18.212 Spring 2020 Problem Set 1
Due Wednesday February 19 midnight

Solutions must be typeset in LaTeX and either handed in class or emailed to me at tfylam@mit.edu.

1. Let Z_n, $n \geq 3$ denote the cycle graph with n vertices and n edges. Compute the eigenvalues of Z_n.

2. Let $K_{m,n}$ be the complete bipartite graph with parts of size m and n. This is the simple graph with vertex set $V(K_{m,n}) = \{1,2,\ldots,m\} \cup \{1',2',\ldots,n'\}$ and an edge joining each i to each j'. Compute the number of closed walks of length ℓ in $K_{m,n}$ and from this deduce the eigenvalues of $K_{m,n}$.

3. Let G_1, G_2 be two graphs. The direct product $G_1 \times G_2$ has vertex set $V(G_1) \times V(G_2)$, and for each vertex (v_1, v_2) of $G_1 \times G_2$, and each edge $e \in E(G_1)$ connecting v_1 to u_1 (resp. each edge $e \in E(G_2)$ connecting v_2 to u_2), we have an edge $e' \in E(G_1 \times G_2)$ connecting (v_1, v_2) to (u_1, v_2) (resp. (v_1, v_2) to (v_1, u_2)).
 - What are the eigenvalues of $G_1 \times G_2$ in terms of those of G_1 and G_2?
 - Use this to give another calculation of the eigenvalues of the cube C_n.

4. Let G be a simple graph and \bar{G} be the complement of G: thus (u,v) is an edge in \bar{G} if and only if it is not an edge in G. Determine the eigenvalues of G in terms of those of \bar{G}.

5. Is it possible for $-1/3$ to be the eigenvalue of a graph?

6. Suppose that G is a simple graph with q edges. Show that $\lambda_1 \leq \sqrt{2q}$.

7. Suppose that G is a nonempty simple graph such that for every two distinct vertices the number of common neighbors is odd. Show that G has an odd number of vertices.