Contents

1 3D change of variables (cylindrical, spherical)
 1.1 Lecture review ..
 1.2 Problems ...

2 Gravitational attraction
 2.1 Lecture review ..
 2.2 Problems ...

3 Surface integrals, flux
 3.1 Lecture review ..
 3.2 Problems ...

4 Divergence theorem
 4.1 Lecture review ..
 4.2 Problems ...

5 Line integrals, conservativity, potential, curl in 3D
 5.1 Lecture review ..
 5.2 Problems ...

6 Stokes’ theorem
 6.1 Lecture review ..
 6.2 Problems ...

7 Solutions
 7.1 3D change of variables (cylindrical, spherical)
1 3D change of variables (cylindrical, spherical)

1.1 Lecture review

1. Given a change of coordinates \(x = x(u, v, w), \ y = y(u, v, w) \) and \(z = z(u, v, w) \), one has

\[
\iiint_D f(x, y, z) \, dV = \iiint_{T(D)} F(u, v, w) |J| \, du \, dv \, dw
\]

where

\[
F(u, v, w) = f(x(u, v, w), y(u, v, w), z(u, v, w)) \quad J = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \det \begin{pmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{pmatrix}
\]

One could also compute \(J \) by computing \(J^{-1} \) first as follows.

\[
J^{-1} = \frac{\partial(u, v, w)}{\partial(x, y, z)} = \det \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{pmatrix}
\]

2. Cylindrical coordinates are good for problems with a line of symmetry, or with volumes that are pieces of a cylinder. Take \(x = r \cos \theta, \ y = r \sin \theta, \ z = z \). Then \(J = r \). (So \(dV = rdz \, dr \, d\theta \).)

3. Spherical coordinates are good for problems with a point of symmetry, or with volumes that are pieces of a sphere. Take \(x = \rho \cos \theta \sin \varphi, \ y = \rho \sin \theta \sin \varphi, \ z = \rho \cos \varphi \). Then \(J = \rho^2 \sin \varphi \). (So \(dV = \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta \).)

1.2 Problems

1. Let \(D \) be the region that lies between the downward facing paraboloid \(z = 3 - x^2 - y^2 \) and the cone \(z = 2\sqrt{x^2 + y^2} \).

 (a) Set up the integral in cylindrical coordinates for the centroid of \(D \).
 (b) Set up the integral in cylindrical coordinates for the moment of inertia of \(D \) about the \(x \)-axis.

2. Let \(H \) be a solid hemisphere of radius \(a \) in the region \(z \geq 0 \) whose density function is \(\delta(x, y, z) = bz \).

 (a) Set up the integral in spherical coordinates for the center of mass of \(H \).
 (b) Set up the integral in spherical coordinates for the moment of inertia of \(H \) about the \(z \)-axis.

3. Let \(D \) be the region in the first octant \((x, y, z \geq 0) \) below the surface \(\sqrt{x} + \sqrt{y} + \sqrt{z} = 1 \). Use the 3D change of coordinates \(x = u^2, \ y = v^2, \ z = w^2 \) to find the volume of \(D \).
2 Gravitational attraction

2.1 Lecture review

1. The gravitational attraction felt by two point masses is \(F = G M_1 M_2 / r^2 \).

2. The gravitational force felt by a point of mass \(M \) at the origin by a volume \(V \) of density \(\delta \) is

\[
\vec{F} = \iiint_{V} \left(\frac{G M \delta(x, y, z)}{\rho^2} \right) \hat{\rho} \, dV
\]

3. Use symmetry extensively to simplify calculation. If \(V \) has an axis of symmetry \(L \) and the point is on \(L \), then the gravitational attraction must be a vector in the direction of \(L \).

2.2 Problems

1. Let \(D \) be the “ice cream cone” domain above the cone \(z = \sqrt{3(x^2 + y^2)} \) and inside the sphere centered at the origin of radius 2. Suppose that \(D \) has density \(\delta = x^2 + y^2 + z^2 \). Compute the gravitational attraction that \(D \) exerts on a point at the origin with unit mass.

2. Let \(D \) be the domain given in spherical coordinates by \(0 \leq \rho \leq 1 + \cos \varphi \) with density \(\delta = \cos \varphi \). Compute the gravitational attraction that \(D \) exerts on a point at the origin with unit mass.

3. Let \(D \) be the solid upper hemisphere of radius \(a \) centered at the origin with density \(\delta = \sqrt{x^2 + y^2} \). Compute the gravitational attraction that \(D \) exerts on a point at the origin with unit mass.
3 Surface integrals, flux

3.1 Lecture review

1. Recall that for a surface \(z = f(x, y) \) we have

\[
\begin{align*}
 g(x, y, z) &= z - f(x, y) \\
 \nabla g &= -f_x \hat{i} - f_y \hat{j} + \hat{k} \text{ is normal to } S \\
 \hat{n} &= -f_x \hat{i} - f_y \hat{j} + \hat{k} \\
 dS &= |\nabla g| dA = \sqrt{f_x^2 + f_y^2 + 1} dA \\
 d\vec{S} &= \hat{n} dS = \nabla g dA = (-f_x \hat{i} - f_y \hat{j} + \hat{k}) dA \\
 \iiint_S \vec{F} \cdot d\vec{S} &= \iiint_R \vec{F} \cdot (-f_x \hat{i} - f_y \hat{j} + \hat{k}) dA
\end{align*}
\]

2. (Formulas in cylindrical coordinates)

 If \(S \) is part of a cylinder of radius \(a \) with a central \(z \)-axis, then

\[
\hat{n} = \hat{r} = \frac{x\hat{i} + y\hat{j}}{a} = \cos \theta \hat{i} + \sin \theta \hat{j}
\]

3. (Formulas in spherical coordinates)

 If \(S \) is part of a sphere of radius \(a \) centered at the origin, then

\[
\hat{n} = \hat{\rho} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{a} = \sin \varphi \cos \theta \hat{i} + \sin \varphi \sin \theta \hat{j} + \cos \varphi \hat{k}
\]

3.2 Problems

1. Let \(S \) be the surface \(z = \frac{2}{3}(x^{3/2} + y^{3/2}) \) lying above the shadow region \(R = \{0 \leq x, y \leq 1\} \). Compute the \(x \)-coordinate of the centroid of \(S \).

2. Let \(S \) be the portion of the cylinder \(x^2 + y^2 = 1 \) in the octant \(x, y, z \geq 0 \) that lies below \(z = 1 \). Compute the flux of \(\vec{F} = (x^3z^2 + y^2z)\hat{i} + (x^2yz^2 - xyz)\hat{j} + (xz^4 - y^5)\hat{k} \) through \(S \).

3. Let \(S \) be the portion of the sphere of radius 2 centered at the origin between \(z = 0 \) and \(z = \sqrt{3} \). Compute the flux of \(\vec{F} = xz\hat{i}/\sqrt{4 - z^2} \) through \(S \).
4 Divergence theorem

4.1 Lecture review

1. Recall the 2D version: for a closed, simple, piecewise smooth, positively oriented curve \(C \) and a vector field \(\mathbf{F} \) we have

\[
\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R \nabla \cdot \mathbf{F} \, dA
\]

(We also called this the normal form of Green’s theorem.)

2. The 3D version is as follows. Let \(S \) be a closed piecewise smooth surface bounding a space region \(D \) with outward unit normal \(\mathbf{n} \). Then for a vector field \(\mathbf{F} \) we have

\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_D \nabla \cdot \mathbf{F} \, dV
\]

3. The divergence of the gravitational field generated by a point mass at \((0,0,0)\) is zero everywhere except for \((0,0,0)\). Hence the flux of this gravitational field is zero for any closed surface \(S \) whose interior does not contain the origin.

4.2 Problems

1. Calculate the flux of

\[
\mathbf{F} = \frac{\sin(y^2)}{1+z^2}\mathbf{i} + \frac{e^{x^2}}{\log(e^x + 1)}\mathbf{j} + (1+z^2)\mathbf{k}
\]

through the top half of the unit sphere centered at the origin, oriented upward.

2. Let \(\mathbf{F} = (3x - x^3 - xz^2)\mathbf{i} + (3y - y^3 - x^2y)\mathbf{j} + (3z - z^3 - y^2z)\mathbf{k} \).

(a) Find the closed surface \(S \) that maximizes the outward flux of \(\mathbf{F} \) through \(S \).

(b) Let \(C \) the the unit circle in the \(xy \)-plane. Find the surface \(S \) in the region \(z \geq 0 \) with boundary \(C \) which maximizes the outward flux of \(\mathbf{F} \) through \(S \).

3. Use the divergence theorem to calculate

\[
\iint_S (2x + 2y + z^2) \, dS
\]

where \(S \) is the sphere \(x^2 + y^2 + z^2 = 1 \).
5 Line integrals, conservativity, potential, curl in 3D

5.1 Lecture review

<table>
<thead>
<tr>
<th></th>
<th>line integrals</th>
<th>curl</th>
<th>conservativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>(\int_C M , dx + N , dy)</td>
<td>(\nabla \times (M \hat{i} + N \hat{j}))</td>
<td>check curl is 0 in region with no holes</td>
</tr>
<tr>
<td></td>
<td>parametrize (C) to evaluate</td>
<td>((N_x - M_y) \hat{k})</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>(\int_C M , dx + N , dy + P , dz)</td>
<td>(\nabla \times (M \hat{i} + N \hat{j} + P \hat{k}))</td>
<td>check curl is 0 in region with no holes</td>
</tr>
<tr>
<td></td>
<td>parametrize (C) to evaluate</td>
<td>((P_y - N_z) \hat{i} + (M_z - P_z) \hat{j} + (N_x - M_y) \hat{k})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>potential</th>
<th>convert to higher integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>(f) such that (\nabla f = \vec{F})</td>
<td>Green’s theorem</td>
</tr>
<tr>
<td></td>
<td>algebraic, integration methods</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>(f) such that (\nabla f = \vec{F})</td>
<td>Stokes’ theorem</td>
</tr>
<tr>
<td></td>
<td>algebraic, integration methods</td>
<td></td>
</tr>
</tbody>
</table>

The notion of conservativity is equivalent to any of the following:

\[
\vec{F} = \nabla f \iff \int_C \vec{F} \cdot d\vec{r} = 0
\]

\[\iff \int_C \vec{F} \cdot d\vec{r} \text{ depends only on endpoints} \]

\[\iff \nabla \times \vec{F} = 0 \text{ (in regions with no holes)} \]

5.2 Problems

1. Calculate the work done by \(\vec{F} = xy^2 \hat{i} + 2z^2 \hat{j} + x \hat{k} \) along the curve given by \(\vec{r}(t) = \sin(t) \hat{i} + t \hat{j} + \cos(t) \hat{k} \) from \(t = -\pi/2 \) to \(t = \pi/2 \).

2. Let \(\vec{F} \) be the vector field \(\vec{F} = (3x^2 + ayz) \hat{i} + b(xz + z^2) \hat{j} + (cxy + 2yz) \hat{k} \)

 (a) Find the values of \(a, b, c \) which make \(\vec{F} \) conservative.
 (b) Using the values of \(a, b, c \) found above, find a potential for \(f \) using the (i) algebraic method and the (ii) integration method. Check that your answers match.

3. Let \(\vec{F} \) be the force field \(\vec{F} = x^2 yz^2 \hat{i} + x^2 z^2 \hat{j} + 3xz^2 y^2 \hat{k} \).

 (a) Show that \(\vec{F} \) is conservative, and find a potential function for it.
 (b) Find the maximum and minimum values of work done by all paths lying in the unit sphere centered at the origin.
6 Stokes’ theorem

6.1 Lecture review

1. Stokes’ theorem: For a surface S that is bounded, piecewise smooth, and simple with boundary curve C such that C and S are oriented by the right hand rule, and a vector field \vec{F} that is continuously differentiable on S, we have

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \hat{n} \, dS$$

<table>
<thead>
<tr>
<th>Relationship between work and curl</th>
<th>2D version</th>
<th>3D version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green’s theorem (tangential form)</td>
<td>$\oint_C \vec{F} \cdot d\vec{r} = \iint_R (\text{curl} \vec{F}) \cdot \hat{k} , dA$</td>
<td>$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \hat{n} , dS$</td>
</tr>
<tr>
<td>work done by \vec{F} along C</td>
<td>work done by \vec{F} along C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relationship between flux and div</th>
<th>Green’s theorem (normal form)</th>
<th>Divergence theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\oint_C \vec{F} \cdot \hat{n} , ds = \iint_R \text{div} \vec{F} , dA$</td>
<td>outward flux of \vec{F} through C</td>
<td>$\iiint_D \nabla \cdot \vec{F} , dV$</td>
</tr>
<tr>
<td>outward flux of \vec{F} through C</td>
<td>outward flux of \vec{F} through S</td>
<td></td>
</tr>
</tbody>
</table>

2. Stokes’ theorem when S is a region in the xy-plane = tangential form of Green’s theorem (here, $\hat{n} = \hat{k}$)

$$\text{integrand in Stokes'} = (\nabla \times (M\hat{i} + N\hat{j})) \cdot \hat{k} = N_x - M_y = \text{integrand in Green’s.}$$

3. Geometric meaning of curl $\nabla \times \vec{F}$. Qualitatively, it gives the magnitude of swirl/ angular velocity. Quantitatively, $\hat{\nu} \cdot \text{curl} \vec{F}$ is twice the angular velocity of \vec{F} in the $\hat{\nu}$-direction.

4. The integral of $(\text{curl} \vec{F}) \cdot \hat{n}$ is the same for any two surfaces with same boundary. So this gives three methods for evaluating $\iint_S (\text{curl} \vec{F}) \cdot n \, dS$: (i) directly, using the formula for surface integrals, (ii) replacing S with a (simpler) surface T with the same boundary curve, (iii) calculating the work done by \vec{F} along the boundary of S (oriented via the right hand rule).

6.2 Problems

1. Verify Stokes’ theorem for $\vec{F} = (y + z)\hat{i} + (x - z)\hat{j} + (-x + y)\hat{k}$ and C the curve given as the intersection of the paraboloid $z = 2 - x^2 - y^2$ and the plane $2x + 2y - z = 0$.

2. Let C be the triangle with vertices at $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$, oriented clockwise when viewed from above. Let $\vec{F} = (x + 2z + z^2)\hat{i} + (2x + y + x^2)\hat{j} + (2y + z + y^2)\hat{k}$. Compute the work done by \vec{F} along C.

3. Let $\vec{F} = 3yz\hat{i} + (3x - 2z)\hat{j} + (xy - x)\hat{k}$, R be the portion of the ellipsoid $x^2 + y^2/4 + z^2/9 \leq 1$ in the first octant, S_{xy}, S_{yz}, S_{xz}, S_{top} be the boundary pieces of R where the first three lie in the xy-, yz-, xz-planes and the fourth is the curved top surface.

 (a) Compute the outward flux of $\nabla \times \vec{F}$ across S_{top} directly.

 (b) Using Stokes’ theorem, relate the above quantity to the sum of the fluxes across S_{xy}, S_{yz}, and S_{xz}. Compute this sum and verify that it matches your answer in the previous part.

 (c) Using Stokes’ theorem, relate the above quantities to the integral of the work done by \vec{F} over the boundary. Compute this and verify that it matches your answer in the previous part.
7 Solutions

7.1 3D change of variables (cylindrical, spherical)

1. (a) The centroid only has a z-component by symmetry. So it is

$$\left(\iiint_D z \, dV \over \iiint_D 1 \, dV\right) \hat{k} = \left(\int_0^{2\pi} \int_0^\pi \int_0^a (\rho \cos \varphi)^2 (\rho^2 \sin \varphi) \, d\rho \, d\varphi \, d\theta\right) \hat{k} = \left(\frac{13\pi}{6} / \frac{7\pi}{6}\right) \hat{k} = \frac{13}{7} \hat{k}.$$

(b) The distance from the x-axis is $\sqrt{y^2 + z^2} = \sqrt{(r \sin \theta)^2 + z^2}$. Hence it is

$$\iiint_D ((r \sin \theta)^2 + z^2) \, dV = \int_0^{2\pi} \int_0^\pi \int_0^a (r^2 \sin^2 \theta + z^2) r \, dr \, d\theta \, d\varphi = \frac{68\pi}{15}.$$

Note. An earlier version of this handout wrote “the distance from the x-axis is $r \sin \theta$” and the subsequent computations were incorrect. This mistake was caught thanks to Isabella Montanaro and the solutions have been amended.

2. (a) The centroid only has a z-component by symmetry. So it is

$$\left(\iiint_D z \, dm \over \iiint_D 1 \, dm\right) \hat{k} = \left(\int_0^{2\pi} \int_0^\pi \int_0^a b(\rho \cos \varphi)^2 (\rho^2 \sin \varphi) \, d\rho \, d\varphi \, d\theta\right) \hat{k} = \left(\frac{2\pi a^5 b / 15}{\pi a^4 b / 4}\right) \hat{k} = \left(\frac{8a}{15}\right) \hat{k}.$$

(b) The distance from the z-axis is $\rho \sin \varphi$. Hence it is

$$\iiint_D (\rho \sin \varphi)^2 \, dm = \int_0^{2\pi} \int_0^\pi \int_0^a (\rho \sin \varphi)^2 (b \rho \cos \varphi) (\rho^2 \sin \varphi) \, d\rho \, d\varphi \, d\theta = \frac{\pi a^6 b}{12}.$$

3. The inverse Jacobian is $8uvw$. The bounds are $u, v, w \geq 0$ and $0 \leq u + v + w \leq 1$. Hence the volume is

$$\iiint_D 1 \, dV = \int_0^1 \int_0^1 \int_0^{1-u-v} 8uvw \, dw \, dv \, du = \int_0^1 \int_0^{1-u} 4uv(1-u-v)^2 \, dv \, du = \int_0^1 {u(1-u)}^4 \, du = \frac{1}{90}.$$

7.2 Gravitational attraction

1. By symmetry the force is only in the z-direction. The integrand is

$$\frac{GM\delta}{\rho^2} (\hat{\rho} \cdot \hat{k}) \hat{k} \, dV = \frac{G\rho^2}{\rho^2} (\cos \varphi) \hat{k}(\rho^2 \sin \varphi) \, d\rho \, d\varphi \, d\theta = \frac{1}{2} G\rho^2 \sin 2\varphi \hat{k} \, d\rho \, d\varphi \, d\theta$$

so the gravitational field is

$$\frac{1}{2} G \left(\int_0^{2\pi} \int_0^\pi \int_0^1 \rho^2 \sin 2\varphi \, d\varphi \, d\rho \, d\theta\right) \hat{k} = \frac{2}{3} \pi G \hat{k}$$

2. As the domain and density are symmetric about the z-axis, and the point is also on the z-axis, it follows by symmetry that the force is only in the z-direction. Then integrand is

$$\frac{GM\delta}{\rho^2} (\hat{\rho} \cdot \hat{k}) \hat{k} \, dV = \frac{G\cos \varphi}{\rho^2} (\cos \varphi) (\rho^2 \sin \varphi) \hat{k} \, d\rho \, d\varphi \, d\theta = G \cos^2 \varphi \sin \varphi \hat{k} \, d\rho \, d\varphi \, d\theta$$

so the gravitational field is

$$G \left(\int_0^{2\pi} \int_0^\pi \int_0^1 \cos^2 \varphi \sin \varphi \, d\varphi \, d\rho \, d\theta\right) \hat{k} = \frac{4}{3} \pi G \hat{k}.$$
3. By symmetry the gravity is in the z-direction, so the integrand is
\[
\frac{GM\delta}{\rho^2} (\hat{\rho} \cdot \hat{k}) \hat{k} \, dV = \frac{G (\rho \sin \varphi)}{\rho^2} (\cos \varphi) (\rho^2 \sin \varphi) \hat{k} \, d\rho \, d\varphi \, d\theta = G \rho \sin^2 \varphi \cos \varphi \hat{k} \, d\rho \, d\varphi \, d\theta
\]
so the gravitational field is
\[
G \left(\int_0^{2\pi} \int_0^{\pi/2} \int_0^a \rho \sin^2 \varphi \cos \varphi \, d\rho \, d\varphi \, d\theta \right) \hat{k} = \frac{1}{3} \pi a^2 G \hat{k}.
\]

7.3 Surface integrals, flux

1. We compute
\[
\iint_S x \, dS = \int_0^1 \int_0^1 x \sqrt{x^2 + y^2 + 1} \, dy \, dx
\]
\[
= \int_0^1 \int_0^1 x \sqrt{x + y + 1} \, dy \, dx
\]
\[
= \frac{2}{3} \int_0^1 x (x + 2)^{3/2} - x (x + 1)^{3/2} \, dx
\]
\[
= \frac{4}{105} (9\sqrt{3} + 4\sqrt{2} - 2)
\]
\[
\iiint_S 1 \, dS = \int_0^1 \int_0^1 \sqrt{x^2 + y^2 + 1} \, dy \, dx
\]
\[
= \int_0^1 \int_0^1 \sqrt{x + y + 1} \, dy \, dx
\]
\[
= \frac{2}{3} \int_0^1 (x + 2)^{3/2} - (x + 1)^{3/2} \, dx
\]
\[
= \frac{2}{5} (9\sqrt{3} - 8\sqrt{2} + 1)
\]
so the answer is the quotient
\[
\frac{\iint_S x \, dS}{\iiint_S 1 \, dS} = \frac{2(9\sqrt{3} + 4\sqrt{2} - 2)}{21(9\sqrt{3} - 8\sqrt{2} + 1)}.
\]

2. In this instance the normal vector is $\hat{n} = x \hat{i} + y \hat{j}$ so
\[
\vec{F} \cdot \hat{n} = (x^3 z^2 + y^2 z) x + (x^2 y z^2 - xyz) y = x^2 z^2 (x^2 + y^2) = x^2 z^2 = z^2 \cos^2 \theta
\]
and hence the flux is
\[
\int_0^{\pi/2} \int_0^1 z^2 \cos^2 \theta \, dz \, d\theta = \frac{\pi}{12}.
\]

3. First we convert \vec{F} to spherical coordinates:
\[
\vec{F} = \left(\frac{xz}{\sqrt{4 - z^2}} \right) \hat{i} = \left(\frac{(2 \sin \varphi \cos \theta)(2 \cos \varphi)}{\sqrt{4 - (2 \cos \varphi)^2}} \right) \hat{i} = \left(\frac{(2 \sin \varphi \cos \theta)(2 \cos \varphi)}{2 \sin \varphi} \right) \hat{i} = (2 \cos \varphi \cos \theta) \hat{i}
\]
Therefore,
\[
\mathbf{F} \cdot \hat{n} = (2 \cos \varphi \cos \theta) \hat{i} \cdot \mathbf{\hat{r}} = (2 \cos \varphi \cos \theta)(\sin \varphi \cos \theta) = 2 \sin \varphi \cos \varphi \cos^2 \theta
\]
and hence
\[
\mathbf{F} \cdot \hat{n} \, dS = (2 \sin \varphi \cos \varphi \cos^2 \theta)(2 \sin \varphi \cos \varphi \cos^2 \theta \, d\varphi \, d\theta) = 8 \sin^2 \varphi \cos \varphi \cos^2 \theta \, d\varphi \, d\theta
\]
so the flux is
\[
\int_0^{2\pi} \int_{\pi/6}^{\pi/2} (8 \sin^2 \varphi \cos \varphi \cos^2 \theta) \, d\varphi \, d\theta = \frac{7\pi}{3}.
\]

7.4 Divergence theorem

1. Let \(S \) be the top half of the unit sphere centered at the origin, oriented upward. Let \(T \) be the unit disk in the \(xy \)-plane centered at the origin, oriented downward. Then by the divergence theorem, the sum of the fluxes through \(S \) and \(T \) is the integral of \(\nabla \cdot \mathbf{F} \) through the solid unit upper sphere, which is
\[
\iiint \nabla \cdot \mathbf{F} \, dV = \int_0^{2\pi} \int_0^{\pi/2} \int_0^1 2z \, dV = \int_0^{2\pi} \int_0^{\pi/2} \int_0^1 (2\rho \cos \varphi)(\rho^2 \sin \varphi) \, d\rho \, d\varphi \, d\theta = \pi/2.
\]
For the flux through \(T \), we note that \(\mathbf{F} \cdot \mathbf{\hat{n}} = \mathbf{\hat{F}} \cdot (-\mathbf{\hat{k}}) = -(1+z^2) = -1 \), so the flux is \(-\text{area}(T) = -\pi\). Hence the flux through \(S \) is
\[
\pi/2 - (-\pi) = 3\pi/2.
\]
2. The divergence of \(\mathbf{F} \) is \((3 - 3x^2 - z^2) + (3 - 3y^2 - x^2) + (3 - 3z^2 - y^2) = 9 - 4(x^2 + y^2 + z^2) \).
 (a) The interior of \(S \) contains all points of positive divergence, so \(S \) is the sphere centered at the origin of radius \(3/2 \).
 (b) Let \(T \) be the interior of \(C \), oriented upward. Then flux(\(S \)) – flux(\(T \)) equals the integral of the divergence in the region between \(S \) and \(T \), and as before, this must equal the solid upper hemisphere centered at the origin of radius \(3/2 \).
 So \(S \) consists of two pieces: the first piece is the (surface of the) upper hemisphere centered at the origin of radius \(3/2 \), and the second piece is the annulus in the \(xy \)-plane given by \(1 \leq r \leq 3/2 \).
3. This integral computes the flux of the vector field \(2\mathbf{i} + 2\mathbf{j} + \mathbf{z} \mathbf{k} \) across \(S \), so one may as well integrate the divergence of this (which is 1) across the interior of \(S \), which gives the volume. This is \(4\pi/3 \).
 Alternatively note that the contribution from \(x \) and \(y \) is zero, since the center of mass is the origin, and then compute the surface integral by switching to spherical coordinates, which gives
\[
\int_0^{2\pi} \int_0^\pi (\cos^2 \varphi)(\sin \varphi \, d\varphi \, d\theta) = 4\pi/3.
\]
7.5 Line integrals, conservativity, potential, curl in 3D

1. Computing,

\[\mathbf{F} \cdot d\mathbf{r} = (xy^2\mathbf{i} + 2z^2\mathbf{j} + x\mathbf{k}) \cdot (\cos(t)\mathbf{i} + \mathbf{j} - \sin(t)\mathbf{k}) \, dt \]

\[= (t^2 \sin(t)\mathbf{i} + 2 \cos^2(t)\mathbf{j} + \sin(t)\mathbf{k}) \cdot (\cos(t)\mathbf{i} + \mathbf{j} - \sin(t)\mathbf{k}) \, dt \]

\[= t^2 \sin(t) \cos(t) + 2 \cos^2(t) - \sin^2(t) \, dt \]

The first term is odd and as we are integrating from \(-\pi/2\) to \(\pi/2\), its contribution disappears. Hence we are left with the remaining two terms, which contribute a total of

\[2(\pi/2) - (\pi/2) = \pi/2. \]

2. (a) Computation yields

\[\nabla \times \mathbf{F} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ 3x^2 + ayz & b(xz + z^2) & cxy + 2yz \end{pmatrix} \]

\[= (cx - bx + 2z - 2bz)\hat{i} + (ay - cy)\hat{j} + (bz - az)\hat{k} \]

which forces \(a = b = c = 1\) in order for this to be 0.

(b) i. Algebraic method. As \(f_x = 3x^2 + yz \) it follows that \(f = x^3 + xyz + g(y, z) \). Then \(f_y = xz + z^2 \) so this means \(g_y = z^2 \), so \(g = yz^2 + h(z) \). So \(f = x^3 + xyz + yz^2 + h(z) \). Plugging this into \(f_z = xy + 2yz \) indicates that \(h \) is a constant, so take the potential function to be \(x^3 + xyz + yz^2 \).

ii. Integration method. Let \(C \) be the straight line segment \(\mathbf{r}(t) = (tx_0\mathbf{i} + ty_0\mathbf{j} + tz_0\mathbf{k}) \) dt and \(\mathbf{F} = (3x_0^2 + y_0z_0)t^2\mathbf{i} + (x_0z_0 + z_0^2)t^2\mathbf{j} + (x_0y_0 + 2y_0z_0)t^2\mathbf{k} \) so

\[\mathbf{F} \cdot d\mathbf{r} = ((3x_0^2 + y_0z_0)x_0 + (x_0z_0 + z_0^2)y_0 + (x_0y_0 + 2y_0z_0)z_0) \]

\[= (x_0^3 + x_0y_0z_0 + y_0z_0^2)(3t^2 \, dt) \]

so integrating this from \(t = 0 \) to \(t = 1 \) gives \(x_0^3 + x_0y_0z_0 + y_0z_0^2 \), the same answer as before.

3. (a) The curl is

\[\nabla \times \mathbf{F} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ 2xyz^3 & xy^2z^3 & 3x^2yz^2 \end{pmatrix} \]

\[= (3x^2z^2 - 3x^2z^2)\hat{i} + (6xyz^2 - 6xyz^2)\hat{j} + (2xz^3 - 2xz^3)\hat{k} = 0 \]

so it is conservative. The algebraic method immediately gives that a potential is \(f = x^2yz^3 \).

(b) From the fundamental theorem of calculus for line integrals, it suffices to maximize and minimize the potential function in the given region, as the work from point \(A \) to point \(B \) will be \(f(B) - f(A) \). For the maximum work, we need to maximize \(f(B) \) and minimize \(f(A) \); for the minimum, it is the reverse.

The only critical point inside is the origin. On the boundary we use Lagrange multipliers and get that the max is \(\sqrt{3}/36 \) (attained at \(x, y, z = (1/\sqrt{3}, 1/\sqrt{6}, 1/\sqrt{2}) \)) and that the min is \(-\sqrt{3}/36 \) (attained at \(x, y, z = (1/\sqrt{3}, -1/\sqrt{6}, 1/\sqrt{2}) \)).

So the maximum work is \(\sqrt{3}/18 \) and the minimum work is \(-\sqrt{3}/18 \).
7.6 Stokes’ theorem

1. Computation yields that $\nabla \times \vec{F} = 2\hat{i} + 2\hat{j}$, so $(\nabla \times \vec{F}) \cdot \hat{n} = (2\hat{i} + 2\hat{j}) \cdot (-2\hat{i} - 2\hat{j} + \hat{k})/3 = -8/3$ and hence

$$\int_S (\nabla \times \vec{F}) \cdot \hat{n} \, dS = -\frac{8}{3} \int_S 1 \, dS.$$

The region S is an ellipse given by the graph of $z = 2x + 2y$ over the shadow region $R = \{(x+1)^2 + (y+1)^2 = 4\}$, so $dS = \sqrt{2^2 + 2^2 + 1^2} \, dA = 3 \, dA$ and hence \[\int_S 1 \, dS = 3 \cdot (\pi \cdot 4) = 12\pi,\] so

$$\int_S (\nabla \times \vec{F}) \cdot \hat{n} \, dS = -32\pi.$$

Alternatively, parametrize C as

$$\vec{r}(t) = (-1 + 2\cos(t))\hat{i} + (-1 + 2\sin(t))\hat{j} + (4\cos(t) + 4\sin(t) - 4)\hat{k}$$

and then one may compute that

$$\vec{F} \cdot d\vec{r} = -20\sin^2(t) + 10\sin(t) - 12\cos^2(t) + 6\cos(t)$$

and the integral from 0 to 2π of this is clearly $-20\pi + 0 - 12\pi + 0 = -32\pi.$

2. Instead we find the flux of $\nabla \times \vec{F} = 2(y+1)\hat{i} + 2(z+1)\hat{j} + 2(x+1)\hat{k}$ across the plane region S with boundary C. There, $\hat{n} = -(\hat{i} + \hat{j} + \hat{k})/\sqrt{3}$ and $dS = \sqrt{3} \, dA$ so the flux becomes

$$\int_0^1 \int_0^{1-x} -2(x + y + z + 3) \, dy \, dx = \int_0^1 \int_0^{1-x} -2(1 + 3) \, dy \, dx = -4.$$

3. We have

$$\nabla \times \vec{F} = (x + 2)\hat{i} + (2y + 1)\hat{j} + (3 - 3z)\hat{k}$$

(a) We have

$$z = \frac{3}{2} \sqrt{4 - 4x^2 - y^2}$$

so

$$-f_x\hat{i} - f_y\hat{j} + \hat{k} = \frac{6x}{\sqrt{4 - 4x^2 - y^2}}\hat{i} + \frac{3y}{2\sqrt{4 - 4x^2 - y^2}}\hat{j} + \hat{k}$$

and hence

$$(\nabla \times \vec{F}) \cdot d\vec{S} = \left(\frac{6x^2 + 12x + 3y^2 + 3y/2}{\sqrt{4 - 4x^2 - y^2}} + 3 - \frac{9}{2} \sqrt{4 - 4x^2 - y^2}\right) \, dA$$

Upon performing the change of variables $x = \cos(t)$ and $y = 2r \sin(t)$ we see that $dA = 2r \, dr \, d\theta$ and the integrand becomes

$$(\nabla \times \vec{F}) \cdot d\vec{S} = \frac{6r^3 + 12r^2 \cos(t) + 6r^3 \sin^2(t) + 3r^2 \sin(t)}{\sqrt{1 - r^2}} + 6r - 18r \sqrt{1 - r^2} \, dr \, d\theta$$

and the flux is then

$$\int_0^1 \int_0^{\pi/2} \left(\frac{6r^3 + 12r^2 \cos(t) + 6r^3 \sin^2(t) + 3r^2 \sin(t)}{\sqrt{1 - r^2}} + 6r - 18r \sqrt{1 - r^2}\right) \, d\theta \, dr$$

$$= \int_0^1 (9/2)\pi r^3 + 15r^2 \sqrt{1 - r^2} + 3\pi r - 9\pi r \sqrt{1 - r^2} \, dr$$

$$= \frac{9\pi}{2} \left(\frac{2}{3}\right) + 15 \left(\frac{\pi}{4}\right) + \frac{3\pi}{2} - 9\pi \left(\frac{1}{3}\right)$$

$$= \frac{21\pi}{4}.$$
(b) For S_{xy}, we have $z = 0$ so $\mathbf{F} \cdot \hat{n} = \mathbf{F} \cdot \hat{k} = 3$ so the flux is thrice the area of this region, which is $3\pi(1)(2)/4 = 3\pi/2$. Similarly for S_{yz} we get $2\pi(2)(3)/4 = 3\pi$ and for S_{xz} we get $1\pi(1)(3)/4 = 3\pi/4$ so the total is $21\pi/4$.

(c) Let the boundary pieces be C_{xy}, C_{yz}, C_{xz}, where they are labeled according to which plane they belong.

Parametrize C_{xy} by $\mathbf{r}(t) = \cos(t)\hat{i} + 2\sin(t)\hat{j}$ from $t = 0$ to $t = \pi/2$. Then $\mathbf{F}(t) = 3\cos(t)\hat{j} + (2\sin(t)\cos(t) - \cos(t))\hat{k}$, so that $\mathbf{F}(t) \cdot d\mathbf{r} = 6\cos^2(t)\, dt$. The integral from 0 to $\pi/2$ of this is $3\pi/2$.

Parametrize C_{yz} by $\mathbf{r}(t) = 2\cos(t)\hat{j} + 3\sin(t)\hat{k}$ from $t = 0$ to $t = \pi/2$. Then $\mathbf{F}(t) = 18\sin(t)\cos(t)\hat{i} + (-6\sin(t))\hat{j}$, so that $\mathbf{F}(t) \cdot d\mathbf{r} = 12\sin^2(t)\, dt$. The integral from 0 to $\pi/2$ of this is 3π.

Parametrize C_{xz} by $\mathbf{r}(t) = \sin(t)\hat{i} + 3\cos(t)\hat{k}$ from $t = 0$ to $t = \pi/2$. Then $\mathbf{F}(t) = (3\sin(t) - 6\cos(t))\hat{j} - \sin(t)\hat{k}$, so that $\mathbf{F} \cdot d\mathbf{r} = 3\sin^2(t)\, dt$. The integral of this from 0 to $\pi/2$ is $3\pi/4$.

The sum of all these works is then $3\pi/2 + 3\pi + 3\pi/4 = 21\pi/4$.