p is isomorphic to \mathbb{P}^1, so

$$(T_\ell J)^{Z^p} \simeq T_\ell \text{Jac}(C/Z^p) \simeq T_\ell \mathbb{P}^1 = 0.$$

(b) (Case 2: χ is injective)

Note that $\text{Gal}(\mathbb{Q}(\mu_{pq})/\mathbb{Q})$ acts on μ_{pq}, which is naturally isomorphic to Z. Then this Galois group must also act on the group of characters J_ℓ, and it acts on the injective characters transitively. Therefore $\dim T \chi$ is independent on χ for the injective χ.

Then as

$$\dim_{\mathcal{O}_\ell} T_\ell J \otimes_{\mathcal{O}_\ell} \mathcal{O}_\ell = \dim_{\mathcal{O}_\ell} T_\ell J = 2g = (p - 1)(q - 1) = \# \{\text{injective characters } \chi \}.$$

this shows that $\dim T \chi = 1$ for injective χ.

(2) The previous argument shows that this decomposition exists. It respects the $H_{\infty, \ell}$ action since the actions of $H_{\infty, \ell}$ and Z on \mathcal{C} both commute with each other.

(3) The Weil pairing on $T_\ell J$ is Z-invariant (since Z consists of automorphisms of the curve). It follows then that the dual of $\langle T\chi, T\psi \rangle = 0$ whenever $\chi \psi \neq 1$.

□

Definition 2.2. Since $H_{\infty, \ell}$ acts on μ_{l^∞}, it induces a map $H_{\infty, \ell} \to \text{Aut}(\mu_{l^\infty}) = Z_\ell^\times$. Let λ be the map

$$\lambda: H_{\infty, \ell} \to Z_\ell^\times \hookrightarrow \mathcal{O}_\ell^\times.$$

Since the Weil pairing is nondegenerate, we know that $\mathbb{Q}(J[l^\infty])$ contains $\mathbb{Q}(\mu_{l^\infty})$. Therefore,

Lemma 2.3. The image of λ is the following.

$$\lambda(H_{\infty, \ell}) = \begin{cases} Z_\ell^\times & \text{for } \ell \notin \{p, q\} \\ \ker(Z_\ell^\times \to \mathbb{F}_\ell^\times) & \text{for } \ell \in \{p, q\}. \end{cases}$$

Lemma 2.4. For every $\chi \in J_\ell$ we have

$$\xi_\chi \xi_{\chi^{-1}} = \lambda.$$

Proof. From Galois-equivariance of the Weil pairing we have that if $v \in T\chi$, $w \in T\chi^{-1}$, and $h \in H_{\infty, \ell}$ then

$$h(\langle v, w \rangle) = \langle h(v), h(w) \rangle = \langle \xi_\chi(h)v, \xi_{\chi^{-1}}(h)w \rangle = (\xi_\chi \xi_{\chi^{-1}})(h)\langle v, w \rangle.$$

If $\langle v, w \rangle$ is chosen to be a primitive element of μ_{l^∞}, the above shows that $\lambda(h) = \xi_\chi \xi_{\chi^{-1}}(h)$. □
Remark 2.5. By Proposition 2.1 (2), we have an embedding
\[H_{\infty, \ell} \hookrightarrow \prod_{\chi: \mathbb{Z} \to \mathcal{O}_\ell^\times} \text{Aut } T_{\chi} \simeq (\mathcal{O}_\ell^\times)^{2g}. \]
In particular, \(H_{\infty, \ell} \) is abelian. Taking the direct sum over all \(\ell \), we see that the torsion field \(\mathbb{Q}(\mu_{pq}, J_{\text{tors}}) \) is abelian over \(\mathbb{Q}(\mu_{pq}) \).

In particular, the group \(\text{Gal}(\mathbb{Q}(\mu_{pq})/\mathbb{Q}) \) acts on \(H_{\infty, m} \) via conjugation in a well-defined way. This inspires the following definition

Definition 2.6. Let \(\sigma \in \text{Gal}(\mathbb{Q}(\mu_{pq})/\mathbb{Q}) \) be complex conjugation. For \(h \in H_{\infty, m} \), define \(\overline{h} = \sigma h \sigma^{-1} \in H_{\infty, m} \). (That is, lift \(\sigma \) arbitrarily to \(\bar{\sigma} \) and then define \(\overline{h} = \overline{\sigma h \bar{\sigma}^{-1}} \); this is well-defined since \(H_{\infty, m} \) is abelian.)

Lemma 2.7. Let \(h \in H_{\infty, \ell} \) and \(\chi \in \mathcal{J}_{\ell} \). The image of \(\overline{h} \) under \(\xi_{\chi} \) is
\[\xi_{\chi}(\overline{h}) = \xi_{\chi^{-1}}(h). \]
Proof. Pick \(v \in T_{\chi} \), lift \(\sigma \in \text{Gal}(\mathbb{Q}(\mu_{pq})/\mathbb{Q}) \) arbitrarily to \(\bar{\sigma} \in \text{Gal}(\mathbb{Q}(\mu_{pq}, J[\ell^\infty])/\mathbb{Q}) \) and consider the action of \(\bar{\sigma} \) on \(T_{\chi} \). Let \(\sigma \) and \(\bar{\sigma} \) act on \(\mathcal{O}_{\ell} \) via conjugation in a well-defined way. Since \(\bar{\sigma} \) is linear and \(\bar{\sigma} v \in T_{\chi^{-1}} \), we see that
\[\bar{\sigma} v = \bar{\sigma} h \bar{\sigma}^{-1} v = \bar{\sigma} (\xi_{\chi^{-1}}(h) \bar{\sigma}^{-1} v) = \xi_{\chi^{-1}}(h) \bar{\sigma} \bar{\sigma}^{-1} v = \xi_{\chi^{-1}}(h) v. \]
From this we conclude that \(\xi_{\chi}(\overline{h}) = \xi_{\chi^{-1}}(h) \).

Proposition 2.8. Let \(h \in H_{\infty, \ell} \). The element \(h \overline{h} \in H_{\infty, \ell} \) acts by \(\lambda(h) \) on all of \(T_{\ell} J \otimes \mathbb{Z}_{\ell} \mathcal{O}_{\ell} \).
Proof. Combining Lemmas 2.4 and 2.7 gives that \(\xi_{\chi}(h \overline{h}) = \xi_{\chi}(h) \xi_{\chi}(\overline{h}) = \xi_{\chi}(h) \xi_{\chi^{-1}}(h) = \lambda(h) \).
Hence \(h \overline{h} \) acts by multiplication by \(\lambda(h) \) on every \(T_{\chi} \), and hence on \(T_{\ell} J \otimes \mathbb{Z}_{\ell} \mathcal{O}_{\ell} \).

Lemma 2.9. Suppose \(\ell \notin \{ p, q \} \). Then the field \(\mathbb{Q}(J[\ell]) \) contains \(\mathbb{Q}(\mu_{pq}) \).
Proof. Define the homomorphism \(\nu \) as the following:
\[\nu: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{Gal}(\mathbb{Q}(\mu_{pq})/\mathbb{Q}) \simeq (\mathbb{Z}/pq\mathbb{Z})^\times. \]
It suffices to show for every \(\tau \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) fixing \(J[\ell] \) that we have \(\nu(\tau) = 1 \).
Let \(D \) be any nonzero element of \(J[\ell] \). Then for every \(z \in \mathbb{Z} \), we have \(\tau z D = z \tau D \).
Therefore,
\[D = z^{-1} z D = z^{-1} \tau z D = z^{\nu(\tau)-1} \tau D = z^{\nu(\tau)-1} D. \]
Therefore, \(z^{\nu(\tau)-1} \) must fix every element of \(J[\ell] \). If it were the case that \(\nu(\tau) \neq 1 \), then either \(Z^p \) or \(Z^q \) must act trivially on \(J[\ell] \), which forces \(\ell \) to be either \(p \) or \(q \).

Definition 2.10. For \(\ell \in \{ p, q \} \), let \(m_\ell \) be the maximal ideal of \(\mathcal{O}_{\ell} \).

Definition 2.11. Let \(\zeta_\ell \) be the automorphism given by \((x, y) \mapsto (x, \zeta_\ell y) \).
Let \(\zeta_q \) be the automorphism given by \((x, y) \mapsto (\zeta_q x, y) \).

Lemma 2.12. Suppose that \(\alpha \) is an endomorphism of \(T_{\ell} J \) that commutes with \(Z \) and that \(k \) is a nonnegative integer.

1. Note that \(\alpha \) induces an endomorphism of \(J[\ell^k] \). Then \(\alpha \) acts as the identity on \(J[\ell^k] \) if and only if \(\alpha \) acts on each \(T_{\chi} \) by multiplication by some element of \(1 + \ell^k \mathcal{O}_{\ell} \) (i.e., if and only if \(\xi_{\chi}(\alpha) \in 1 + \ell^k \mathcal{O}_{\ell} \) for every \(\chi \)).
(2) Suppose \(\ell \in \{p, q\} \). Since \(\alpha \) commutes with \(\zeta_\ell \), it induces an endomorphism of \(J[(1 - \zeta_\ell)^k] \). Then \(\alpha \) acts as the identity on \(J[(1 - \zeta_\ell)^k] \) if and only if \(\alpha \) acts on each \(T_\chi \) by multiplication by some element of \(1 + m_\ell^k \) (i.e., if and only if \(\xi_\chi(\alpha) \in 1 + m_\ell^k \) for every \(\chi \)).

Proof. By extending scalars, \(\alpha \) is also an endomorphism of \(T_\ell J \otimes \mathbb{Z}_\ell \mathcal{O}_\ell \).

(1) As
\[
J[\ell^k] = T_\ell J/\ell^k,
\]
we see that \(\alpha \) acts trivially on \(J[\ell^k] \) if and only if it acts trivially on \(T_\ell J/\ell^k \), if and only if (after extending scalars), it acts trivially on each \(T_\chi/\ell^k \).

Since \(\alpha \) commutes with \(Z \), it acts on each \(T_\chi \) by multiplication by an element of \(\mathcal{O}_\ell \). As \(T_\chi \simeq \mathcal{O}_\ell \) (as \(\mathcal{O}_\ell \)-modules) induces the isomorphism \(T_\chi/\ell^k \simeq \mathcal{O}_\ell/\ell^k \mathcal{O}_\ell \), the conclusion of the lemma follows.

(2) This proof is very similar to the previous part. Replace “\(\ell \)” with “\(1 - \zeta_\ell \)” and \(\ell^k \mathcal{O}_\ell \) with \(\mathfrak{m}_\ell^k \).

\(\square \)

Using results of [Kat81], we can get an expression for \(\xi_\chi(g) \) when \(g \) is a Frobenius element, in terms of Jacobi sums. To do so, first select a prime \(r \not\in \{p, q, \ell\} \) and a prime \(\tau \) of \(\mathbb{Q}(\mu_{pq}) \) lying over \(r \) whose residue field is \(\mathbb{F}_r \). Since \(r \not\in \{p, q\} \), all the automorphisms in \(Z \) can be reduced to automorphisms over \(\mathbb{F}_r \). Moreover, if we let \(Z_r \) be the collection of these automorphisms defined over \(\mathbb{F}_r \), there is a natural isomorphism \(Z \simeq Z_r \) and also a natural isomorphism \(Z_\ell \simeq \mu_{pq}(\mathbb{F}_r) \).

The following lemma is essentially a reformulation of some of the results in the first three sections of [Kat81].

Lemma 2.13. Select a prime \(r \not\in \{p, q, \ell\} \), a prime \(\tau \) of \(\mathbb{Q}(\mu_{pq}) \) lying over \(r \) with residue field \(\mathbb{F}_r \), and a Frobenius element \(\text{Frob}_r \in H_{\infty, \ell} \) (note this is well-defined since \(\mathbb{Q}(\mu_{pq}, J[\ell^\infty]) \) is unramified over \(r \) by the criterion of Néron-Ogg-Shafarevich). Suppose that the size of \(\mathbb{F}_r \) is \(R \).

Suppose \(\chi : Z \rightarrow \mathcal{O}_\ell^\times \) is a character. Define \(\tilde{\chi} : \mathbb{F}_r^\times \rightarrow \mathcal{O}_\ell^\times \) as the composite of the “exponentiation by \((R - 1)/(pq) \) map” \(\mathbb{F}_r^\times \rightarrow \mu_{pq}(\mathbb{F}_r) \) and the natural isomorphisms \(\mu_{pq}(\mathbb{F}_r) \simeq Z_r, Z_\ell \simeq Z \), and the character \(\hat{\chi} : Z \rightarrow \mathcal{O}_\ell^\times \).

Then
\[
\xi_\chi(\text{Frob}_r) = - \sum_{\alpha \in \mathbb{F}_r \setminus \{0, 1\}} \tilde{\chi}^p(\alpha) \hat{\chi}^q(1 - \alpha).
\]

Proof. From [Kat81] Lemma 1.1, we know that \(\text{Frob}_r \) operates on the \(\chi \)-isotypical part \(T_\chi \) of the Tate module \(T_\ell J \simeq H^1_{\text{et}}(\mathcal{C}, \mathbb{Q}_\ell) \) via multiplication by
\[
-S(\mathcal{C}/\mathbb{F}_r, \chi, 1) := -\frac{1}{|Z|} \sum_{z \in Z} \chi(z) \# \text{Fix}(\text{Frob}_r z^{-1})
\]
In this last expression, the quantity \(\# \text{Fix}(\text{Frob}_r z^{-1}) \) is the number of points of \(\mathcal{C}(\mathbb{F}_r) \) fixed by \(\text{Frob}_r z^{-1} \).

Now choose some \(z \in Z \). Write \(z = \bar{z}_p z_q \) where \(\bar{z}_p \) and \(z_q \) have order \(p \) and \(q \), respectively. Since \(Z \simeq Z_r \), we identify \(z, \bar{z}_p, z_q \) with automorphisms of \(\mathcal{C} \) defined over \(\mathbb{F}_r \). Let \(\zeta_p \) and \(\zeta_q \)
denote elements of \mathbf{F}_r^\times such that (i) ζ_p is the scalar by which z_p acts on the y-coordinate by multiplication, (ii) ζ_q is the scalar by which z_q acts on the x-coordinate by multiplication.

Recall that R is the size of \mathbf{F}_r. Note that (x, y) is fixed by $\text{Frob}_r z^{-1}$ if and only if we have the following:

$$x^R = \zeta_q x$$
$$y^R = \zeta_q y.$$

From these equations we see that x^q and y^p are both fixed by Frob_r, so $x^q, y^p \in \mathbf{F}_r$. We also have $y^p = x^q + 1$. Setting $\alpha = -x^q$ then, we have that $x^q = -\alpha$, $y^p = 1 - \alpha$ and that $\alpha \in \mathbf{F}_r$.

Suppose $x, y \neq 0$. Then from α we can recover ζ_p and ζ_q by $\zeta_q = x^{R-1} = (-\alpha)^{(R-1)/q}$ and $\zeta_p = y^{R-1} = (1 - \alpha)^{(R-1)/p}$. In particular, from our definition of χ we know that

$$\chi(z_q) = \tilde{\chi}^p(-\alpha)$$
$$\chi(z_p) = \tilde{\chi}^q(1 - \alpha)$$

When R is odd, we know that $(R - 1)/q$ will be even, so $\tilde{\chi}^p(-\alpha) = \tilde{\chi}^p(-1)\chi^p(\alpha) = \tilde{\chi}^p(\alpha)$ as $(-1)^{(R-1)/q} = 1$. When R is even, we know that $\alpha = -\alpha$ so in any case we can remove the minus sign to get

$$\chi(z_q) = \tilde{\chi}^p(\alpha)$$
$$\chi(z_p) = \tilde{\chi}^q(1 - \alpha).$$

Multiplying these two equations gives

$$\chi(z) = \tilde{\chi}^p(\alpha)\tilde{\chi}^q(1 - \alpha).$$

Since we made the assumption that $x, y \neq 0$, let $\mathcal{C}(\mathbf{F}_q)^*$ be the subset of $\mathcal{C}(\mathbf{F}_q)$ where neither the x- nor the y-coordinate is zero.

Going back to our sum, we then have

$$\sum_{z \in \mathbf{Z}} \chi(z) \# \text{Fix}(\text{Frob}_r z^{-1}) = \sum_{z \in \mathbf{Z}} \chi(z) \sum_{(x, y) \in \mathcal{C}(\mathbf{F}_r)^*} 1 \sum_{z \in \mathbf{Z}} \chi(z) \sum_{(x, y) \in \mathcal{C}(\mathbf{F}_r)^*} 1$$

$$= \sum_{(x, y) \in \mathcal{C}(\mathbf{F}_r)^*} \sum_{z \in \mathbf{Z}} \chi(z) \
= \sum_{z \in \mathbf{Z}} \chi(z) \sum_{(x, y) \in \mathcal{C}(\mathbf{F}_r)} 1 \sum_{z \in \mathbf{Z}} \chi(z) \sum_{(x, y) \in \mathcal{C}(\mathbf{F}_r)} 1$$

$$= \sum_{\alpha \in \mathbf{F}_r \setminus \{0, 1\}} \sum_{(x, y, z) \in \mathbf{F}_r^2 \times \mathbf{Z}} \chi^p(\alpha) \tilde{\chi}^q(1 - \alpha)$$

$$+ \sum_{z \in \mathbf{Z}} \chi(z) \sum_{(x, y) \in \mathbf{F}_r^2} 1 \sum_{z \in \mathbf{Z}} \chi(z) \sum_{(x, y) \in \mathbf{F}_r^2} 1.$$
Note that the last two sums are zero because for example, in the first sum the condition \(y^p = 1 \) immediately implies \(y^{R-1} = 1 \), so \(y^R = y \) and that forces \(z \) to fix the \(y \) coordinate. Hence this forces \(z \in \mathbb{Z}^p \) and the sum equals
\[
\sum_{z \in \mathbb{Z}} \chi(z) \sum_{y \in \mathbb{F}_r^{(0)}} 1 = \sum_{y \in \mu_p(\mathbb{F}_r)} \sum_{z \in \mathbb{Z}^p} \chi(z) = \sum_{y \in \mu_p(\mathbb{F}_r)} 0 = 0.
\]
Therefore, we have
\[
\sum_{z \in \mathbb{Z}} \chi(z) \# \text{Fix}(\text{Frob}_z z^{-1}) = \sum_{\alpha \in \mathbb{F}_r \setminus \{0,1\}} \sum_{(x,y) \in \mathbb{F}_r^2 \times \mathbb{Z}} \frac{\chi^p(\alpha) \chi^q(1-\alpha)}{x^q = \alpha, y^p = 1-\alpha}.
\]
In this final inner sum, we know that \(z \) is determined by \(\alpha \): the equations \(x^q = -\alpha \) and \(x^p = 1 - \alpha \) force \(x^R = (-\alpha)^{(R-1)/q} x \) and \(y^R = (1 - \alpha)^{(R-1)/p} y \), so that means that \(z \) must scale the \(x \)-coordinate by \((-\alpha)^{(R-1)/q} \) and the \(y \)-coordinate by \((1 - \alpha)^{(R-1)/p} \). So we may rewrite this as
\[
\sum_{z \in \mathbb{Z}} \chi(z) \# \text{Fix}(\text{Frob}_z z^{-1}) = \sum_{\alpha \in \mathbb{F}_r \setminus \{0,1\}} \sum_{(x,y) \in \mathbb{F}_r^2 \times \mathbb{Z}} \frac{\chi^p(\alpha) \chi^q(1-\alpha)}{x^q = -\alpha, y^p = 1-\alpha}.
\]
Since \(\alpha \notin \{0,1\} \), there are exactly \(pq = |\mathbb{Z}| \) such pairs \((x,y)\) satisfying \(x^q = -\alpha, y^p = 1-\alpha \). So this sum simplifies to
\[
\sum_{z \in \mathbb{Z}} \chi(z) \# \text{Fix}(\text{Frob}_z z^{-1}) = |\mathbb{Z}| \sum_{\alpha \in \mathbb{F}_r \setminus \{0,1\}} \chi^p(\alpha) \chi^q(1-\alpha).
\]
Dividing both sides by \(-|\mathbb{Z}|\) and recalling that \(\zeta(\text{Frob}_z) = -\frac{1}{|\mathbb{Z}|} \sum_{z \in \mathbb{Z}} \chi(z) \# \text{Fix}(\text{Frob}_z z^{-1}) \), we are done.

Definition 2.14. For two characters \(\psi, \psi' : \mathbb{F}_r^\times \to \mathcal{O}_r^\times \), define the Jacobi sum \(J(\psi, \psi') \) to be
\[
J(\psi, \psi') := \sum_{\alpha \in \mathbb{F}_r \setminus \{0,1\}} \psi(\alpha) \psi'(1-\alpha).
\]
That is, \(\zeta(\text{Frob}_z) = -J(\tilde{\chi}^p, \tilde{\chi}^q) \). Applying Lemma 2.12 to our situation with \(\alpha = \text{Frob}_z \), we obtain the following corollary.

Corollary 2.15. Suppose that \(\ell \) is a prime and \(k \) is a nonnegative integer.

1. Then \(\text{Frob}_z \) acts as the identity on \(J[\ell^k] \) if and only if for every character \(\tilde{\chi} : \mathbb{F}_r^\times \to \mathcal{O}_r^\times \), we have
\[
1 + J(\tilde{\chi}^p, \tilde{\chi}^q) \in \ell^k \mathcal{O}_r.
\]

2. Suppose \(\ell \in \{p,q\} \). Then \(\text{Frob}_z \) acts as the identity on \(J[(1 - \zeta(\ell))^k] \) if and only if for every character \(\tilde{\chi} : \mathbb{F}_r^\times \to \mathcal{O}_r^\times \), we have
\[
1 + J(\tilde{\chi}^p, \tilde{\chi}^q) \in \mathfrak{m}_r^k.
\]

Lemma 2.16. Fix a prime \(\ell \) and a nonnegative integer \(k \). Then

1. Suppose \(\ell \notin \{p,q\} \) and \(D \) is a divisor of exact order \(\ell^{k+1} \); that is, \(D \in J[\ell^{k+1}] \setminus J[\ell^k] \). Then \(Q(D, \mu_{pq}) = Q(J[\ell^{k+1}], \mu_{pq}) \).
(2) Suppose \(\ell \in \{p, q\} \) and \(D \) is a divisor of exact order \((1 - \zeta_\ell)^{k+1} \); that is, \(D \in J[(1 - \zeta_\ell)^{k+1}] \setminus J[l(1 - \zeta_\ell)^k] \). Then \(Q(D, \mu_{pq}) = Q(J[(1 - \zeta_\ell)^{k+1}], \mu_{pq}) \).

Proof. The inclusions \(Q(D, \mu_{pq}) \subseteq Q(J[\ell^{k+1}], \mu_{pq}) \) and \(Q(D, \mu_{pq}) \subseteq Q(J[(1 - \zeta_\ell)^{k+1}], \mu_{pq}) \) are immediate.

(1) By Galois theory, it suffices to show that any \(h \in \text{Gal}(Q(J[\ell^{k+1}], \mu_{pq})/Q(\mu_{pq})) \) fixing \(D \) must be the identity. Suppose \(h \) is such an element. By the Chebotarev Density Theorem, we can assume \(h = \text{Frob}_l \). By Corollary \[2.15\] (1), we need to show that \(1 + J(\overline{\chi^p}, \overline{\chi^q}) \in \ell^{k+1}O_\ell \) for every \(\overline{\chi} \). We see that \(J(\overline{\chi^p}, \overline{\chi^q}) \) is actually an element of \(Z[\zeta_{pq}] \), so we just need to show that \(1 + J(\overline{\chi^p}, \overline{\chi^q}) \in \ell^{k+1}O_\ell \) for some \(\overline{\chi} \) (since the others are just Galois conjugates of our favorite one).

Consider the map \(T_\ell J \hookrightarrow T_\ell J \otimes_{\mathbb{Z}_l} O_\ell \simeq \bigoplus_{\chi} T_\chi \). Taking a quotient by \(\ell^{k+1} \), we get a map \[J[\ell^{k+1}] \leftrightarrow \bigoplus_{\chi} T_\chi/\ell^{k+1}T_\chi.\]

Note that the image of \(J[\ell^k] \) will be \(\bigoplus_{\chi} T_\chi/\ell^{k+1}T_\chi. \) Since \(D \in J[\ell^{k+1}] \setminus J[\ell^k] \), there will be some \(\chi \) such that the image of \(D \) in the projection to \(T_\chi/\ell^{k+1}T_\chi \) will land in \(\left(T_\chi/\ell^{k+1}T_\chi\right) \setminus \left(\ell T_\chi/\ell^{k+1}T_\chi\right). \)

For convenience, let \(D_\chi \) be the image of \(D \) in \(T_\chi/\ell^{k+1}T_\chi \). Since \(h \) fixes \(D \), we know that \(\xi_\chi(h) \) fixes \(D_\chi \). We also have \(D_\chi \in \left(T_\chi/\ell^{k+1}T_\chi\right) \setminus \left(\ell T_\chi/\ell^{k+1}T_\chi\right) \simeq \left(O_\ell/\ell^{k+1}O_\ell\right) \setminus \left(\ell O_\ell/\ell^{k+1}O_\ell\right). \)

Let \(R_\ell \) be the local ring \(O_\ell/\ell^{k+1}O_\ell \) with maximal ideal \(m_{R_\ell} = \ell R_\ell \). Then \(D_\chi \) is a unit of \(R_\ell \), so its annihilator must be zero. Hence the image of \(\xi_\chi(h) - 1 \) is zero in \(R_\ell \). In other words, we know that \(\xi_\chi(h) - 1 \in \ell^{k+1}O_\ell \). Hence by Lemma \[2.13\] we have \(1 + J(\overline{\chi^p}, \overline{\chi^q}) = 1 - \xi_\chi(h) \in \ell^{k+1}O_\ell \), which completes the proof.

(2) The proof is very similar to the previous part. Replace “\(\ell \)” with \(1 - \zeta_\ell \).

\[\square \]

3. Computation of Some Torsion Fields

In this section, we use results of [Aru19] to compute some torsion fields.

Definition 3.1. Let \(\zeta_p \) be the automorphism given by \((x, y) \mapsto (x, \zeta_p y)\).

Let \(\zeta_q \) be the automorphism given by \((x, y) \mapsto (\zeta_q x, y)\).

For nonnegative \(i, j \) define

\[L_{i,j} := Q(J[(1 - \zeta_p)^i(1 - \zeta_q)^j]) \]

Note that \(J[(1 - \zeta_p)^{p-1}(1 - \zeta_q)^{q-1}] = J[pq] \), so \(L_{p-1,q-1} = Q(J[pq]) \).

Lemma 3.2. We have the following facts about the fields \(L_{1,1}, L_{1,2}, L_{2,1} \):

1. The field \(L_{1,1} \) is \(Q(\mu_{pq}) \).
2. The field extension \(L_{2,1}/L_{1,1} \) is generated by the \(p \)-th roots of the numbers \(1 - \zeta_p^i \).
3. The field extension \(L_{1,2}/L_{1,1} \) is generated by the \(q \)-th roots of the numbers \(1 - \zeta_p^j \).
4. The field extensions \(L_{2,1}/L_{1,1} \) and \(L_{1,2}/L_{1,1} \) are nontrivial.
Proof.

(1) The field $L_{1,1}$ is generated by the points whose x-coordinates are zero and the points whose y-coordinates are zero, so it is exactly $\mathbb{Q} (\zeta_{pq})$.

(2) Let L be a number field containing $L_{1,1} = \mathbb{Q} (\zeta_{pq})$ and $A = L[T]/(T^q + 1)$. Then we know that we have the “$x - T$” map

$$J(L)/(1 - \zeta_p)J(L) \hookrightarrow \ker(A^\times/(A^\times)^p) \overset{N}{\longrightarrow} L^\times/(L^\times)^p$$

which is essentially the Galois cohomology coboundary map

$$J(L)/(1 - \zeta_p)J(L) \hookrightarrow H^1(L, J[1 - \zeta_p])$$

arising from the short exact sequence

$$0 \rightarrow J[1 - \zeta_p] \rightarrow J \overset{1 - \zeta_p}{\longrightarrow} J \rightarrow 0.$$

The key point is that $H^1(L, J[1 - \zeta_p])$ is isomorphic to $\ker(A^\times/(A^\times)^p) \overset{N}{\longrightarrow} L^\times/(L^\times)^p)$ and that the image of a point $(a, b) \in C(L) \subseteq J(L)$ is $a - T$.

See [Poo06] Section 6.3 for more details of the “$x - T$” map; Poonen treats the hyperelliptic situation for the “multiplication by 2” isogeny, but this generalizes in a straightforward fashion in the superelliptic case and the “multiplication by (1 − ζ_p)” isogeny.

In order for L to contain the $(1 - \zeta_p)^2(1 - \zeta_q)$-torsion of J, it only needs to contain the $(1 - \zeta_p)^2$-torsion (since it already has the $(1 - \zeta_q)(1 - \zeta_q)$-torsion as it contains μ_{pq}). Therefore it is sufficient for it to contain all divisors D such that $(1 - \zeta_p)D \sim (-\zeta_q^i, 0) - \infty$ for $0 \leq i \leq q - 1$. That is, the points $(-\zeta_q^i, 0) - \infty$ need to be mapped to the identity in the above “$x - T$” map.

So we need $-\zeta_q^i - T$ to lie in $(A^\times)^p$. The Chinese remainder theorem gives that this is equivalent to $\zeta_q^j - \zeta_q^i$ being a pth-power for all i, j. Since L already contains μ_{pq}, this is equivalent to $1 - \zeta_q^k$ being a pth power for all k.

(3) Similar to the proof of part 2.

(4) We see that $L_{2,1}/L_{1,1}$ is nontrivial; the latter is similar. Consider the ramification of $L_{2,1}$ and $L_{1,1}$ above the prime q. Note that as $L_{2,1}$ contains $(1 - \zeta_q)^{1/p}$, we see that $e_q(L_{2,1}/\mathbb{Q}) \geq p(q - 1)$. However the degree of the extension $L_{1,1}/\mathbb{Q}$ is only $(p - 1)(q - 1)$, so $L_{2,1}$ has to strictly contain $L_{1,1}$.

Lemma 3.3. We have the following facts about the fields $L_{p-1,1}$, $L_{1,q-1}$, $L_{p-1,q-1}$.

(1) The extension $L_{p-1,1}/L_{1,1}$ is a p-Kummer extension; it is generated by p-th roots of elements of $L_{1,1} = \mathbb{Q} (\mu_{pq})$.

(2) The extension $L_{1,q-1}/L_{1,1}$ is a q-Kummer extension; it is generated by q-th roots of elements of $L_{1,1} = \mathbb{Q} (\mu_{pq})$.

Proof. Both parts are similar so we prove the first. From Remark 2.5 we know that the extension is abelian. Since $L_{1,1}$ already contains the pth roots of unity, it suffices to check that the exponent of $\text{Gal}(L_{p-1,1}/L_{1,1})$ divides p. To do so, we need to check that for every $h \in \text{Gal}(L_{p-1,1}/L_{1,1})$ that $h^p = 1$. From Lemma 2.12 we know that $\xi_\chi(h) \in 1 + m_p$ for all χ. In particular,

$$\xi_\chi(h^p) = \xi_\chi(h)^p \in (1 + m_p)^p \subseteq 1 + pO_p,$$

so again by Lemma 2.12 we see that h^p acts trivially on $J[p]$; hence, $h^p = 1$ as desired.
Using the main result in [Aru19], we can actually determine \(L_{p-1,1} \) and \(L_{1,q-1} \). Theorem 1.5 in [Aru19] states the following.

Theorem 3.4. Fix a prime \(r \) of \(\mathbb{Q}(\mu_{pq}) \) lying over a prime \(r \) of \(\mathbb{Q} \) such that \(r \not\in \{p,q\} \). Let \(\zeta_p \) and \(\zeta_q \) denote primitive \(p \)th and \(q \)th roots of unity in \(\mathbb{F}_r \). Take any Jacobi sum \(J = J(\overline{\chi}^p, \overline{\chi}^q) \) and an integer \(k \) in the range \(2 \leq k \leq p - 1 \). Then

1. \(J + 1 \) always lies in \(\mathfrak{m}_p \).
2. \(J + 1 \) lies in \(\mathfrak{m}_p^k \) if and only if for each \(i \) in the range \(0 \leq i \leq k - 2 \) and \(j \) in the range \(1 \leq j \leq q - 1 \), we have

\[
\prod_{r=0}^{p-1} (1 - \zeta_q^r \zeta_p^r)^{(i)} \in (\mathbb{F}^\times_p)^j.
\]

Combining Theorem 3.4 and Corollary 2.15 we conclude that

Corollary 3.5. Fix a prime \(r \) of \(\mathbb{Q}(\mu_{pq}) \) lying over a prime \(r \) of \(\mathbb{Q} \) such that \(r \not\in \{p,q\} \). Let \(k \) be an integer in the range \(2 \leq k \leq p - 1 \). Then

1. \(\text{Frob}_r \) always acts as the identity on \(J(1 - \zeta_p) \).
2. \(\text{Frob}_r \) acts as the identity on \(J(1 - \zeta_p^k) \) if and only if for each \(i \) in the range \(0 \leq i \leq k - 2 \) and \(j \) in the range \(1 \leq j \leq q - 1 \), we have

\[
\prod_{r=0}^{p-1} (1 - \zeta_q^r \zeta_p^r)^{(i)} \in (\mathbb{F}^\times_p)^j.
\]

Now applying the Chebotarev density theorem, Corollary 3.5 allows us to understand the field extension \(L_{1,k}/\mathbb{Q}(\mu_{pq}) \) for every \(k \) in the range \(1 \leq k \leq p - 1 \). (Similarly, we also understand \(L_{1,k} \) for \(k \) in the range \(1 \leq k \leq q - 1 \).) We get the following result.

Theorem 3.6. Let \(k \) be an integer in the range \(2 \leq k \leq p - 1 \). Then

1. \(L_{1,1} = \mathbb{Q}(\mu_{pq}) \).
2. \(L_{k,1} = L_{k-1,1} \left(\sqrt[p]{\prod_{r=0}^{p-1} (1 - \zeta_q^r \zeta_p^r)^{(i)} : 1 \leq j \leq q - 1} \right) \).

Let us investigate the case \(k = 4 \) a bit more closely.

Lemma 3.7. Suppose \(p \geq 5 \) and that \(q^2 \not\equiv 1 \mod p \). Then the field \(L_{4,1} \) contains

\[
\mathbb{Q}(\mu_{pq}, \sqrt[q]{q}) \quad \text{and} \quad \mathbb{Q}(\mu_{pq}, \sqrt[p]{\prod_{s=0}^{p-1} (1 - \zeta_p^s)^{s^2}})
\]

The intersection of these subfields is \(\mathbb{Q}(\mu_{pq}) \).

Proof. We already get \(\sqrt[q]{q} \) in \(L_{2,1} \) because setting \(i = 0 \) and taking a product over the \(j \) gives

\[
\prod_{j=1}^{q-1} \prod_{s=0}^{p-1} \sqrt[p]{(1 - \zeta_q^j \zeta_p^s)^{(i)}} = \prod_{j=1}^{q-1} \sqrt[p]{1 - \zeta_p^{ps}} = \sqrt[q]{q}.
\]

Now do the same with \(i = 2 \) (we suppress the \(p \)-th root symbol for now):

\[
\prod_{j=1}^{q-1} \prod_{s=0}^{p-1} (1 - \zeta_q^j \zeta_p^s)^{(i)} = \prod_{s=0}^{p-1} \left(\frac{1 - \zeta_p^s}{1 - \zeta_p} \right)^{(i)}
\]
Up to an element of \((L_{1,1}^\times)^p\), we can simplify this expression further using the fact that
\[\left(\begin{array}{c} a \\ 2 \end{array}\right) \equiv \left(\begin{array}{c} b \\ 2 \end{array}\right) \mod p \text{ whenever } a \equiv b \mod p.\] This gives

\[
\prod_{j=1}^{q-1} \prod_{s=0}^{p-1} (1 - \zeta_j^s \zeta_p^s) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \prod_{s=0}^{p-1} \left(1 - \frac{\zeta_p^s}{1 - \zeta_p^s}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right)
\]

\[
\equiv \prod_{s=1}^{p-1} (1 - \zeta_p^s)^{\left(\begin{array}{c} 2 \\ 2 \end{array}\right)} + \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \mod (L_{1,1}^\times)^p
\]

\[
\equiv \prod_{s=1}^{p-1} (1 - \zeta_p^s)^{\frac{q^2-1}{2} s^2} \cdot \prod_{s=1}^{p-1} (1 - \zeta_p^s)^{\left(\begin{array}{c} 1-g \\ 2 \end{array}\right)} \mod (L_{1,1}^\times)^p
\]

\[
\equiv \left(\prod_{s=1}^{p-1} (1 - \zeta_p^s)^{s^2}\right)^{\frac{q^2-1}{2}} \cdot \left(\prod_{s=1}^{p-1} (1 - \zeta_p^s)^{\left(\begin{array}{c} 1-g \\ 2 \end{array}\right)}\right) \mod (L_{1,1}^\times)^p
\]

Note that the second product equals

\[
\prod_{s=1}^{p-1} (1 - \zeta_p^s)^s = \prod_{s=1}^{\frac{p-1}{2}} (1 - \zeta_p^s)^s \cdot \prod_{s=\frac{p+1}{2}}^{p-1} (1 - \zeta_p^s)^s
\]

\[
= \prod_{s=1}^{\frac{p-1}{2}} (1 - \zeta_p^s)^s \cdot \prod_{s=1}^{\frac{p-1}{2}} (1 - \zeta_p^{-s})^{p-s}
\]

\[
= \prod_{s=1}^{\frac{p-1}{2}} (-\zeta_p^{-s})^{p-s} (1 - \zeta_p)^p
\]

\[
= (-1)^{\sum_{s=1}^{\frac{p-1}{2}} s} \zeta_p^{\sum_{s=1}^{\frac{p-1}{2}} s^2} (1 - \zeta_p)^p \left(\begin{array}{c} \frac{p-1}{2} \\ 2 \end{array}\right).
\]

The first term is \((-1)^{q^2-1} = L_{4,1}^\times\), the second term is \(\zeta_p^{p(q^2-1)/24}\). Since \(p \geq 5\), the second term is just 1. In any case, this means that the entire expression is a \(p\)th power. So

\[
\prod_{j=1}^{q-1} \eta_{2,j} \equiv \left(\prod_{s=1}^{p-1} (1 - \zeta_p^s)^s\right)^{\frac{q^2-1}{2}} \mod (L_{1,1}^\times)^p.
\]

Since by assumption \(p\) is odd and \(q^2 \neq 1 \mod p\), it follows that \(\prod_{s=1}^{p-1} (1 - \zeta_p^s)^s\) has a \(p\)th root if and only if \(\prod_{j=1}^{q-1} \eta_{2,j}\) does. Since each \(\eta_{2,j}\) is a \(p\)th power in \(L_{4,1}\), it follows that so is

\[
\prod_{s=1}^{p-1} (1 - \zeta_p^s)^s^2.
\]

For the last part of the lemma, we will show that the intersection of \(Q(\mu_{pq}, \sqrt[p]{q})\) and \(Q(\mu_{pq}, \sqrt[p]{L_{1,1}^\times})\) is exactly \(Q(\mu_{pq})\). Note that both of these are Kummer extensions of \(Q(\mu_{pq})\) and their degrees divide \(p\), so we just need to show that they do not equal each other. Note that the extension \(Q(\mu_{pq}, \sqrt[p]{q})/Q(\mu_{pq})\) is totally ramified at \(q\), but the latter
extension $\mathbb{Q} \left(\mu_{pq}, \sqrt[p]{\prod_{s=0}^{p-1} (1 - \zeta_p^s)^2} \right) / \mathbb{Q}(\mu_{pq})$ is unramified at q. So the two fields are not equal, and hence their intersection must be $\mathbb{Q}(\mu_{pq})$. □

Proposition 3.8. Under the assumptions $p \geq 5$ and $q^2 \not\equiv 1 \mod p$, we have $[L_{4,1} : L_{1,1}] \geq p^2$.

Proof. By Lemma 3.7, we need only check that the subextensions $\mathbb{Q}(\mu_{pq}, \sqrt{q})/\mathbb{Q}(\mu_{pq})$ and $\mathbb{Q} \left(\mu_{pq}, \sqrt[p]{\prod_{s=0}^{p-1} (1 - \zeta_p^s)^2} \right) / \mathbb{Q}(\mu_{pq})$ are nontrivial. The former is nontrivial since it ramifies at q.

So we need only check that the latter is nontrivial. To do so, we need some notation for unit groups of cyclotomic fields. We follow [Was97] for this part. Let E be the group of units of $\mathbb{Q}(\zeta_p)^+$, the totally real subfield of $\mathbb{Q}(\zeta_p)$. Let C be the subgroup of cyclotomic units. The p-adic characters of $\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ are of the form ω^i for $0 \leq i \leq p - 2$, where ω is a Teichmüller character. The p-adic characters of $\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ are of the form ω^i where i is even and in the range $0 \leq i \leq p - 2$. Let $\varepsilon_{\omega^i}(E/C)_p$ be the ω^i-isotypic component of E/C. Let A be the ideal class group of $\mathbb{Q}(\zeta_p)^+$ and $\varepsilon_{\omega^i}(A)$ be the ω^i-isotypic component of A (again, where i is even). From [Was97] Theorem 15.7 we have

$$|\varepsilon_{\omega^i}A| = |\varepsilon_{\omega^i}(E/C)_p|$$

That is, the equality $|A| = |(E/C)_p|$ (that is, the class number of $\mathbb{Q}(\zeta_p)^+$ equals the index of the cyclotomic units inside the full unit group) holds component by component. Moreover, the ω^i-isotypic component of $(E/C)_p$ is nontrivial if and only if the unit E_i as defined in [Was97] (Section 8.3, page 155) is a pth power in E. From a calculation done on the same page, E_i is a pth power if and only if the following is:

$$\prod_{a=1}^{p-1} \left(\zeta_p^{a(1-g)}/2 \frac{1 - \zeta_p^{ag}}{1 - \zeta_p^a} \right)^{a^{p-1}-i}$$

From a similar argument as in the proof of Lemma 3.7, this expression is a pth power in $\mathbb{Q}(\zeta_p)^+$ if and only if

$$\prod_{a=1}^{p-1} (1 - \zeta_p^a)^{a^{p-1}-i}$$

is a pth power in $\mathbb{Q}(\zeta_p)$. (The only difference between the unit group of $\mathbb{Q}(\zeta_p)^+$ and the unit group of $\mathbb{Q}(\zeta_p)$ is the torsion; i.e., the roots of unity.) So we conclude with $i = p - 3$ that the condition that $\prod_{s=0}^{p-1} (1 - \zeta_p^s)^2$ not being a pth power in $\mathbb{Q}(\zeta_p)$ is equivalent to $|\varepsilon_{\omega^{p-3}}| = 1$. From [Kur92] Corollary 3.8 we know that $|\varepsilon_{\omega^{p-3}}| = 1$, so indeed $\prod_{s=0}^{p-1} (1 - \zeta_p^s)^2$ is not a pth power in $\mathbb{Q}(\zeta_p)$.

A bit of Galois theory wraps up the rest: we have seen so far that the extension

$$\mathbb{Q} \left(\zeta_p, \sqrt[p]{\prod_{s=0}^{p-1} (1 - \zeta_p^s)^2} \right) / \mathbb{Q}(\zeta_p)$$
is nontrivial. Moreover the extension $\mathbb{Q}(\mu_{pq})/\mathbb{Q}(\zeta_p)$ is disjoint from this extension because the latter is totally ramified at q, while the former is unramified at q. So finally the extension

$$\mathbb{Q}\left(\mu_{pq}, \sqrt{\prod_{s=0}^{p-1}(1 - \zeta_p^s)^{s^2}}\right)/\mathbb{Q}(\mu_{pq})$$

is nontrivial.

\[\Box\]

4. Application to Torsion Points on \mathcal{C}

Corollary 4.1. Let m be a positive integer. For each prime ℓ dividing m, choose an element λ_ℓ such that

$$\lambda_\ell \in \begin{cases} \mathbb{Z}_\ell & \text{if } \ell \not\in \{p, q\} \\ 1 + \ell \mathbb{Z}_\ell & \text{if } \ell \in \{p, q\} \end{cases}$$

Then there exists an element τ of $H_{\infty,m}$ such that for each ℓ dividing m, this element τ acts on $J[\ell^\infty]$ acts by multiplication as λ_ℓ.

Proof. Let h be any element of $H_{\infty,m}$ such that for each ℓ dividing m, the restriction of h to $\text{Gal}(\mathbb{Q}(\mu_{\ell^\infty})/\mathbb{Q}(\mu_{pq}))$ is the one which raises each element of μ_{ℓ^∞} to the power of λ_ℓ. Choosing $\tau = h\bar{h}$ then satisfies the desired property by Proposition 2.8.

We will also need a corollary of the Castelnuovo-Severi inequality. We state the Castelnuovo-Severi inequality here as it appears in [Poo07].

Proposition 4.2 (Castelnuovo-Severi inequality). Let F, F_1, F_2 be function fields of curves over k, of genera g, g_1, g_2, respectively. Suppose that $F_i \subseteq F$ for $i = 1, 2$ and the compositum of F_1 and F_2 in F equals F. Let $d_i = [F : F_i]$ for $i = 1, 2$. Then

$$g \leq d_1 g_1 + d_2 g_2 + (d_1 - 1)(d_2 - 1).$$

Corollary 4.3. Suppose that we have two maps $\mathcal{C} \to \mathbb{P}^1$ of degrees d_1 and d_2. If d_1 and d_2 are coprime, then

$$\text{genus}(\mathcal{C}) \leq (d_1 - 1)(d_2 - 1).$$

Proof. Let F be the function field of \mathcal{C}. Each map gives an embedding of the function field of \mathbb{P}^1 into F; let their images be F_1 and F_2. Since $[F : F_i] = d_i$ and the d_i are coprime, it follows that the compositum F_1F_2 equals F. We apply the Castelnuovo-Severi inequality in this situation with $g_1 = g_2 = 0$ to obtain the result.

The results up till now did not depend on $p, q \geq 3$, but we will certainly impose $p, q \geq 3$ from now on.

Lemma 4.4. Let P_i, Q_i be points of \mathcal{C} for $i \in \{1, 2, 3\}$.

1. If $P_1 + P_2 \sim Q_1 + Q_2$, then $\{P_1, P_2\} = \{Q_1, Q_2\}$.
2. Suppose $p, q \geq 5$. If $P_1 + P_2 + P_3 \sim Q_1 + Q_2 + Q_3$, then $\{P_1, P_2, P_3\} = \{Q_1, Q_2, Q_3\}$.

Proof. Let f be a rational map $f : \mathcal{C} \to \mathbb{P}^1$ such that in case (1) we have $\text{div}(f) = P_1 + P_2 - Q_1 - Q_2$ and in case (2) we have $\text{div}(f) = P_1 + P_2 + P_3 - Q_1 - Q_2 - Q_3$.
(1) Suppose \(\{P_1, P_2\} \neq \{Q_1, Q_2\} \). Let \(f \) be a rational map \(f : C \to \mathbb{P}^1 \) such
\[
\text{div}(f) = P_1 + P_2 - Q_1 - Q_2
\]
Then \(f \) is either a degree 1 map or a degree 2 map to \(\mathbb{P}^1 \). We also have degree \(p \) and \(q \) maps to \(\mathbb{P}^1 \) via the \(x \)-map and \(y \)-map, respectively. By Corollary 4.3 this means that
\[
g \leq (2 - 1)(p - 1) \quad \text{and} \quad g \leq (2 - 1)(q - 1).
\]
Since \(g = (p - 1)(q - 1)/2 \), this would mean that \(q \leq 3 \) and \(p \leq 3 \), a contradiction since \(p, q \) are distinct odd primes.

(2) In the same way as the proof of the previous part, we assume \(\{P_1, P_2, P_3\} \neq \{Q_1, Q_2, Q_3\} \) to obtain a rational map \(f : C \to \mathbb{P}^1 \) such
\[
\text{div}(f) = P_1 + P_2 + P_3 - Q_1 - Q_2 - Q_3.
\]
Then the degree of \(f \) is at most 3, and since \(p, q \geq 5 \) we know that Corollary 4.3 gives
\[
g \leq (3 - 1)(p - 1) \quad \text{and} \quad g \leq (3 - 1)(q - 1)
\]
from which we get that \(p, q \leq 5 \) which contradicts our assumption that \(p, q \) are distinct primes that are at least 5.

\[\square\]

Using Corollary 4.1 and Lemma 4.4 we can bound the order of torsion points on \(C \).

Proposition 4.5. Suppose \(P \) is a torsion point of \(C \). Then \(2pq(P - \infty) \sim 0 \).

Proof. Suppose \(m \) is a positive integer such that \(m(P - \infty) \sim 0 \). Without loss of generality, suppose \(m \) is divisible by \(2pq \). Let \(\{r_1, \ldots, r_M\} \) be the set of primes that divide the prime-to-\(2pq \)-part of \(m \).

Using Corollary 4.1 choose \(\tau_1, \tau_2, \tau_3 \in \text{Gal}(\mathbb{Q}(J[m])/\mathbb{Q}(\mu_{pq})) \) such that

- \(\tau_1 \) acts on \(J[2^\infty], J[p^\infty], J[q^\infty], J[r_i^\infty] \) as multiplication by \(1 + 2 \), \(1 + p \), \(1 + q \), \(2 \), respectively.
- \(\tau_2 \) acts on \(J[2^\infty], J[p^\infty], J[q^\infty], J[r_i^\infty] \) as multiplication by \(1 - 2 \), \(1 - p \), \(1 - q \), \(-2 \), respectively.
- \(\tau_3 \) acts on \(J[2^\infty], J[p^\infty], J[q^\infty], J[r_i^\infty] \) as multiplication by 1.

Then by construction, we see that \((\tau_1 + \tau_2) - (\tau_3 + 1) \) acts as the identity on \(J[m] \). In particular,
\[
\tau_1 P + \tau_2 P \sim \tau_3 P + P.
\]
Then by Lemma 4.4 (1) it follows that \(P \) is either \(\tau_1 P \) or \(\tau_2 P \).
If \(P = \tau_1 P \), then writing \(P - \infty = D_2 + D_p + D_q + \sum D_{ri} \) for divisors \(D_\ell \in J[[\ell]] \), we see that \(\tau_1 D_\ell = D_\ell \) for each \(\ell \). So in particular, \(2D_2 \sim 0, pD_p \sim 0, qD_q \sim 0, \) and \(D_{ri} \sim 0 \) for each \(i \). Hence \(2pq(P - \infty) \sim 0 \).

If \(P = \tau_2 P \), then a similar analysis shows that either (i) \(2pq(P - \infty) \sim 0 \) or (ii) \(p, q \geq 5 \) and \(6pq(P - \infty) \sim 0 \).

So the last case to consider is \(p, q \geq 5 \) and \(6pq(P - \infty) \sim 0 \). In that case, find \(\tau_4 \in \text{Gal}(Q(J[m^\infty])/Q(\mu_{pq})) \) such that \(\tau_4 \) acts on \(J[3^\infty] \) as multiplication by \(-1\) and \(\tau_4 \) acts on \(J[(2pq)^\infty] \) as the identity. Then \(3P \sim 3\tau_4 P \). Then by Lemma 4.6 (2) it follows that \(P = \tau_4 P \), so a similar analysis as before shows again that \(2pq(P - \infty) \sim 0 \).

Next, we would like to remove the “2” in the statement of Proposition 4.5. To do so, we need to study ramification in torsion fields.

Lemma 4.6. We have the following.

1. The torsion field \(Q(J[2]) \) is ramified at 2.
2. Suppose \(D \) is a nonzero element of \(J[2] \). Then the field \(Q(D, \mu_{pq}) \) is ramified at 2.
3. The torsion field \(Q(J[pq]) \) is unramified at 2.

Proof.

1. From [Jęd16] applied with \(a = 1 \) we know that the reduction of the jacobian \(J \) at 2 is not ordinary. Applying Lemma 1.4 of [Gro78] now tells us that \(Q(J[2]) \) is ramified at 2.

2. From Lemma 2.16, we know that \(Q(D, \mu_{pq}) = Q(J[2]) \). So we are now done by the previous part and Lemma 2.9.

3. This follows from the criterion of Néron-Ogg-Shafarevich.

Proposition 4.7. If \(P \) is a torsion point on \(C \), then \(pq(P - \infty) \sim 0 \).

Proof. From Proposition 4.5 we know that \(P - \infty = D_2 + D_p + D_q \), where \(2D_2, pD_p, qD_q \sim 0 \). Suppose \(D_2 \neq 0 \).

From Lemma 4.6, it follows that \(Q(J[pq]) \) cannot contain \(Q(D_2, \mu_{pq}) \). Hence we can find a \(\tau \in \text{Gal}(Q(J[2pq])/Q(J[pq])) \) which acts nontrivially on \(Q(D_2, \mu_{pq}) \). Since \(Q(\mu_{pq}) \subseteq Q(J[pq]) \) (due to the Weil pairing) it follows that \(\tau \) must act nontrivially on \(D_2 \).

Hence \(D_2 \neq \tau D_2 \) which implies \(P \neq \tau P \) and yet \(2(P - \tau P) = 2(D_2 - \tau D_2) \sim 0 \), which violates Lemma 4.4. This contradiction implies \(D_2 = 0 \), as desired.

Definition 4.8. Choose \(a, b \) minimal such that

\[
(1 - \zeta_p)^a (1 - \zeta_q)^b P \sim 0.
\]

Define \(D_p, D_q \) such that \(P - \infty \sim D_p + D_q, pD_p \sim 0, \) and \(qD_q \sim 0 \).

In order to get a contradiction whenever \(a \) and \(b \) are large, we will use an argument with inflectionary weights of Weierstrass points. The following definitions can be found in an introductory book on Riemann surfaces, e.g. [Far92].

Definition 4.9. Given a point \(R \) on a nonsingular algebraic curve \(X \) of genus \(g \), an integer \(k \) is a gap of \(R \) if there is no rational function on \(X \) with a pole at \(R \) of exact order \(k \). By Riemann-Roch, there will be exactly \(g \) gaps and they will lie in the range \([1, 2g - 1]\). The set
of non-gaps forms a monoid, denoted by \(\text{WM}(R) \), the Weierstrass monoid of \(R \). If the gaps of \(R \) are \(k_1 < k_2 < \cdots < k_g \), then the inflectionary weight of \(R \) is

\[
\text{wt}(R) = \sum_{i=1}^{g} (k_i - i).
\]

The point \(R \) is called a Weierstrass point of \(X \) if \(\text{wt}(R) > 0 \).

We now use a basic result about Weierstrass points on a Riemann surface, found in [Mir95] as Corollary 4.17.

Theorem 4.10. The sum of the inflectionary weights of all the Weierstrass points on a Riemann surface \(X \) of genus \(g \) is \(g^3 - g \).

Lemma 4.11. Define

\[
S_P = \{hzP : h \in \text{Gal}(\mathbb{Q}(J[pq])/\mathbb{Q}(\mu_{pq})), z \in \mathbb{Z}\}
\]

1. If \(a \geq 2 \) and \(b \geq 1 \), then \(S_P \) has size at least \(pq[L_{a,1} : L_{1,1}] \) and for each \(Q \in S_P \) we have \(p - 1, p \in \text{WM}(Q) \).
2. If \(a \geq 1 \) and \(b \geq 2 \), then \(S_P \) has size at least \(pq[L_{1,b} : L_{1,1}] \) and for each \(Q \in S_P \) we have \(q - 1, q \in \text{WM}(Q) \).

Proof. Both parts are similar so we show the first.

Define

\[
E = D_p + (1 - \zeta_q)^b D_q
\]

Since \(a \geq 2, b \geq 1 \), we know that \(E \) is a divisor of exact order \((1 - \zeta_p)^a(1 - \zeta_q) \). Therefore \(E \) is defined over \(L_{a,1} \).

To show that \(|S_P| \geq pq[L_{a,1} : L_{1,1}]\), we instead show the stronger statement that

\[
S_E = \{hzE : h \in \text{Gal}(\mathbb{Q}(D_p, \mu_{pq})/\mathbb{Q}(\mu_{pq})), z \in \mathbb{Z}\}
\]

already has size exactly equal to

\[
[\mathbb{Q}(D_p, \mu_{pq}) : \mathbb{Q}(\mu_{pq})] \cdot |\mathbb{Z}|.
\]

(By Lemma 2.16, we know that \(\mathbb{Q}(D_p, \mu_{pq}) = L_{a,1} \) so this latter number is exactly equal to \([L_{a,1} : L_{1,1}]pq \).)

To do so, we need to check that all the elements \(hzE \) are distinct. Since \(\text{Gal}(\mathbb{Q}(D_p)/\mathbb{Q}(\mu_{pq})) \) is abelian and commutes with \(Z \), it suffices to check that if \(hE = zE \), then \(h = 1 \) and \(z = 1 \).

So assume now that \(hE = zE \). Since \(\zeta_p \) commutes with \(h, z \) we have that

\[
h(1 - \zeta_p)^{a-1}E = z(1 - \zeta_p)^{a-1}E.
\]

But \((1 - \zeta_p)^{a-1}E \) is a \((1 - \zeta_p)(1 - \zeta_q) \)-torsion divisor, and is hence defined over \(\mathbb{Q}(\mu_{pq}) \), so \(h \) is forced to fix it. Hence

\[
(1 - \zeta_p)^{a-1}E = z(1 - \zeta_p)^{a-1}E.
\]

But as \((1 - \zeta_p)^{a-1}E \) has exact order \((1 - \zeta_p)(1 - \zeta_q) \), the only element of \(Z \) that can fix it is 1; hence, \(z = 1 \).

As \(z = 1 \), we now assume \(hE = zE = E \). In particular, \(h \) also fixes \(D_p \). Hence \(h = 1 \) as well. We have now shown that

\[
|S_P| \geq |S_E| = [\mathbb{Q}(D_p, \mu_{pq}) : \mathbb{Q}(\mu_{pq})] \cdot |\mathbb{Z}| = pq[\mathbb{Q}(D_p, \mu_{pq}) : \mathbb{Q}(\mu_{pq})]
\]
It suffices to check that $p - 1, p \in \text{WM}(P)$. For this, let $h \in \text{Gal}(J[\mu_{pq}]/\mathbb{Q}(\mu_{pq}))$ be such that its restriction to $\text{Gal}(\mathbb{Q}(D_p, \mu_{pq})/\mathbb{Q}(\mu_{pq}))$ is nontrivial and its restriction to $\text{Gal}(\mathbb{Q}(J[q])/\mathbb{Q}(\mu_{pq}))$ is trivial. (This can be done since $a \geq 2$.) Then

$$h^iP \neq P \text{ for } 0 \leq i \leq p - 1. \quad (2)$$

(We know that $h^p = 1$ since the entire extension is p-Kummer.)

Since h fixes the q-torsion, we know that $h(pP) \sim pP$. Therefore, $pP \sim p(hP)$ implies that $p \in \text{WM}(P)$. Moreover, we also see that $p \in \text{WM}(Q)$ for all $Q \in S_P$.

Moreover, note that $1 + h + h^2 + \cdots + h^{p-1}$ is an endomorphism of $J[\mu_{pq}]$. From Lemma 2.12 we know that for all χ, $\xi_\chi(h) \in 1 + m_p$. Therefore,

$$1 + \xi_\chi(h) + \xi_\chi(h)^2 + \cdots + \xi_\chi(h)^{p-1} \in m_p^{p-1} = p\mathcal{O}_p.$$

So again by Lemma 2.12 we know that $1 + h + h^2 + \cdots + h^{p-1}$ acts trivially on $J[p]$. Since h acts trivially on $J[q]$, we conclude that

$$(1 + h + h^2 + \cdots + h^{p-1}) - p \text{ acts trivially on } J[pq]$$

Therefore

$$hP + h^2P + \cdots + h^{p-1}P \sim (p - 1)P$$

and as $P \neq h^iP$ (by equation (2)) we see that $p - 1 \in \text{WM}(P)$ as well. Since this argument only used the fact that $P \in J[\mu_{pq}]$, we see it also applies to all $Q \in S_P$. \qed

Proposition 4.12.

1. If $a \geq 2$ and $b \geq 1$, then we must have $q = 3$ and $a \in \{2, 3\}$.
2. If $a \geq 1$ and $b \geq 2$, then we must have $p = 3$ and $b \in \{2, 3\}$.

Proof. Both parts are similar so we prove the first. By Lemma 4.11, there are at least $pq[L_{a,1} : L_{1,1}]$ points P such that $p - 1, p \in \text{WM}(P)$.

We first obtain a lower bound on $\text{wt}(P)$ for such P. Since $p - 1, p \in \text{WM}(P)$, we know that $u(p - 1) + vp \in \text{WM}(P)$ for any $u, v \geq 0$. In particular, we know that

$$\{p - 1, p, 2p - 2, 2p - 1, 2p, 3p - 3, 3p - 2, 3p - 1, 3p, \cdots\} \subseteq \text{WM}(P).$$

\[\]
Therefore, a lower bound on the weight of P is
\[
\text{wt}(P) = \sum_{i=1}^{g} (k_i - i) \\
\geq (1 - 1) + (2 - 2) + ((p - 2) - (p - 2)) \\
+ ((p + 1) - (p - 1)) + ((p + 2) - (p)) + \ldots + ((2p - 3) - (2p - 5)) \\
+ ((2p + 1) - (2p - 4)) + ((2p + 2) - (2p - 3)) + \ldots + ((3p - 4) - (3p - 9)) \\
+ \ldots \\
= 0 + \ldots + 0 + 2 + \ldots + 2 + 5 + \ldots + 5 + 9 + \ldots + 9 + \ldots \\
\text{p-2 times} \quad \text{p-3 times} \quad \text{p-4 times} \quad \text{p-5 times} \\
\geq 0 + \ldots + 0 + 2 + \ldots + 2 + 4 + \ldots + 4 + 6 + \ldots + 6 + \ldots \\
\text{p-1 times} \quad \text{p-1 times} \quad \text{p-1 times} \quad \text{p-1 times} \\
= (p - 1) \left(0 + 2 + 4 + 6 + \ldots + 2 \left(\frac{q - 1}{2} \right) \right) \\
= (p - 1)(q - 3)(q - 1) \\
= \frac{g (q - 3)}{4}.
\]
By Lemma 3.3 (4) we know that $[L_{a,1} : L_{1,1}] \geq [L_{2,1} : L_{1,1}] \geq p$, so we have at least p^2q of these points. Hence the total weight of all points on C is at least
\[
g \left(\frac{q - 3}{2} \right) p^2q
\]
If $q \geq 5$, then we know that $q(q - 3) \geq \frac{5}{8}(q - 1)^2$ which means the total weight is at least
\[
g \left(\frac{q - 3}{2} \right) p^2q \geq g \left(\frac{5}{16} (q - 1)^2 \right) p^2 > \frac{5}{16} g ((p - 1)(q - 1))^2 = \frac{5}{4} g^3.
\]
This contradicts Theorem 4.10 which states that the total weight of all points on C is $g^3 - g$.

Hence $q = 3$. If $a \geq 4$, then we know from Proposition 3.8 that $[L_{a,1} : L_{1,1}] \geq [L_{4,1} : L_{1,1}] \geq p^2$, so we have at least p^3q of these points of weight at least
\[
\text{wt}(P) \geq (1 - 1) + (2 - 2) + \cdots + ((p - 2) - (p - 2)) + ((p + 1) - (p - 1)) = 2
\]
which means that the total weight is at least $2p^3q = 6p^3$. Since $g = (p - 1)(q - 1)/2 = p - 1$ and Theorem 4.10 states that the total weight of all points on C is $g^3 - g = (p - 1)^3 - (p - 1) < p^3$, we have yet again a contradiction.

So the only remaining possibility is $q = 3$ and $a \in \{2, 3\}$. \hfill \Box

Proposition 4.13.

(1) It is impossible for $a = b = 1$.
(2) If $a = 0$, then $b \leq 1$.
(3) If $b = 0$, then $a \leq 1$.

Proof. (1) Suppose $a = b = 1$. Then
\[
(1 - \zeta_p)(1 - \zeta_q)P \sim 0
\]
which we rearrange to get
\[P + \zeta_p \zeta_q P \sim \zeta_p P + \zeta_q P. \]
From Lemma 4.4 it follows that either \(P = \zeta_p P \) or \(P = \zeta_q P \), meaning that either \(a \) or \(b \) is 0.

(2) Suppose \(a = 0 \) and \(b \geq 1 \). We seek to show that \(b = 1 \).

Then \(qP \sim q\infty \). Let \(f \) be a function such that
\[\text{div}(f) \sim qP - q\infty. \]
Since \(f \) only has poles at \(\infty \), it follows that \(f \) is a polynomial in \(x \) and \(y \). Since the pole order is \(q \), it follows that \(f(x, y) = y - g(x) \) where \(\deg(g) < q/p \). Let \(x_P \) be the \(x \)-coordinate of \(P \). From this it follows that
\[\text{div} \left(\prod_{i=0}^{p-1} (\zeta_p^i y - g(x)) \right) = q \left(\sum_{i=0}^{p-1} \zeta_p^i P \right) - pq\infty. \]
Moreover we also have
\[\text{div} \left((x - x_P)^q \right) = q \left(\sum_{i=0}^{p-1} \zeta_p^i P \right) - pq\infty, \]
so it follows that \(\prod_{i=0}^{p-1} (\zeta_p^i y - g(x)) \) and \((x - x_P)^q \) are the same up to a scalar. Simplifying the former expression, we see that
\[\prod_{i=0}^{p-1} (\zeta_p^i y - g(x)) = y^p - g(x)^p = x^q + 1 - g(x)^p, \]
so we conclude
\[(*) \quad x^q + 1 - g(x)^p = (x - x_P)^q. \]
Rewrite this as
\[x^q + 1 - (x - x_P)^q = g(x)^p. \]
If \(g \) is nonconstant, then the right hand side has at least one root of order at least 3. However, this is not true of the left hand side: to see this, let \(L(x) = x^q + 1 - (x - x_P)^q \) and note
\[L(x) = \frac{1}{q} (x - x_P) L'(x) = x_P x^{q-1} + 1 \]
has no double roots (hence \(L(x) \) has no triple roots).

This contradiction forces \(g \) to be a constant polynomial. Comparing the \(x^{q-1} \) coefficient of both sides of \((*) \) then shows that \(x_P = 0 \). Hence \(P \) is a \((1 - \zeta_q) \)-torsion point, forcing \(b = 1 \).

(3) Similar to the proof of the previous part.

\[\square \]

Combining Propositions 4.12 and 4.13, the only cases we have left to consider are

(1) \(q = 3, a \in \{2, 3\}, b = 1 \)
(2) \(p = 3, a = 1, b \in \{2, 3\} \)
Both cases are similar so we handle the first. Hence from now on we suppose that $q = 3$, $b = 1$, $a \in \{2, 3\}$, and $p \geq 5$. We have that

$$(1 - \zeta_p^3)(1 - \zeta_3)P \sim 0,$$

which we rewrite as

$$(\zeta_p^3 \zeta_3 - \zeta_p^3 - 3\zeta_p^2 \zeta_3 + 3\zeta_p^2 + 3\zeta_p \zeta_3 - 3\zeta_p - \zeta_3 + 1)P \sim 0,$$

which we can rewrite as

$$\zeta_p^3 \zeta_3 P + 3\zeta_p^2 P + 3\zeta_p \zeta_3 P + P \sim \zeta_p^3 P + 3\zeta_p^2 \zeta_3 P + 3\zeta_p P + \zeta_3 P.$$

Since $p \geq 5$ and $q = 3$, the only way for any of these points $\{\zeta_p^i \zeta_3^j P\}$ to equal another is for P to be in either $J[1 - \zeta_p]$ or $J[1 - \zeta_3]$. Therefore from this we get a degree 8 map to \mathbb{P}^1. Since we also have a degree 3 map to \mathbb{P}^1, we know from Corollary 4.3 that

$$g \leq (3 - 1)(8 - 1).$$

Since $g = (3 - 1)(p - 1)/2$, this means that

$$\frac{p - 1}{2} \leq 8 - 1,$$

so $p \leq 15$. Therefore we need only check that at the primes $p \in \{5, 7, 11, 13\}$ that there are no points $P \in J[(1 - \zeta_p)^3(1 - \zeta_3)] \setminus J[(1 - \zeta_p)(1 - \zeta_3)]$ in order to finish.

For the remaining three curves, the first step will be to compute explicitly the Galois action on T_pJ to find that $L_{3,1}/L_{2,1}/L_{1,1}$ is a tower where each successive step is a nontrivial p-extension. The bottom extension $L_{2,1}/L_{1,1}$ is known to be nontrivial by Lemma 3.2 (4). So we need to show that the top extension is nontrivial.

The strategy will be to find primes r such that for some prime r of $\mathbb{Q}(\mu_{3p})$ lying above r, we have $\xi_r(Frob_r) - 1$ always has π_p-adic valuation 2. Then by Lemma 2.12, we will know that $Frob_r$ acts trivially on $J[(1 - \zeta_p)^2]$ but not on $J[(1 - \zeta_p)^3]$. In other words, $Frob_r$ will be a nontrivial element of $Gal(L_{3,1}/L_{2,1})$. By Theorem 3.4, we are searching for finite fields F_R with $R \equiv 1 \mod 3p$ where

$$1 - \zeta_3, 1 - \zeta_3^2 \in F_R^p$$

$\eta_3, 1$ or $\eta_3, 2 \not\in F_R^p$.

With the help of a computer [Dev19], it does not take long to find such R. Here is a table with the smallest possible such R satisfying these conditions for $p \in \{5, 7, 11, 13\}$.

<table>
<thead>
<tr>
<th>p</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2^4</td>
</tr>
<tr>
<td>7</td>
<td>13^2</td>
</tr>
<tr>
<td>11</td>
<td>43^2</td>
</tr>
<tr>
<td>13</td>
<td>547^2</td>
</tr>
</tbody>
</table>

Now we can wrap up with one final lemma.

Lemma 4.14. The cases

1. $q = 3, p \in \{5, 7, 11, 13\}, a \in \{2, 3\}, b = 1$
2. $p = 3, q \in \{5, 7, 11, 13\}, a = 1, b \in \{2, 3\}$

are impossible.
Proof. Both cases are similar so we handle the first. Suppose \(a = 3 \). By our computation, there exists a nontrivial \(\gamma \in L_{3,1}/L_{2,1} \). By Lemma 2.16 we know that \(L_{3,1} = L_{2,1}(D_p) \), so \(\gamma \) must move \(D_p \) and hence it must move \(P \). Since
\[
\xi_\chi(\gamma) \in 1 + m^3_p
\]
for every \(\chi \), we know that
\[
\xi_\chi(\gamma) + \xi_\chi(\gamma^{-1}) - 1 \in 1 + m^6_p
\]
and hence \(\gamma + \gamma^{-1} - 1 \) must fix \(P \). (We are using Lemma 2.12 repeatedly.) So we can write
\[
\gamma P + \gamma^{-1}P \sim P + P,
\]
and now by Lemma 4.4 we know that \(P \) must be either \(\gamma P \) or \(\gamma^{-1} P \), which is a contradiction.

If \(a = 2 \), we can do a very similar argument by picking \(\gamma \) to be a nontrivial element of \(\text{Gal}(L_{2,1}/L_{1,1}) \). \(\square \)

In summary, we have the following result.

Corollary 4.15. Suppose \(n, d \) are coprime integers, neither of which is a power of 2. The only torsion points on the curve \(y^n = x^d + 1 \) are those whose \(x \)-coordinate or \(y \)-coordinate is zero, and also the point at \(\infty \).

Proof. As done in the introduction, we reduce to the case where \(n, d \) are odd primes first. Pick an odd prime \(p \) dividing \(n \) and an odd prime \(q \) dividing \(d \). Then \(p \neq q \) since \(n \) and \(d \) are coprime. There is an the map from \(y^n = x^d + 1 \) to \(y^p = x^q + 1 \) given by \((x, y) \mapsto (x^{d/q}, y^{n/p}) \) that sends torsion points to torsion points. By our work, we know that the only torsion points on the latter curve are those whose \(x \)- or \(y \)-coordinate is zero, and also the point at \(\infty \). The preimages of these points on the original curve are also points whose \(x \)-coordinate or \(y \)-coordinate is zero, and also the point at \(\infty \). \(\square \)

References
