Linear Algebra and Learning from Data

Multiplication Ax and AB
Column space of A
Independent rows and basis
Row rank = column rank

Neural Networks and Deep Learning / new course and book
math.mit.edu/learningfromdata
By rows
\[
\begin{bmatrix}
2 & 3 \\
2 & 4 \\
3 & 7
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
2x_1 + 3x_2 \\
2x_1 + 4x_2 \\
3x_1 + 7x_2
\end{bmatrix}
\]

By columns
\[
\begin{bmatrix}
2 & 3 \\
2 & 4 \\
3 & 7
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= x_1 \begin{bmatrix}
2 \\
3
\end{bmatrix}
+ x_2 \begin{bmatrix}
3 \\
4
\end{bmatrix}
\]
\(b = (b_1, b_2, b_3) \) is in the column space of \(A \) exactly when \(Axb = b \) has a solution \((x_1, x_2)\)

\[
b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ is not in } \mathbf{C}(A).
\]

\[
Ax = \begin{bmatrix} 2x_1 + 3x_2 \\ 2x_1 + 4x_2 \\ 3x_1 + 7x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ is unsolvable.}
\]

The first two equations force \(x_1 = \frac{1}{2} \) and \(x_2 = 0 \).

Then: \(3 \left(\frac{1}{2} \right) + 7(0) = 1.5 \) (not 1).

What are the column spaces of

\[
A_2 = \begin{bmatrix} 2 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 7 & 10 \end{bmatrix} \text{ and } A_3 = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 1 \end{bmatrix}
\]
If column 1 of A is not all zero, put it into C.
If column 2 of A is not a multiple of column 1, put it into C.
If column 3 of A is not a combination of columns 1 and 2, put it into C. Continue.
At the end C will have r columns ($r \leq n$).
They will be a “basis” for the column space of A.
The left out columns are combinations of those basic columns in C.
If \(A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 2 & 6 \\ 0 & 1 & 2 \end{bmatrix} \) then \(C = \begin{bmatrix} 1 & 3 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \) \(n = 3 \) columns in \(A \) \(r = 2 \) columns in \(C \)

If \(A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \) then \(C = A \). \(n = 3 \) columns in \(A \) \(r = 3 \) columns in \(C \)

If \(A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \end{bmatrix} \) then \(C = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) \(n = 3 \) columns in \(A \) \(r = 1 \) column in \(C \)
\[A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 2 & 6 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} = CR \]

All we are doing is to put the right numbers in \(R \). Combinations of the columns of \(C \) produce the columns of \(A \). Then \(A = CR \) stores this information as a matrix multiplication.
The number of *independent columns* equals the number of *independent rows*

Look at $A = CR$ by rows instead of columns. R has r rows. **Multiplying by C takes combinations.** Since $A = CR$, we get every row of A from the r rows of R. Those r rows are independent — a **basis for the row space of A**.
Column-row multiplication of matrices

\[AB = \begin{bmatrix} a_1 & \ldots & a_n \\ \vdots & \ddots & \vdots \\ a_1 & \ldots & a_n \end{bmatrix} \begin{bmatrix} b_1^* \\ \vdots \\ b_n^* \end{bmatrix} = a_1 b_1^* + a_2 b_2^* + \cdots + a_n b_n^*. \]

The \(i, j \) entry of \(a_k b_k^* \) is \(a_{ik} b_{kj} \).

Add to find \(c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \text{row } i \cdot \text{ column } j. \)

\[A = LU \quad A = QR \quad S = Q\Lambda Q^T \quad A = X\Lambda X^{-1} \quad A = U\Sigma V^T \]
Deep Learning by Neural Networks

<table>
<thead>
<tr>
<th></th>
<th>Key operation</th>
<th>Composition $F = F_3(F_2(F_1(x_0)))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Key rule</td>
<td>Chain rule for derivatives</td>
</tr>
<tr>
<td>3</td>
<td>Key algorithm</td>
<td>Stochastic gradient descent</td>
</tr>
<tr>
<td>4</td>
<td>Key subroutine</td>
<td>Backpropagation</td>
</tr>
<tr>
<td>5</td>
<td>Key nonlinearity</td>
<td>ReLU$(x) = \max(x, 0) = \text{ramp function}$</td>
</tr>
</tbody>
</table>
Feature vector x_0
Three components for each training sample
y_1 at layer 1
$y_1 = A_1 x_0 + b_1$

ReLU

x_1 at layer 1
$x_1 = \text{ReLU} (y_1)$

ReLU

Output x_2
$x_2 = A_2 x_1 + b_2$
Theorem

Suppose we have N hyperplanes H_1, \ldots, H_N in m-dimensional space \mathbb{R}^m. Those come from N linear equations $a_i^T x + b_i = 0$, in other words from $Ax = b$. Then the number of regions bounded by the N hyperplanes (including infinite regions) is probably $r(N, m)$ and certainly not more:

$$r(N, m) = \sum_{i=0}^{m} \binom{N}{i} = \binom{N}{0} + \binom{N}{1} + \cdots + \binom{N}{m}.$$

Thus $N = 1$ hyperplane in \mathbb{R}^m produces $\binom{1}{0} + \binom{1}{1} = 2$ regions (one fold). And $N = 2$ hyperplanes will produce $1 + 2 + 1 = 4$ regions provided $m \geq 2$. When $m = 1$ we have 2 folds in a line, which only separates the line into $r(2, 1) = 3$ pieces.
The theorem will follow from the recursive formula

\[r(N, m) = r(N - 1, m) + r(N - 1, m - 1) \]

Figure: The \(r(2, 1) = 3 \) pieces of \(H \) create 3 new regions. Then the count becomes \(r(3, 2) = 4 + 3 = 7 \) flat regions in the continuous piecewise linear surface \(z = F(x_1, x_2) \).
Backpropagation: Reverse Mode Graph for Derivatives of $x^2(x + y)$

Figure: Reverse-mode computation of the gradient $(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y})$ at $x = 2, y = 3$.
AB first or BC first? Compute $(AB)C$ or $A(BC)$?

First way

$AB = (m \times n) (n \times p)$ has mnp multiplications

$(AB)C = (m \times p) (p \times q)$ has mpq multiplications

Second way

$BC = (n \times p) (p \times q)$ has npq multiplications

$A(BC) = (m \times n) (n \times q)$ has mnq multiplications