1 Lecture review

1.1 Stokes’ theorem

1. Stokes’ theorem is a 3D generalization of the tangential form of the 2D Green’s theorem. For a surface S that is bounded, piecewise smooth, and simple with boundary curve C such that C and S are oriented by the right hand rule, and a vector field \mathbf{F} that is continuously differentiable on S, we have

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$$

2. This table organizes the relationships between the various theorems in the course.

<table>
<thead>
<tr>
<th>Relationship between</th>
<th>2D version</th>
<th>3D version</th>
</tr>
</thead>
<tbody>
<tr>
<td>work and curl</td>
<td>Green’s theorem (tangential form)</td>
<td>Stokes’ theorem</td>
</tr>
<tr>
<td>$\int_C \mathbf{F} \cdot d\mathbf{r}$</td>
<td>$\iint_R (\text{curl} \mathbf{F}) \cdot \mathbf{k} , dA$</td>
<td>$\int_C \mathbf{F} \cdot d\mathbf{r}$</td>
</tr>
<tr>
<td>work done by \mathbf{F} along C</td>
<td>work done by \mathbf{F} along C</td>
<td>$\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} , dS$</td>
</tr>
<tr>
<td>Relationship between</td>
<td>Green’s theorem (normal form)</td>
<td>Divergence theorem</td>
</tr>
<tr>
<td>flux and div</td>
<td>$\int_C \mathbf{F} \cdot \mathbf{n} , ds$</td>
<td>$\iint_S \mathbf{F} \cdot \mathbf{n} , dS$</td>
</tr>
<tr>
<td>outward flux of \mathbf{F} through C</td>
<td>outward flux of \mathbf{F} through S</td>
<td>$\iiint_D \nabla \cdot \mathbf{F} , dV$</td>
</tr>
</tbody>
</table>

3. In Stokes’ theorem, when S is a region in the xy-plane, one gets precisely the normal form of Green’s theorem, because in that case, $\mathbf{n} = \mathbf{k}$ and so

$$\text{integrand in Stokes’} = (\nabla \times (M \mathbf{i} + N \mathbf{j})) \cdot \mathbf{k} = N_x - M_y = \text{integrand in Green’s}.$$

4. Stokes’ theorem lets us understand the meaning of $\text{curl} \mathbf{F}$; it is the vorticity of \mathbf{F}. Qualitatively, it gives the magnitude of swirl/angular velocity. Quantitatively, $\mathbf{u} \cdot \text{curl} \mathbf{F}$ is twice the angular velocity of \mathbf{F} in the \mathbf{u}-direction.

5. Stokes’ theorem gives that the integral of $(\text{curl} \mathbf{F}) \cdot \mathbf{n}$ is the same for any two surfaces with the same boundary. In practice, this allows one to compute $\iint_S (\text{curl} \mathbf{F}) \cdot \mathbf{n} \, dS$ in one of three ways: (i) directly, using the formula for surface integrals, (ii) replacing S with a (simpler) surface T with the same boundary curve, (iii) calculating the work done by \mathbf{F} along the boundary of S (oriented via the right hand rule).
2 Problems

1. Verify Stokes’ theorem for the following vector fields F and curves C/surfaces S.

 (a) $F = (y+z)i + (x-z)j + (-x+y)k$, C is the curve given as the intersection of the paraboloid $z = 2 - x^2 - y^2$ and the plane $2x + 2y - z = 0$.

 (b) $F = yi - xj$, S is the upper hemisphere centered at the origin of radius 2, oriented upward.

 (c) $F = (x+2z+z^2)i + (2x+y+x^2)j + (2y+z+y^2)k$, C is the triangle with vertices at $(1,0,0), (0,1,0), (0,0,1)$, oriented clockwise when viewed from above.

 (d) $F = yi + xzj + yk$, C is the boundary of the half-circular cylinder $S, x^2 + y^2 = 1$, $y \geq 0, 0 \leq z \leq 1$ with corners at $(1,0,0), (-1,0,0), (-1,0,1), (1,0,1)$, oriented in that order.

2. Let $F = 3yzi + (3x-2z)j + (xy-x)k$, R be the portion of the ellipsoid $x^2 + y^2 / 4 + z^2 / 9 \leq 1$ in the first octant, $S_{xy}, S_{yz}, S_{xz}, S_{top}$ be the boundary pieces of R where the first three lie in the xy-, yz-, xz-planes and the fourth is the curved top surface.

 (a) Compute the outward flux of $\nabla \times F$ across S_{top} directly.

 (b) Using Stokes’ theorem, relate the above quantity to the sum of the fluxes across S_{xy}, S_{yz}, S_{xz}. Compute this sum and verify that it matches your answer in the previous part.

 (c) Using Stokes’ theorem, relate the above quantities to the integral of the work done by F over the boundary. Compute this and verify that it matches your answer in the previous part.

3. Let $F = yzi - xzj + k$. Let S be the portion of the surface of the paraboloid $z = 4 - x^2 - y^2$ lying above the first octant $x, y, z \geq 0$; and let C be the closed curve $C = C_1 + C_2 + C_3$, where the curves C_1, C_2, C_3 are the three curves formed by intersecting S with the xy-, yz-, and xz-planes respectively (so that C is the boundary of S). Orient C so that it is traversed counterclockwise when seen from above in the first octant.

 (a) Use Stokes’ theorem to compute the work integral $\int_C F \cdot dr$ by using the surface integral over the capping surface S.

 (b) Let S_1, S_2, S_3 be the three surfaces formed by intersecting the paraboloid with the yz-, xz-, and xy-planes respectively. Use Stokes’ theorem to compute the work integral $\int_C F \cdot dr$ by using the surface integrals over S_1, S_2, S_3.

 (c) Set up and evaluate the work integral $\int_C F \cdot dr$ by parametrizing each piece of the curve C and then adding up the three line integrals.

4. Use Stokes’ theorem to calculate the flux of $\nabla \times F$ across S by reducing it to the same flux but over a simpler surface.
(a) \(\mathbf{F} = x^3 \mathbf{i} + y^4 \mathbf{j} + z^3 \sin(xy) \mathbf{k} \), \(S \) is the upper half of the ellipsoid \(x^2 + y^2 + z^2/9 = 1 \) with downward orientation.

(b) \(\mathbf{F} = (y + xz) \mathbf{i} + (5 - x) \mathbf{j} + (2e^x) \mathbf{k} \), \(S \) is the lower hemisphere given by \(x^2 + y^2 + z^2 = 1 \) and \(z \leq 0 \) with downward orientation.

(c) Let \(\mathbf{F} = M \mathbf{i} + N \mathbf{j} + P \mathbf{k} \). Show that \(\nabla \cdot (\nabla \times \mathbf{F}) = 0 \). Use this to explain why the divergence theorem can also be used to explain why the flux in the previous two parts is unchanged upon replacing \(S \) by a simpler surface with the same boundary.

5. Let \(\mathbf{F} = 2z \mathbf{i} + 3x \mathbf{j} + 4y \mathbf{k} \) be a vector field and \(C \) a simple positively oriented curve lying in some plane \(P \). Assume that \(C \) encloses a region \(R \) of area 5. Suppose that \(P \) is chosen to maximize the work done by \(\mathbf{F} \) along \(C \). Compute the equation for the plane \(P \).

3 Answers

1. (a) \(-32\pi\), (b) \(-8\pi\), (c) \(-4\), (d) \(-\pi/2\)
2. (a) \(21\pi/4\), (b) \(S_{xy}: 3\pi/2, S_{yz}: 3\pi, S_{xz}: 3\pi/4\), (c) \(C_{xy}: 3\pi/2, C_{yz}: 3\pi, C_{xz}: 3\pi/4\)
3. (a) 0, (b) all 0, (c) \(C_1: 4, C_2: -4, C_3: 0\)
4. (a) 0, (b) \(2\pi\)
5. \(4x + 2y + 3z = d\)