1. Show, using the hook-length formula, that the number of SYT of shape a $2 \times n$ rectangle is equal to the Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$.

2. Let A_n denote the set of 0, 1-sequences with n 0-s and n 1-s, such that in any initial subsequence there are at least as many 1-s as 0-s. For example $A_3 = \{111000, 110100, 110010, 101100, 101010\}$. Give a bijection between A_n and the set of SYT of shape a $2 \times n$ rectangle.

3. A partition λ is self-conjugate if $\lambda = \lambda'$. Prove that the number of self-conjugate partitions of n is equal to the number of partitions of n into odd distinct parts.

4. Fix a partition λ. Find a simple formula for the sum $\sum_{\mu \succ \lambda} f^{\mu}$.

5. A skew shape is a collection λ/μ of boxes belonging to λ but not to μ, where $\mu \subset \lambda$. A skew shape is a n-ribbon if it contains n boxes, is edgewise-connected, and does not contain any 2×2 box. For example, $(2,2)/(1)$ is a 3-ribbon but $(3,1)/(1)$ is not because it is not edgewise connected.

Let λ be a partition. The n-core of λ is the partition obtained from λ by repeatedly removing n-ribbons until this is no longer possible. Show that the n-core is well-defined, i.e., it does not depend on how the n-ribbons are moved.

6. Define a poset P_n on the set of all partitions by $\lambda \leq \mu$ if λ can be obtained from μ by repeatedly removing n-ribbons. Define linear operators $U, D : \mathbb{R}P_n \to \mathbb{R}P_n$ by

$$U\lambda = \sum_{\mu \succ \lambda} \mu \quad \text{and} \quad D\lambda = \sum_{\mu \preceq \lambda} \mu.$$

Show that

$$DU - UD = n\text{Id}.$$

7. Fix a partition λ of n. Recall the random process defined in class: pick a cell (a, b) of λ with uniform probability $1/n$, then pick one of the remaining cells of the hook H_{ab} with uniform probability $1/(h_{ab} - 1)$ and repeat until we arrive at a corner cell (c, d). Let $p((c, d)|(a, b))$ be the probability that we end up at corner cell (c, d) given that the initial cell is (a, b). Show that

$$p((c, d)|(a, b)) = p((c, d)|(a, d))p((c, d)|(c, b)).$$