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Abstract. For all k ≥ 1, we show that deciding whether a graph is k-planar is NP-complete, extending the
well-known fact that deciding 1-planarity is NP-complete. Furthermore, for any k ≥ 1, we show that, given

a graph with local crossing number either at most k or at least 2k, it is NP-complete to decide whether the
local crossing number is at most k or at least 2k. Finally, we present results regarding the non-existence of

drawings that simultaneously approximately minimize both the crossing number and local crossing number

of a graph.

1. Preliminaries

A planar drawing of an undirected graph G = (V,E) is an injective mapping from the vertex set V to IR2

paired with an open Jordan curve between u and v for all (u, v) ∈ E, with the condition that each vertex
only intersects a curve at its endpoint. Graph drawing is a central area of research in graph theory, with
applications to network analysis, bioinformatics, circuit schematics, and software engineering, among other
areas. [6]. For an introduction to the field, see [3, 10]. However, in many applications, the corresponding
graph is non-planar (e.g., small world networks). Even though the majority of these graphs cannot be drawn
in the plane without edge crossings, minimizing the number of crossings that occur (either per edge or in
total) is an important task, for both practical and aesthetic reasons in application [15]. This has led to a
great deal of recent interest in graph drawings that minimize the number of crossings in some sense (see
[11, 16], for example), and has made graph crossings one of the major areas of graph drawing research.

There are a number of competing measures of what exactly constitutes a drawing with few crossings. The
total number of pairwise edge crossings of a drawing D is called the crossing number of D, denoted by cr(D).
The minimum crossing number over all drawings D of a graph G is called the crossing number of G, denoted
by cr(G). Alternatively, it may be that the maximum number of crossings per edge matters more than the
total number of edge crossings. A drawing D is k-planar if each edge participates in at most k crossings,
and a graph is k-planar if there exists a k-planar drawing of it. The maximum number of crossings per edge
of a drawing D is called the local crossing number of D, denoted by lcr(D). The minimum local crossing
number over all drawings D of a graph G is called the local crossing number of G, denoted by lcr(G).

Both the crossing number and local crossing number are active areas of research with many open problems,
such as the value of these quantities for specific graphs and the existence of approximation algorithms, and
many extensions (for instance, see [2, 14]). For a thorough treatment of both of these subjects, see [16].
Despite the importance of the crossing number and local crossing number in producing a quality drawing of
a graph, the majority of computational results regarding these two quantities have been algorithmic lower
bounds rather than constructions. For instance, deciding if a graph has cr(G) ≤ k for a fixed k was shown
to be NP-complete in [7]. In [9] and later independently in [12], it was shown that deciding whether a graph
is 1-planar is NP-complete (a third proof was later given in [16]). We note that there are a number of linear
time planarity testing algorithms, most notably the edge addition method (see [4, 5]).

In this paper, we show that testing k-planarity is NP-complete for all k ≥ 1. Furthermore, we show that
the gap decision problem

GAP k-PLANARITY
Input: A graph G = (V,E) with lcr(G) ≤ k or lcr(G) ≥ 2k.
Output: TRUE if lcr(G) ≤ k; FALSE otherwise.

is NP-complete.
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Our proof proceeds in two simple steps: first we prove that the multigraph variant of gap k-planarity
is hard, and then we reduce to the graph case via a technique called edge subdivision. In [12] the authors
sketch a way of modifying their 1-planarity proof to give hardness of k-planarity testing in multigraphs, but
this approach is quite involved, and filling in the details appears somewhat difficult. Here, we provide a
proof of an even stronger result, using a reduction from 3-partition. Our gadget is a simplified version of a
technique used in [9] to prove hardness of testing 1-planarity. In doing so, we also provide an alternate proof
of the hardness of 1-planarity, one that does not rely on the machinery of K6 that was needed in [9]. We
note that it is fairly straightforward to verify that all of the decision problems considered in this paper are
in NP, therefore, it suffices to show hardness.

The remainder of the paper is as follows. In Section 2, we show that the gap k-planarity decision problem
is NP-complete. In Section 3, we analyze the sometimes opposing optimization problems of minimizing
the crossing number versus minimizing the local crossing number. Through an infinite class of examples,
we quantify the inability to simultaneously approximately minimize the crossing number and local crossing
number of a drawing.

2. Testing k-planarity is NP-complete

A drawing is said to be normal if each pair of edges cross at most a finite number of times, no three edges
cross at a single point, and there are no “touching points.” A crossing is an intersection between two edges
in which the edges alternate in every sufficiently small neighborhood of the intersection point, whereas in a
touching point, the edges are consecutive. In this paper, we will assume all drawings are normal, as touching
points can be removed and three edges crossing at a single point can always be perturbed to decrease the
crossing number and not increase the local crossing number.

In this section, we consider not only drawings of undirected graphs, but multigraphs as well. A multigraph
is a graph which is allowed to have multiple edges between vertices, in particular, a triple G = (V,E, ω)
where (V,E) is a simple graph and ω : E → N+ is a function detailing the number of copies ω(e) of a given
edge e ∈ E in G. All of the previous definitions for k-planarity, crossing number, and local crossing number
in a graph are equally applicable for multigraphs.

We will use multigraphs with edges of varying multiplicity to provide a simple proof of hardness of the
multigraph version of gap k-planarity

MULTIGRAPH GAP k-PLANARITY
Input: A multigraph G = (V,E, ω) with lcr(G) ≤ k or lcr(G) ≥ 2k.
Output: TRUE if lcr(G) ≤ k; FALSE otherwise.

and then use a technique called edge subdivision to show hardness of gap k-planarity testing.
Our proof is via a reduction from the 3-partition problem. The 3-partition decision problem asks whether

a multiset A of 3m integers can be partitioned into m multisets A1, ..., Am such that the sum of the elements
in each multiset is the same. Without loss of generality, one may assume that every integer is positive and
strictly between a fourth and half of the desired sum B. In addition, we also assume that B ≥ 100 and
m ≥ 4. One can easily verify that 3-partition remains NP-hard under this mild restriction (for details, see
[8]).

Our reduction converts an instance

A = {a1, ..., a3m},
3m∑
i=1

ai = Bm,
B

4
< ai <

B

2
, i = 1, ..., 3m,

of 3-partition into a multigraph GA = (V,E, ω) defined as follows:

V =
{
t, c
}⋃{

t1, ..., t3m
}⋃{

c1, ..., cBm

}⋃{
s1, ..., s3m

}⋃{
`ji
}j=1,...,3m

i=0,1,...,aj
,

E =
{

(t, t3i)(t3i, cBi)(cBi, c)
}m
i=1

⋃{
(ti, ti+1)

}3m
i=1

⋃{
(ci, ci+1)

}Bm

i=1⋃{
(t, `i0), (`i0, si)

}3m
i=1

⋃{
(sj , `

j
i ), (`

j
i , c)

}j=1,...,3m

i=1,...,aj
,
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Figure 1. A visual example of an embedding of GA, where A = {a1, a2, a3, a4, a5, a6},
a1 = a2 = a6 = 1, a4 = a5 = 2, a3 = 3. The edges represent k multi-edges and the bolded
edges represent 5Bk multi-edges. The paths P1 = t t3 c5 c and P2 = t t6 c10 c partition the
sphere into two regions. The partition of the vertices s1, s2, s3, s4, s5, s6 into s1, s2, s3 and
s4, s5, s6 by the paths P1 and P2 corresponds to the 3-partition into multisets {a1, a2, a3}
and {a4, a5, a6}, each with sum equal to five.

ω(e) =


k e ∈

{
(t, `i0), (`i0, si)

}3m
i=1

⋃{
(sj , `

j
i ), (`

j
i , c)

}j=1,...,3m

i=1,...,aj

2k e ∈
{

(ti, ti+1)
}3m
i=1

⋃{
(ci, ci+1)

}Bm

i=1

5Bk e ∈
{

(t,t3i), (t3i, cBi)(cBi, c)
}m
i=1

,

where t3m+1 := t1, cBm+1 := c1. We give a visual example of this graph in Figure 1.
While the formal definition is somewhat involved, the concept is rather straightforward. A graph drawing

can be equivalently thought of as an embedding on the unit sphere S2 = {x ∈ IR3|‖x‖ = 1} (via stereographic
projection), and we will use this representation throughout the rest of the paper. Qualitatively, a drawing of
GA can be thought of as a partition of the sphere, where t is at the north pole ~n = (0, 0, 1), c is at the south
pole ~s = (0, 0,−1), and the m multi-edge paths of the form Pi = t t3i cBi c, i = 1, ...,m, partition S2 into

m regions. Each star induced by the vertices sj , `
j
1, ..., `

j
aj

corresponds to a number aj in A, j = 1, ..., 3m.
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The multiset Ai consists of the aj corresponding to the stars contained in the ith region of S2. The cycle
Ct = t1 t2 ... t3m paired with edges (t, t3i) guarantee that each region has exactly three stars, and the cycle
Cc = c1 c2 ... cBm paired with edges (c, cBi) guarantee that in each region the number of leaves corresponding
to the three stars (and therefore the sum of the corresponding ajs) is exactly B.

We are now prepared to provide a formal proof of our desired result.

Theorem 1. Multigraph gap k-planarity (k ≥ 1) is NP-complete.

We will prove two statements. First, we will show that if A has a 3-partition, then GA is k-planar. Second,
we will show that if A does not have a 3-partition, then lcr(GA) ≥ 2k. These two results together complete
the proof of Theorem 1.

Lemma 2. If A has a 3-partition, then GA is k-planar.

Proof. Suppose that A has a 3-partition. We will explicitly describe a k-planar drawing D of GA. Place t
and c at the north and south pole ~n and ~s, respectively. Draw the m multi-edge paths Pi from t to c such
that they do not cross. Draw the multi-edge cycles Ct and Cc, again, in a non-crossing fashion. Each of
the m regions created by the paths Pi corresponds to one of the m multisets in the 3-partition. In each of
these regions, place the three star centers si, sj , sk corresponding to the three elements of the corresponding

multiset between Ct and Cc. Place each of the vertices `i0, `
j
0, `

k
0 , in the middle of the 2k copies of one of

the three multi-edges of the path t3` t3`+1 t3`+2 t3`+3. Because our partition of A is a 3-partition, there are
a total of B leaves connected to si, sj , sk. Place each leaf in the middle of the 2k copies of one of the B
multi-edges of the path cB` cB`+1 ... cB`+B . This is a k-planar drawing. An example of this layout is given
in Figure 1. �

Lemma 3. If A does not have a 3-partition, then lcr(GA) ≥ 2k.

Proof. Suppose that A does not have a 3-partition, but there exists a drawing D of GA with lcr(GA) < 2k.
Without loss of generality, we may assume that t and c are at the north and south pole, respectively.
Let δ > 0 be such that there is exactly one vertex and no edge crossings in B(~n, δ) and B(~s, δ), where
B(x, r) := {y ∈ S2|‖x − y‖ < r}. There are m multi-edge paths emanating from t and reaching c, which
are non-crossing in B(~n, δ) and B(~s, δ). We will first look at the clockwise ordering of copies of paths Pi in
B(~n, δ).

It may be the case that copies of Pi interlace with copies of other paths in B(~n, δ). The copies of Pi

partition B(~n, δ) into 5Bk regions, each of which contains some number of copies of other paths. No two
copies of Pi can partition these non-Pi paths into two regions containing at least 6(2k− 1) + 1 non-Pi paths
each, as this would contradict (2k− 1)-planarity because Pi is of length three. The number of non-Pi paths
(5Bk(m−1)) is more than three times 6(2k−1) + 1, so one of the original 5Bk regions must contain at least
6(2k− 1) + 1 non-Pi paths, and, therefore, all but at most 6(2k− 1) non-Pi paths. Let us denote this region
by R∗. Each of the 5Bk − 1 regions which are at least 6(2k − 1) + 1 regions away from R∗ cannot contain
any non-Pi paths. By removing at most 24(2k − 1) copies of each Pi, i = 1, ..., k, we now have a drawing in
which no copies of paths Pi, Pj interlace in B(~n, δ) or B(~s, δ), with at least 5Bk − 24(2k − 1) > (5B − 48)k
copies of each Pi remaining.

This creates a local clockwise ordering of the paths both at B(~n, δ) and B(~s, δ). If these two orderings are
not the same, then two multi-edge paths must cross, a contradiction, as each path is three multi-edges long,
and (5B − 48)k > 3(2k − 1). Next, we observe that the ordering in B(~n, δ) and B(~s, δ) must be the natural
ordering (or the reversal of it), namely, the paths must be ordered P1, ...., Pm. Suppose to the contrary, that
the ordering is such that there exists an i such that Pi and Pi+1 are not adjacent. Then there is a multi-edge
cycle of length five consisting of t t3i t3i+1 t3i+2 t3i+3, which (5B − 48)k > 5(2k − 1) edge-disjoint copies of
some multi-edge path Pj must cross, a contradiction. See Figure 2 for a visual example.

Next, for every vertex t3i (and, similarly for cBi), we investigate the local structure of the at least
(5B− 48)k copies of edges (t, t3i) and (t3i, cBi). Let δ∗ > 0 be such that the δ∗ neighborhood of the location
of t3i (denoted N(t3i, δ

∗)) has no edge crossings and only one vertex. Using the same argument as above,
we can remove some relatively small number of copies of (t, t3i) and (t3i, cBi) and be left with edges which
do not locally interlace.

The copies of (t, t3i) partition N(t3i, δ
∗) into (5B − 48)k regions, each of which contains some number of

copies of (t3i, cBi). No two copies of (t, t3i) can partition the copies of (t3i, cBi) into two regions containing
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Figure 2. A vertical view of B(~n, δ) and B(~s, δ). The clockwise ordering P1, P3, P2, P4 is
the same for both B(~n, δ) and B(~s, δ). However, this cannot correspond to an embedding
D with lcr(D) < 2k, as either P3 or P4 must cross the cycle t t3 t4 t5 t6 to reach c.

Figure 3. Three copies of P1, labeled so that the ordering agrees at each vertex.

at least 2(2k − 1) + 1 copies of (t3i, cBi) each, as this would contradict (2k − 1)-planarity. The number of
copies of (t3i, cBi) ((5B − 48)k) is more than three times 2(2k − 1) + 1, so one of the original (5B − 48)k
regions must contain at least 2(2k−1) + 1 copies of (t3i, cBi), and, therefore, all but at most 2(2k−1) copies
of (t3i, cBi). By removing at most 2(2k − 1) copies of (t, t3i) and (t3i, cBi) each, the local ordering in this
neighborhood is such that copies of these two edges do not interlace. Therefore, by removing a total of at
most 4(2k − 1) copies of each path Pi, i = 1, ..., k, we now have edges which are locally well-ordered, and at
least (5B − 48)k − 4(2k − 1) > (5B − 56)k copies of each Pi remain.

We can now formally define each copy of the path, using the ordering of edges in B(~n, δ) and labeling
paths so that the ordering of copies of (t, t3i) matches the ordering of (t3i, cBi) locally (and the same for
(t3i, cBi) and (cBi, c) locally). See Figure 3 for an illustration.

We can now define a partition of S2 based on the m non-overlapping regions enclosed by the middle
edge-disjoint copies of Pi and Pi+1 (we define middle based on the ordering of B(~n, δ)). These middle edge-
disjoint copies cannot cross any copy of any other path, as there are at least (5B−56)k/2−1 > 6(2k−1)−2
edge-disjoint paths separating them. Let Ri be the region defined by the middle copies of Pi and Pi+1.

In addition, Ri must fully contain a large number of copies of Pi and Pi+1. In particular, the middle copy
of Pi cannot cross any copy of Pi which is at least 6(2k − 1) copies away in the initial ordering. Therefore,
Ri fully contains at least (5B − 56)k/2 − 1 − 6(2k − 1) > 2Bk copies of Pi and Pi+1 each. Ri must fully
contain the paths t3i t3i+1 t3i+2 t3i+3, otherwise there would be 2Bk > 3(2k−1) edge-disjoint paths to cross.
The same argument holds for cBi cBi+1 ... cBi+B by noting that 2Bk > B(2k − 1).

We now consider the locations of the vertices sj . Each vertex sj must be separated from t by all multi-
edge copies of Ct, otherwise there would be a 5-cycle t t3i t3i+1 t3i+2 t3i+3 separating aj > Bk/4 > 5(2k − 1)
edge-disjoint paths from sj to c. Each region has at most three vertices sj , otherwise one of the multi-edges
in the path t3i t3i+1 t3i+2 t3i+3 would be crossed at least 2k times. Therefore each region has exactly three
vertices sj .

The vertices sj are also separated from c by all copies of Cc. Suppose this is not the case. If no copy of the
multi-edge cycle Cc separates sj from c, then there are 4k edge-disjoint multi-edge cycles separating sj from
t, a contradiction. Then sj must be separated from c by two copies of some edge (ci, ci+1), a contradiction
to the aj > Bk/4 > 2(2k − 1) edge-disjoint paths from sj to c. Therefore, Cc separates sj from c.
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Because A does not have a 3-partition, one of these regions, say Ri, must have three vertices sj1 , sj2 , sj3
such that the sum of their leaves exceedsB. However, there are onlyB multi-edges in the path cBi cBi+1 ... cBi+B ,
so one such multi-edge must have more than one path sj `

j
p c crossing it, a contradiction. The proof is com-

plete. �

Although it is not necessary for the proof of Theorem 1, one can also verify the stronger statement that
lcr(GA) = k if and only if A has a 3-partition, otherwise lcr(GA) = 2k.

From here, we reduce from multigraph gap 2k-planarity testing to gap k-planarity testing in a straight-
forward way. Given a multigraph G = (V,E, ω), we define the edge subdivision of G to be the undirected
graph G∗ = (V∗, E∗) constructed by subdividing each edge of G into two edges with a new vertex between
them (i.e. replacing e = (u, v) ∈ E by (u, xe), (xe, v) ∈ E∗, where xe ∈ V∗ is a unique vertex for each copy
of e). The key property of this edge subdivision is the following.

Lemma 4. Let G∗ be the edge subdivision of the multigraph G. Then

lcr(G∗) =

⌈
lcr(G)

2

⌉
.

Proof. If G∗ is k-planar, then taking any k-planar drawing of G∗ and reversing the subdivision operation
gives a drawing of G which is clearly 2k-planar. Conversely, given a 2k-planar embedding of G, we can
obtain from it a k-planar embedding of G∗ by placing the xe vertices “in the middle” of the crossings on e
so that each segment has at most k crossings, after possibly perturbing the drawing of G slightly so that no
three edges cross at a single point. Therefore,

lcr(G) ≤ 2lcr(G∗) and lcr(G∗) ≤
⌈
lcr(G)

2

⌉
,

which, by integrality of lcr(G∗), implies that lcr(G∗) =

⌈
lcr(G)

2

⌉
. �

From here, the following two theorems immediately follow.

Theorem 5. Gap k-planarity is NP-complete for all k ≥ 1.

Theorem 6. Deciding whether a graph is k-planar is NP-complete for all k ≥ 1.

3. Crossing number vs local crossing number

In this section, we consider the problem of approximately minimizing both the crossing number and local
crossing number of an embedding. In particular, we define

r(G) := min
D

cr(D)

cr(G)

lcr(D)

lcr(G)
,

where the minimum is taken over all drawings D of a non-planar graph G. If r(G) is small, then it means that
there exists a drawing of G which simultaneously approximately minimizes both the total number of crossings
and the maximum number of crossings per edge. However, if r(G) is large, then these two minimization
problems are clearly incompatible. We will prove the following result.

Theorem 7. Let G¬pn be the set of non-planar graphs of order n. Then

cn1/2 ≤ max
G∈G¬p

n

r(G) ≤ Cn

for all n ≥ 5, for fixed constants c, C.

To prove the upper bound, we make use of the well-known crossing lemma.

Theorem 8 (Crossing Lemma, [1, 13]). Let G = (V,E) be a graph with |E| ≥ λ|V |. Then

cr(G) ≥ (λ−2 − 3λ−3)
|E|3

|V |2
.
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(a) D1

(b) D2

Figure 4. A visual demonstration of the two drawings D1 and D2 of the graph G.

Let us temporarily restrict ourselves to graphs satisfying |E| ≥ 9
2 |V |. By Theorem 8,

4

243

|E|3

|V |2
≤ cr(D) ≤ |E|

2
lcr(D).

In addition, any drawing D satisfying cr(D) = cr(G) must also satisfy lcr(D) < |E|, and therefore r(G) <
|E|. If this is not the case, then there are two edges which cross each other more than once. Removing these
crossings locally decreases the crossing number, a contradiction. This produces a natural upper bound of

r(G) <
|E|

2
|E|cr(D)

=
|E|2

2cr(D)
≤ |E|2

2
(

4
243
|E|3
|V |2

) =
243|V |2

8|E|
.

Combining our two bounds of |E| and 243|V |2
8|E| , we obtain the upper estimate of Theorem 7.

To produce the lower bound, we give an infinite class of examples, based on adaptive edge subdivision of
a multigraph version of K5 (the smallest non-planar graph). In particular, let G = (V,E), with

V =
{
u, v, w1, w2, w3

}⋃{
xi1,2, x

i
2,3, x

i
1,3

}k4

i=1

⋃{
xi,ju,1, x

i,j
u,2, x

i,j
u,3

}j=1,...,k−1
i=1,...,k3

⋃{
xi,jv,1, x

i,j
v,2, x

i,j
v,3

}j=1,...,k−1
i=1,...,k3 ,

E =
{

(u, xi,1u,`), (x
i,1
u,`, x

i,2
u,`), ..., (x

i,k−1
u,` , w`)

}`=1,2,3

i=1,...,k3

⋃{
(v, xi,1v,`), (x

i,1
v,`, x

i,2
v,`), ..., (x

i,k−1
v,` , w`)

}`=1,2,3

i=1,...,k3⋃{
(w1, x

i
1,2), (xi1,2, w2), (w2, x

i
2,3), (xi2,3, w3), (w3, x

i
1,3), (xi1,3, w1)

}k4

i=1

⋃
(u, v),

for some natural number k. This graph can be thought of as a multigraph ofK5 on the vertices u, v, w1, w2, w3,
where edges (u,w1), (u,w2), (u,w3), (v, w1), (v, w2), (v, w3) have multiplicity k3; (w1, w2), (w2, w3), (w3, w1)
have multiplicity k4; and (u, v) has only one edge. Each copy of the edge (wi, wj) is replaced by a standard

edge subdivision (wi, x
`
i,j), (x

`
i,j , wj), ` = 1, ..., k4, but each copy of the edges of the form (u,wi) (and (v, wi),

resp.) is replaced by a path of length k given by (u, x`,1u,i), (x
`,1
u,i, x

`,2
u,i), ..., (x

`,k−1
u,i , wi), ` = 1, ..., k3. To refer

to the path subdivision of an edge e in K5, we will simply write Pe.
We first consider two different drawings of G. Let D1 be the drawing in which the cycles Cw :=

P(w1,w2)P(w2,w3)P(w1,w3) separates u and v and the only edge crossings are the single edge (u, v) cross-

ing all copies of P(w1,w3). In this case we have lcr(D1) = cr(D1) = k4. Alternatively, let D2 be the drawing
in which u and v are on the same side of every copy of the cycle Cw, and the only edge crossings are all the
copies of P(u,w2) crossing all the copies of P(v,w1). In this case, due to the subdivision into paths of length

k, we have lcr(D2) = k2 and cr(D2) = k6. See Figure 4 for a visual representation of these two drawings.
We will show that no drawing D can produce a significantly better approximation to both crossing number

and local crossing number than the two drawings described above. In particular, we will show that for all
drawings D of G, lcr(D) cr(D) ≥ c̃k8 for some c̃.
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Suppose D is such that at least k3 edge disjoint copies of Cw do not separate u and v. If this is not the
case, then lcr(D) cr(D) ≥ (k4 − k3)2. Let Su be the “star” created by P(u,w1), P(u,w2), and P(u,w3) (with

Sv defined similarly). We have k3 edge disjoint copies of Su, Sv, and Cw, with u and v on the same side of
every copy of Cw. Given one copy each of Su, Sv, and Cw, with u and v on the same side of Cw, one of the
three subgraphs must cross. This implies that there must be a total of at least k6 crossings. As there are
only 12k4 edges, the local crossing number is at least k2/12. Noting that G has 6(k− 1)k3 + 3k4 + 5 vertices
completes the proof of Theorem 7.
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