1 Lecture review

1.1 Cross Product

1. The cross product is \(\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \).

2. \(\mathbf{a} \times \mathbf{b} \) is a 3D vector of length \(|\mathbf{a}||\mathbf{b}|\sin \theta\) (which is the area of the parallelogram formed by \(\mathbf{a} \) and \(\mathbf{b} \)) which points in the normal direction to \(\mathbf{a} \) and \(\mathbf{b} \). Choice of normal direction is determined by the right hand rule.

3. \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \) volume of parallelepiped formed by \(\mathbf{a}, \mathbf{b}, \mathbf{c} \).

1.2 Lines in 2D

1. Parametric form of a line in 2D: \(\mathbf{r} = (x_0, y_0) + t \mathbf{a} \) gives the equation of a line going through the point \((x_0, y_0)\) in the direction of \(\mathbf{a} \).

2. Another way to describe a line in 2D: take a normal vector \(\mathbf{n} \) and a point \((x_0, y_0)\) on the line. Then the equation of the line is \(\mathbf{n} \cdot (x - x_0, y - y_0) = 0 \).

1.3 Lines in 3D

1. Parametric form of a line in 3D: \(\mathbf{r} = (x_0, y_0, z_0) + t \mathbf{a} \) gives the equation of a line going through the point \((x_0, y_0, z_0)\) in the direction of \(\mathbf{a} \).

2. Symmetric form of a line in 3D: \(\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3} \) gives the equation of a line going through the point \((x_0, y_0, z_0)\) in the direction of \((a_1, a_2, a_3)\).

1.4 Planes in 3D

1. If a plane passes through \((x_0, y_0, z_0)\) and \(\mathbf{n} \) is a normal vector to the plane, then its equation is \(\mathbf{n} \cdot (x - x_0, y - y_0, z - z_0) = 0 \).

2. To determine \(\mathbf{n} \), take the cross product of two vectors lying in the plane.

3. To determine the distance from a point \(Q \) to a plane \(P \), take any point \(S \) of \(P \) and take the component of \(\overrightarrow{QS} \) in the direction of the normal to \(P \).

1.5 Intersections

1. In 2D, the only way for 2 lines to not intersect is for them to be parallel.

2. In 3D, the only way for 2 lines to not intersect is for them to be parallel or skew (lie in parallel planes).

3. In 3D, the only way for a line \(L \) and a plane \(P \) to not intersect is if \(L \) lies in a plane parallel to \(P \).

 (a) To find the intersection, plug the parametric equations of \(L \) into the equation for \(P \).

4. In 3D, the only way for two planes to not intersect is if they are parallel.

 (a) If they intersect in a line, then the direction of the line is determined by the cross product of the two normal vectors. The angle of the intersection is the angle between the normal vectors.
2 Problems

1. Find the equation of
 (a) the line passing through (1, 0, 0) and (0, 1, 1).
 (b) the line that intersects the plane \(x + 2y + 3z = 6 \) at a 90 degree angle at the point (3, 0, 1).
 (c) the plane passing through (1, 1, 1), (5, 0, -1), and (0, 1, 2).
 (d) the plane that intersects the line \(x = 2y = 3z \) at a 90 degree angle at the point (6, 3, 2).

2. Compute the intersection and angle of intersection between
 (a) (i) the line going through (4, -4, 0), (1, 2, 3) and (ii) the line \(x = 2(y + 1) = z \).
 (b) (i) the line going through (0, 2, 3), (2, 0, 1) and (ii) the plane \(x - y = 6 \).
 (c) (i) the plane \(x + y + z = 3 \) and (ii) the plane \(3x + y - 2z = 2 \).

3. Check that the following objects do not intersect. Then find the distance between them.
 (a) (i) the point (0, 2, 1) and (ii) the plane \(2x + 3y - 6z = -1 \).
 (b) (i) the plane \(2x + 3y - 6z = 0 \) and (ii) the plane \(2x + 3y - 6z = 2 \).
 (c) (i) the line \(4x = 4y = z \) and (ii) the plane \(2x + 2y - z = 1 \).
 (d) (i) the point (0, 0, 0) and (ii) the line \(x = 4y - 5 = 11 - 4z \).
 (e) (i) the line \(-x = 4y = 4z \) and (ii) the line \(x - 3 = 2(y - 1) = -z \).
 (f) (i) the line through (5, 2, 11) in the direction \(\langle 3, -4, 2 \rangle \) and (ii) the line through (1, 16, 16) in the direction \(\langle 3, -4, 2 \rangle \).

3 Answers

1. (a) \(x = 1 - t, \ y = t, \ z = t \) or \(1 - x = y = z \), (b) \(x = 3 + t, \ y = 2t, \ z = 1 + 3t \) or \(x - 3 = \frac{y}{2} = \frac{z - 1}{3} \),
 (c) \(x + 2y + z = 4 \), (d) \(6x + 3y + 2z = 49 \)

2. (a) \(2, 0, 2 \) at an angle of arccos(\(\sqrt{6}/9 \)), (b) \(4, -2, -1 \) at an angle of arccos(\(\sqrt{3}/3 \)), (c) intersection line is \(x = 1 - 3t, \ y = 1 + 5t, \ z = 1 - 2t \) (equivalently, \(\frac{1 - z}{3} = \frac{y - 1}{5} = \frac{x - 1}{2} \)) and angle is arccos(\(\sqrt{12}/21 \))

3. (a) 1/7, (b) 2/7, (c) 1/3, (d) 3, (e) 5/3, (f) 11