PROBLEM SET 4

Problem 1. Compute all pages and differentials of the (homological) Leray-Serre spectral sequence for the Hopf fibration $S^3 \to S^2$.

Problem 2. Let $p: X \to B$ be a fibration with fiber F, with B and F CW complexes.

(1) Suppose F is connected. Show that the composite

$$H_s(X) \to H_s(X)/F_{s-1}H_s(X) \simeq E_{s,0}^{\infty} \hookrightarrow E_{s,0}^2 \simeq H_s(B)$$

is $p_*: H_s(X) \to H_s(B)$.

(2) Suppose that B is simply connected. Show that the composite

$$H_s(F) \simeq E_{0,s}^2 \to E_{0,s}^\infty \simeq F_0 H_s(X) \to H_s(X)$$

is $i_*: H_s(F) \to H_s(X)$.

Problem 3. Given an example of a filtered complex F_*C such that $\bigcap_s F_s C = 0$ but $\bigcap_s F_s H_*C \neq 0$.

Problem 4. Let F_*C be a filtered complex. Define a new filtration by $F_pC_n = F_{p-n}C_n$. Check that this is a filtration, and proved a relationship between the associated spectral sequences.

Problem 5 (double credits). We put $\mathbb{Z}/p^{\infty} = \operatorname{colim}_n \mathbb{Z}/p^n$. Given an abelian group A, define a filtration by $F_{-1}A = 0$ and for $s \ge 0$

$$F_s A = ker(p^{s+1} : A \to A).$$

Let C be a chain complex of free abelian groups such that each group $H_n(C)$ is finitely generated. Give $C \otimes \mathbb{Z}/p^{\infty}$ the filtration arising from the above construction.

- (1) Compute (E^0, d^0) and (E^1, d^1) of the associated spectral sequence. How is d^1 related to the short exact sequence $0 \to \mathbb{Z}/p \to \mathbb{Z}/p^2 \to \mathbb{Z}/p \to 0$?
- (2) Sketch the spectral sequence in the case $C_i = \mathbb{Z}$ for $i = 0, 1, C_i = 0$ else, and $d: C_1 \to C_0$ given by multiplication by p^n .
- (3) Multiplication by p defines an operator $F_s C \to F_{s-1}C$. Describe its effect on the spectral sequence.
- (4) Use this operator to "solve the extension problems" and describe $H_*(C \otimes \mathbb{Z}/p^{\infty})$ in terms of this spectral sequence.
- (5) Deduce that if $C \to C'$ is a quasi-isomorphism (same assumptions on C' as on C), then so is $C \otimes \mathbb{Z}/p^{\infty} \to C' \otimes \mathbb{Z}/p^{\infty}$.
- (6) Explain what this information says about $H_*(C)$ itself.
- (7) There is a short exact sequence $0 \to C \xrightarrow{p} C \to C/p \to 0$, inducing an exact couple $H_*(C) \xrightarrow{p} H_*(C) \to H_*(C/p) \to \dots$ Explain how the spectral sequence associated to this exact couple relates to the spectral sequence arising from above filtration.