PROBLEM SET 2

Problem 1. For a pointed space X, denote by ΣX its suspension

$$X \times I / * \times I \cup X \times \{0, 1\}.$$

- (1) Show that $\Sigma : Spc_* \leftrightarrows Spc_* : \Omega$ is an adjunction.
- (2) Show that this descends to an adjunction $\Sigma : Ho(Spc_*) \cong Ho(Spc_*) : \Omega$.

Problem 2. Show that the exponential map $\mathbb{R} \to S^1$ is a fibration. Use this to compute $\pi_*(S^1)$.

Problem 3 (the Hopf fibration). Consider the map $\eta: S^3 \subset \mathbb{C}^2 \setminus 0 \to \mathbb{CP}^1 = S^2$.

- (1) Show that η is a fibration with fiber S^1 .
- (2) Deduce that $\pi_2(S^2) = \mathbb{Z}$.
- (3) Assuming that $\pi_n(S^n) = \mathbb{Z}$ (generated by the identity), deduce that $\pi_3(S^2) = \mathbb{Z}$ generated by η .
- (4) Construct elements in $\pi_7(S^4)$ and $\pi_{15}(S^8)$ of infinite order.

Problem 4. Let $f: X \to Y \in Spc_*$. Devise an action of ΩY on F(f). Deduce that there is a canonical map $\Omega Y \times F(f) \to F(f) \times_X F(f)$. (Why is this fiber product homotopically meaningful?) Show that this map is a homotopy equivalence.

Problem 5. Consider the category C of pairs (π, G) where π is a group and G is a group acted on by π .

- (1) Construct binary products in C.
- (2) Suppose that (π, G) is given a unital multiplication. Show that both groups are abelian and the action is trivial.
- (3) Deduce that path-connected *H*-spaces (objects with unital multiplication in Ho(Spc)) are simple.

Problem 6. Show that $[K(A, n), K(B, n)]_* \simeq \text{Hom}(A, B)$. Deduce that the category $K_n \subset Ho(CW_*)$ of connected spaces with only homotopy group in degree n is equivalent to a familiar category. Use this to give another proof of the uniqueness of Eilenberg-MacLane spaces.