1 Lecture review

1.1 Dot products

1. The dot product of two vectors is a scalar. If \(\mathbf{v} = (a_1, a_2, a_3) \) and \(\mathbf{w} = (b_1, b_2, a_3) \), then
\[
\mathbf{v} \cdot \mathbf{w} = a_1 b_1 + a_2 b_2 + a_3 b_3.
\]

2. It satisfies the following properties
 (a) \(\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2 \).
 (b) \(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} \).
 (c) \(\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} \).

3. If \(\theta \) is the angle between vectors \(\mathbf{a} \) and \(\mathbf{b} \), then
\[
\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos \theta.
\]

4. If \(\mathbf{a} \) and \(\mathbf{b} \) point in the same direction (\(\theta = 0 \)), then \(\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \).

5. If \(\mathbf{a} \) and \(\mathbf{b} \) are perpendicular, then \(\mathbf{a} \cdot \mathbf{b} = 0 \).

6. The component of \(\mathbf{b} \) in the direction of \(\mathbf{a} \) is \(||\mathbf{a}|| \cos \theta \).

7. The projection of \(\mathbf{b} \) in the direction of \(\mathbf{a} \) is \(||\mathbf{b}|| \cos \theta (\mathbf{a}/||\mathbf{a}||) = (\mathbf{a} \cdot \mathbf{b})\mathbf{a}/||\mathbf{a}||^2 \).

1.2 Cross products and Determinants

1. Determinants (2 dimensions).
 (a) \(\det(\mathbf{a}, \mathbf{b}) = ||\mathbf{a}|| ||\mathbf{b}|| \sin \theta \), where \(\theta \) is the counterclockwise angle from \(\mathbf{a} \) to \(\mathbf{b} \). This gives the signed area of the parallelogram formed by \(\mathbf{a} \) and \(\mathbf{b} \).
 (b) If \(\mathbf{a} = (a_1, a_2) \) and \(\mathbf{b} = (b_1, b_2) \), then
\[
\det(\mathbf{a}, \mathbf{b}) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1.
\]

2. Determinants (3 dimensions).
 (a) \(\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) \) is the signed volume of the parallelepiped formed from the vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c} \).
 (b) We have
\[
\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}.
\]

3. Cross products (3 dimensions).
 (a) To compute the cross product of \(\mathbf{a} = (a_1, a_2, a_3) \) and \(\mathbf{b} = (b_1, b_2, b_3) \), we have
\[
\langle a_1, a_2, a_3 \rangle \times \langle b_1, b_2, b_3 \rangle = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.
\]
 (b) \(\mathbf{a} \times \mathbf{b} \) is a 3D vector of length \(||\mathbf{a}|| \cdot ||\mathbf{b}|| \sin \theta \) pointing in the normal direction to \(\mathbf{a} \) and \(\mathbf{b} \). Choice of normal direction is determined by the right hand rule.
 (c) \(\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \).
 (d) \(\mathbf{a} \times \mathbf{b} = 0 \) when \(\mathbf{a} \) and \(\mathbf{b} \) point in the same direction.
2 Problems

1. What are the i j-components of a plane vector A of length 3, if it makes an angle of 30° with i and 60° with j. Is the second condition redundant?

Solution.

Set $A = a_1i + a_2j$. Then

$$a_1 = A \cdot i = 3 \cos 30^\circ = \frac{3\sqrt{3}}{2}, \quad a_2 = A \cdot j = 3 \cos 60^\circ = \frac{3}{2}.$$

Thus

$$A = \frac{3\sqrt{3}}{2} i + \frac{3}{2} j.$$

The second condition is not redundant since there are two vectors of length 3 making an angle of 30° with i.

2. A small plane wishes to fly due north at 200 mph (as seen from the ground), in a wind blowing from the northeast at 50 mph. Tell with what vector velocity in the air it should travel (give the $i\ j$-components).

Solution.

The unit vector for the wind blowing from the northeast is $(-\hat{i} - \hat{j})/\sqrt{2}$. Thus the vector for the wind is $\mathbf{w} = 50(-\hat{i} - \hat{j})/\sqrt{2}$. We want to find the vector velocity \mathbf{v} for the small plane which satisfies

$$\mathbf{v} + \mathbf{w} = 200\hat{j} \quad \implies \quad \mathbf{v} = \frac{50}{\sqrt{2}}\hat{i} + \left(200 + \frac{50}{\sqrt{2}} \right)\hat{j}.$$
3. Find the angle between the vectors $\mathbf{i} - \mathbf{k}$ and $4\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$.

Solution.

The magnitude of $\mathbf{i} - \mathbf{k}$ is $\sqrt{2}$ and the magnitude of $4\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ is 6. Then

$$
\cos \theta = \frac{(\mathbf{i} - \mathbf{k}) \cdot (4\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})}{\sqrt{2} \cdot 6} = \frac{4 + 2}{\sqrt{2} \cdot 6} = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}.
$$
4. Using vectors, find the angle between a longest diagonal PQ of a cube, and

(a) a diagonal PR of one of its faces
(b) an edge PS of the cube

Solution.

Place the cube in the first octant so the origin is at one corner P, and i, j, k are three edges. The longest diagonal $PQ = i + j + k$, a face diagonal $PR = i + j$, and an edge $PS = i$.

\[
\begin{align*}
(a) \quad \cos \theta &= \frac{PQ \cdot PR}{|PQ||PR|} = \frac{2}{\sqrt{3}\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{3}} \quad \Rightarrow \quad \theta = \cos^{-1}\left(\frac{\sqrt{2}}{\sqrt{3}}\right). \\
(b) \quad \cos \theta &= \frac{PQ \cdot PS}{|PQ||PS|} = \frac{1}{\sqrt{3}}, \quad \Rightarrow \quad \theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right).
\end{align*}
\]
5. Find $\mathbf{A} \times \mathbf{B}$ if

(a) $\mathbf{A} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}, \; \mathbf{B} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$

(b) $\mathbf{A} = 2\mathbf{i} - 3\mathbf{k}, \; \mathbf{B} = \mathbf{i} + \mathbf{j} - \mathbf{k}$

Solution.

(a) $\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 1 \\ 2 & -1 & -1 \end{vmatrix} = 3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} = 3(\mathbf{i} + \mathbf{j} + \mathbf{k})$

(b) $\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -3 \\ 1 & 1 & -1 \end{vmatrix} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$
6. Find the area of the triangle in space having its vertices at the points

\[P : (2, 0, 1), \quad Q : (3, 1, 0), \quad R : (-1, 1, -1). \]

Solution.

The area of the \(PQR \) is half the area of the parallelogram with edges \(PQ = (1, 1, -1), \) \(PR = (-3, 1, -2). \) The latter area is \(|PQ \times PR| \). We compute

\[
PQ \times PR = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ -3 & 1 & -2 \end{vmatrix} = -\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}.
\]

Thus

\[
\text{area of } PQR = \frac{1}{2} \|PQ \times PR\| = \frac{1}{2} \sqrt{1 + 25 + 16} = \frac{\sqrt{42}}{2}.
\]
7. Show using vector methods that the diagonals of a rectangle have equal length.

Solution.

Place a rectangle $PQRS$ with side lengths a and b in the plane so the origin is at one corner P, and \mathbf{a}, \mathbf{b} are two edges. We have one diagonal $PR = a\mathbf{i} + b\mathbf{j}$. We have another diagonal $QS = -a\mathbf{i} + b\mathbf{j}$. We can see that

$$|PR| = \sqrt{a^2 + b^2} = |QS|.$$
8. Show using vector methods that if the diagonals of a parallelogram have equal length, then it must be a rectangle.

solution.

Consider a parallelogram $OPQR$ with O at the origin. Let $\mathbf{a} = OP$ and $\mathbf{b} = OR$. Then the diagonals of this parallelogram are $\mathbf{a} + \mathbf{b} = OQ$ and $\mathbf{a} - \mathbf{b} = RP$.

If the diagonals have equal length, then

$$\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a} - \mathbf{b}\|.$$

Squaring both sides gives

$$\|\mathbf{a} + \mathbf{b}\|^2 = \|\mathbf{a} - \mathbf{b}\|^2.$$

Since $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$, it follows that

$$(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}).$$

Expanding and cancelling like terms from both sides gives

$$2(\mathbf{a} \cdot \mathbf{b}) = -2(\mathbf{a} \cdot \mathbf{b}).$$

So we see that $\mathbf{a} \cdot \mathbf{b} = 0$, meaning that the angle between \mathbf{a} and \mathbf{b} is 90 degrees, so that the parallelogram is a rectangle.